Association of the IGF1 5′UTR Polymorphism in Meat-Type Sheep Breeds Considering Growth, Body Size, Slaughter, and Meat Quality Traits in Turkey
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals and Feeding Schedules
2.3. Measurement of Live Weight, Linear Body Measurements, and In Vivo Ultrasound
2.4. Assessment of Slaughter and Carcass Characteristics and Meat Quality
2.5. Extraction of DNA, Primer Design, PCR Amplification, SSCP Analysis, and Sequencing of DNA
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423). New York: United Nations. Available online: https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf (accessed on 20 January 2023).
- Brameld, J.M.; Parr, T. Improving efficiency in meat production. Proc. Nutr. Soc. 2016, 75, 242–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolee, A.R.R.; Olga, E.; Ekaterina, C. Identification of CLPG gene polymorphism using PCR-RFLP of Iraq and Belarus population sheep breeds. Gene Rep. 2021, 22, 100974. [Google Scholar] [CrossRef]
- Margawati, E.T.; Raadsma, H.W.; Martojo, H. Quantitative Trait Loci (QTL) Analysis for Production Traits of Birth Weight and Weight 360 days in Backcross Sheep. HAYATI J. Biosci. 2006, 13, 31–35. [Google Scholar] [CrossRef]
- Nanekarani, S.; Goodarzi, M. Polymorphism of Candidate Genes for Meat Production in Lori Sheep. IERI Procedia 2014, 8, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Karadag, O. Meat-Type Lambs in Turkey: The polymorphism of insulin-like growth factor-1 receptor (IGF-1R) gene in meat-type Lambs in Turkey. Small Rumin. Res. 2022, 215, 106765. [Google Scholar] [CrossRef]
- Kumar, S.; Dahiya, S.P.; Magotra, A.; Ratwan, P. Influence of single nucleotide polymorphism in the IGF-1 gene on performance and conformation traits in Munjal sheep. Zygote 2022, 31, 70–77. [Google Scholar] [CrossRef]
- Song, X.T.; Zhang, J.N.; Zhao, D.W.; Zhai, Y.F.; Lu, Q.; Qi, M.Y.; Lu, M.H.; Deng, S.L.; Han, H.B.; Yang, X.Q.; et al. Molecular cloning, expression, and functional features of IGF1 splice variants in sheep. Endocr. Connect. 2021, 10, 980–994. [Google Scholar] [CrossRef]
- Rotwein, P. Mapping the growth hormone--Stat5b--IGF-I transcriptional circuit. Trends Endocrinol. Metab. 2012, 23, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhou, H.; Zhao, F.; Fang, Q.; Wang, J.; Liu, X.; Luo, Y.; Hickford, J.G.H. Nucleotide sequence variation in the insulin-like growth factor 1 gene affects growth and carcass traits in new zealand romney sheep. DNA Cell Biol. 2021, 40, 265–271. [Google Scholar] [CrossRef]
- He, J.N.; Zhang, B.Y.; Chu, M.X.; Wang, P.Q.; Feng, T.; Cao, G.L.; Di, R.; Fang, L.; Huang, D.W.; Tang, Q.Q.; et al. Polymorphism of insulin-like growth factor 1 gene and its association with litter size in Small Tail Han sheep. Mol. Biol. Rep. 2012, 39, 9801–9807. [Google Scholar] [CrossRef]
- D’Occhio, M.J.; Baruselli, P.S.; Campanile, G. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 2019, 125, 277–284. [Google Scholar] [CrossRef]
- Bedir, Ö.; Gram, A.; Dorsam, S.T.; Grazul-Bilska, A.T.; Kowalewski, M.P. Plane of nutrition and FSH-induced superovulation affect the expression of steroid hormone receptors and growth factors in caruncular tissue of non-pregnant sheep. Domest. Anim. Endocrinol. 2022, 78, 106683. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, M.; Sato, F.; Aramaki, S.; Soh, T.; Yamauchi, N.; Hattori, M.A. Monitor of the myostatin autocrine action during differentiation of embryonic chicken myoblasts into myotubes: Effect of IGF-I. Mol. Cell Biochem. 2009, 331, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Hosnedlova, B.; Vernerova, K.; Kizek, R.; Bozzi, R.; Kadlec, J.; Curn, V.; Kouba, F.; Fernandez, C.; Machander, V.; Horna, H. Associations between IGF1, IGFBP2 and tgfß3 genes polymorphisms and growth performance of broiler chicken lines. Animals 2020, 10, 800. [Google Scholar] [CrossRef]
- Zou, T.; He, D.; Yu, B.; Yu, J.; Mao, X.; Zheng, P.; He, J.; Huang, Z.; Chen, D. Moderate Maternal Energy Restriction during Gestation in Pigs Attenuates Fetal Skeletal Muscle Development Through Changing Myogenic Gene Expression and Myofiber Characteristics. Reprod. Sci. 2017, 24, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Wang, Y.; Qiao, X.; Zhang, X.; Deng, H.; Zhang, C.; Li, J.; Yuan, X.; Zhang, H. A Poly(dA:dT) Tract in the IGF1 Gene Is a Genetic Marker for Growth Traits in Pigs. Animals 2022, 12, 3316. [Google Scholar] [CrossRef] [PubMed]
- Zonaed Siddiki, A.M.A.M.; Miah, G.; Islam, M.S.; Kumkum, M.; Rumi, M.H.; Baten, A.; Hossain, M.A. Goat Genomic Resources: The Search for Genes Associated with Its Economic Traits. Int. J. Genom. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Chalbi, S.; Dettori, M.L.; Djemali, M.N.; Vacca, G.M.; Petretto, E.; Pazzola, M.; Bedhiaf-Romdhani, S. Haplotype structure of MSTN, IGF1, and BMP2 genes in Tunisian goats (Capra hircus) and their association with morphometric traits. Trop. Anim. Health Prod. 2023, 55, 1–9. [Google Scholar] [CrossRef]
- Trukhachev, V.; Skripkin, V.; Kvochko, A.; Kulichenko, A.; Kovalev, D.; Pisarenko, S.; Volynkina, A.; Selionova, M.; Aybazov, M.; Shumaenko, S.; et al. Polymorphisms of the IGF1 gene in Russian sheep breeds and their influence on some meat production parameters. Slov. Vet. Res. 2016, 53, 77–83. [Google Scholar]
- Ding, N.; Tian, D.; Li, X.; Zhang, Z.; Tian, F.; Liu, S.; Han, B.; Liu, D.; Zhao, K. Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep. Genes 2022, 13, 666. [Google Scholar] [CrossRef]
- Mohammadabadi, M.; Bordbar, F.; Jensen, J.; Du, M.; Guo, W. Key genes regulating skeletal muscle development and growth in farm animals. Animals 2021, 11, 835. [Google Scholar] [CrossRef] [PubMed]
- Radovan, K.; Nina, M.; Barbora, O.; Gábor, M.; Luboš, V.; Hana, V.; Kristína, L.; Ján, P.; Juraj, C. The evaluation of genomic diversity and selection signals in the autochthonous Slovak Spotted cattle. Czech J. Anim. Sci. 2021, 66, 251–261. [Google Scholar] [CrossRef]
- Talebi, R.; Ghaffari, M.R.; Zeinalabedini, M.; Abdoli, R.; Mardi, M. Genetic basis of muscle-related traits in sheep: A review. Anim. Genet. 2022, 53, 723–739. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, Y.; Deng, K.; Liang, Y.; Zhang, G.; Gao, X.; El-Samahy, M.A.; Zhang, Y.; Deng, M.; Wang, F. Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1. FASEB J. 2022, 36, 1–18. [Google Scholar] [CrossRef]
- Scatà, M.C.; Catillo, G.; Annicchiarico, G.; De Matteis, G.; Napolitano, F.; Signorelli, F.; Moioli, B. Investigation on lactation persistency and IGF-I gene polymorphisms in dairy sheep. Small Rumin. Res. 2010, 89, 7–11. [Google Scholar] [CrossRef]
- Damak, S.; Su, H.; Jay, N.P.; Bullock, D.W. Improved Wool Production in Transgenic Sheep Expressing Insulin-like Growth Factor 1. Bio/Technology 1996, 14, 185–188. [Google Scholar] [CrossRef]
- Guo, X.D.; Yang, D.S.; Ao, X.D.; Wu, X.; Li, G.P.; Wang, L.L.; Bao, M.T.; Xue, L.; Bou, S.G. Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer. Sci. China Ser. C Life Sci. 2009, 52, 390–397. [Google Scholar] [CrossRef]
- Behzadi, S.; Sadeghi, M.; Zamani, P.; Abdoli, R. Association of IGF-I Gene Polymorphisms with Carcass Traits in Iranian Mehraban Sheep Using SSCP Analysis. Iran. J. Appl. Anim. Sci. 2015, 5, 121–126. [Google Scholar]
- Qasimi, R.H.A.; Hassan, A.F.; Khudair, B.Y. Effect of IGF-1 and GH Genes Polymorphism on Weights and Body Measurements of Awassi Lambs in Different Ages. Basrah J. Agric. Sci. 2019, 32, 39–46. [Google Scholar] [CrossRef]
- Esen, V.K.; Elmacı, C. Effect of Growth Hormone Exon-5 Polymorphism on Growth Traits, Body Measurements, Slaughter and Carcass Characteristics, and Meat Quality in Meat-Type Lambs in Turkey. Ruminants 2022, 2, 420–434. [Google Scholar] [CrossRef]
- Kader Esen, V.; Esen, S.; Karadağ, O.; Önenç, A.; Elmaci, C. Slaughter and carcass characteristics of Kıvırcık, Karacabey Merino, Ramlıç, German Black-Head Mutton × Kıvırcık and Hampshire down × Merino crossbreed lambs reared under intensive conditions. Turk. J. Vet. Anim. Sci. 2020, 44, 1155–1163. [Google Scholar] [CrossRef]
- Kader Esen, V.; Elmacı, C. The Estimation of Live Weight from Body Measurements in Different Meat-Type Lambs. J. Agr. Sci.-Tarim Bili. 2021, 27, 469–475. [Google Scholar] [CrossRef]
- Kader-Esen, V.; Esen, S.; Karadag, O.; Elmaci, C. Genotypic characterization of meat-type lambs expressing the callipyge gene in Turkey: II. Effect on body indexes. Small Rumin. Res. 2022, 208, 106633. [Google Scholar] [CrossRef]
- Kader Esen, V.; Esen, S.; Karadağ, O.; Önenç, A.; Elmaci, C. Genotypic Characterization of Meat-Type Lambs Expressing the Callipyge Gene in Turkey: I. Carcass Characteristics and Retail Yield. Turk. J. Vet. Anim. Sci. 2022, 46, 1–8. [Google Scholar] [CrossRef]
- Yilmaz, O.; Cemal, I.; Karaca, O. Estimation of mature live weight using some body measurements in Karya sheep. Trop. Anim. Health Prod. 2012, 45, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Selim, E.; Harun, K.; Cuneyt, K.; Huseyin, E. Effect of activated clinoptilolite and inactive brewer’s yeast mixture on loin eye muscle and body indexes in fattening period. Med. Weter. 2020, 76, 626–630. [Google Scholar] [CrossRef]
- Yakan, A.; Tayyar, C.; Alasahan, S.; Odabasioglu, F.; Unal, N. Damascus kids’ slaughter, carcass and meat quality traits in different production systems using antioxidant supplementation. Small Rumin. Res. 2016, 136, 43–53. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Honikel, K.O.; Hamm, R. Measurement of water-holding capacity and juiciness. In Quality Attributes and Their Measurement in Meat, Poultry and Fish Products; Pearson, A.M., Dutson, T.R., Eds.; Springer: Boston, MA, USA, 1994; pp. 125–161. [Google Scholar]
- Choi, Y.M.; Kim, B.C. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livest. Sci. 2009, 122, 105–118. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Santos-Rodrigues, G.; Piedra, R.B.; Coelho-Fernandes, S.; Osoro, K.; Celaya, R.; Maurício, R.S.; Pires, J.; Tolsdorf, A.; Geß, A.; et al. Quality attributes of lamb meat from European breeds: Effects of intrinsic properties and storage. Small Rumin. Res. 2021, 198, 106354. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012. [Google Scholar]
- Byun, S.O.; Fang, Q.; Zhou, H.; Hickford, J.G.H. An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Anal. Biochem. 2009, 385, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Falconer, D.S.; Mackay, T.E.C. Introduction to Quantitative Genetics, 4th ed.; Longman: Essex, UK, 1996. [Google Scholar]
- Minitab, I. Statistical Software for Windows, Release 17; Minitab Inc.: State College, PA, USA, 2014. [Google Scholar]
- Abousoliman, I.; Reyer, H.; Oster, M.; Muráni, E.; Mourad, M.; Rashed, M.A.S.; Mohamed, I.; Wimmers, K. Analysis of candidate genes for growth and milk performance traits in the Egyptian Barki sheep. Animals 2020, 10, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahmoorespur, M.; Taheri, A.; Gholami, H.; Ansary, M. PCR-SSCP variation of GH and STAT5A genes and their association with estimated breeding values of growth traits in baluchi sheep. Anim. Biotechnol. 2011, 22, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Tahmoorespur, M.; Valeh, M.V.; Nassiry, M.R.; Moussavi, A.H.; Ansary, M. Association of the polymorphism in the 5′ flanking region of the ovine IGF-I gene with growth traits in the Baluchi sheep. South African J. Anim. Sci. 2009, 39, 97–101. [Google Scholar] [CrossRef]
- Hajihosseinlo, A.; Hashemi, A.; Razavi, S.A.; Pirany, N. Association of the polymorphism in the 5′ flanking region of the ovine IGF-I gene with growth and development traits in Markui sheep of Iran. Eur. J. Zool. Res. 2013, 2, 19–24. [Google Scholar]
- Ramasamy, C. Association of IGF1 Gene Polymorphism with Growth Rates in Madras Red Sheep. Int. J. Livest. Res. 2018, 8, 131. [Google Scholar] [CrossRef]
- Tahmoorespur, M.; Taheri, A.; Valeh, M.V.; Saghi, D.A.; Ansary, M. Assessment relationship between leptin and ghrelin genes polymorphisms and estimated breeding values (EBVs) of growth traits in Baluchi sheep. J. Anim. Vet. Adv. 2010, 9, 2460–2465. [Google Scholar]
- Nazari, F.; Noshary, A.; Hemati, B. Association between insulin-like growth factor I polymorphism and early growth traits in Iranian Zandi sheep, found polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Iran. J. Appl. Anim. Sci. 2016, 6, 665–669. [Google Scholar]
- Machado, A.L.; Meira, A.N.; Juc, F.; Azevedo, H.C.; Muniz, E.N.; Coutinho, L.L.; Mour, G.B.; Pedrosa, V.B.; Pinto, F.B. Variants in GH, IGF1, and LEP Genes Associated with Body Traits in Santa Inês Sheep. Sci. Agric. 2021, 78, 1–9. [Google Scholar] [CrossRef]
- Oberbauer, A.M. The regulation of IGF-1 gene transcription and splicing during development and aging. Front. Endocrinol. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mclellan, A.S.; Kealey, T.; Langlands, K. An E box in the exon 1 promoter regulates insulin-like growth factor-I expression in differentiating muscle cells. Am. J. Physiol. Cell Physiol. 2023, 291, 300–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksbjerg, N.; Gondret, F.; Vestergaard, M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest. Anim. Endocrinol. 2004, 27, 219–240. [Google Scholar] [CrossRef]
- McKoy, G.; Ashley, W.; Mander, J.; Yu Yang, S.; Williams, N.; Russell, B.; Goldspink, G. Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J. Physiol. 1999, 516, 583–592. [Google Scholar] [CrossRef]
- Tollefsen, S.E.; Lajara, R.; McCusker, R.H.; Clemmons, D.R.; Rotwein, P. Insulin-like Growth Factors (IGF) in Muscle Development. J. Biol. Chem. 1989, 264, 13810–13817. [Google Scholar] [CrossRef]
- Engert, J.C.; Berglund, E.B.; Rosenthal, N. Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J. Cell Biol. 1996, 135, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.K.; Vinsky, M.; Crews, R.E.; Okine, E.; Moore, S.S.; Crews, D.H.; Li, C. Association analyses of a SNP in the promoter of IGF1 with fat deposition and carcass merit traits in hybrid, Angus and Charolais beef cattle. Anim. Genet. 2009, 40, 766–769. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, F.; Boretto, E.; Vitale, S.; Gonzalez, V.; Vidal, G.; Pardo, M.F.; Flores, M.F.; Garcia, F.; Bagnis, G.; Queiroz, O.C.M.; et al. Maternal nutritional restriction during late gestation impairs development of the reproductive organs in both male and female lambs. Theriogenology 2018, 108, 331–338. [Google Scholar] [CrossRef]
- Baker, J.; Hardy, M.P.; Zhou, J.; Bondy, C.; Lupu, F.; Bellvé, A.R.; Efstratiadis, A. Effects of an Igf1 gene null mutation on mouse reproduction. Mol. Endocrinol. 1996, 10, 903–918. [Google Scholar] [CrossRef]
- Grochowska, E.; Lisiak, D.; Akram, M.Z.; Adeniyi, O.O.; Lühken, G.; Borys, B. Association of a polymorphism in exon 3 of the IGF1R gene with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. Meat Sci. 2021, 172, 108314. [Google Scholar] [CrossRef]
- Curi, R.A.; De Oliveira, H.N.; Silveira, A.C.; Lopes, C.R. Association between IGF-I, IGF-IR and GHRH gene polymorphisms and growth and carcass traits in beef cattle. Livest. Prod. Sci. 2005, 94, 159–167. [Google Scholar] [CrossRef]
- Girnita, L.; Worrall, C.; Takahashi, S.I.; Seregard, S.; Girnita, A. Something old, something new and something borrowed: Emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol. Life Sci. 2014, 71, 2403–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
# | Position 1 | Nucleotide Sequences | Chromosome Location 2 | SNP rs ID | ||
---|---|---|---|---|---|---|
P1 | P2 | P3 | ||||
1 | c.28 | C | Y(C/T) | C | 3:171,328,404 | - |
2 | c.32 | G | S(G/C) | G | 3:171,328,400 | rs.401028781 |
3 | c.34 | G | R(A/G) | G | 3:171,328,398 | rs.422604851 |
4 | c.167 | T | T | C | 3:171,328,265 | - |
5 | c.172 | G | G | R(A/G) | 3:171,328,260 | - |
6 | c.175 | T | T | G | 3:171,328,257 | - |
7 | c.186 | T | T | A | 3:171,328,246 | - |
8 | c.202 | - | T | T | 3:171,328,230 | - |
Breed | n | Variant | ||
---|---|---|---|---|
P1 | P2 | P3 | ||
Kıvırcık | 44 | 0.64 | 0.36 | - |
Female | 31 | 0.68 | 0.32 | - |
Male | 13 | 0.54 | 0.46 | - |
Karacabey Merino | 44 | 0.75 | 0.09 | 0.16 |
Female | 31 | 0.87 | 0.13 | - |
Male | 13 | 0.46 | - | 0.54 |
Ramlıç | 24 | 0.79 | - | 0.21 |
Female | 13 | 1.00 | - | - |
Male | 11 | 0.55 | - | 0.45 |
German Black-Head Mutton × Kıvırcık | 46 | 0.48 | 0.28 | 0.24 |
Female | 31 | 0.51 | 0.26 | 0.23 |
Male | 15 | 0.40 | 0.33 | 0.27 |
Hampshire Down × Merino | 23 | 0.70 | 0.30 | - |
Female | 15 | 0.53 | 0.47 | - |
Male | 8 | 1.00 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kader Esen, V.; Esen, S. Association of the IGF1 5′UTR Polymorphism in Meat-Type Sheep Breeds Considering Growth, Body Size, Slaughter, and Meat Quality Traits in Turkey. Vet. Sci. 2023, 10, 270. https://doi.org/10.3390/vetsci10040270
Kader Esen V, Esen S. Association of the IGF1 5′UTR Polymorphism in Meat-Type Sheep Breeds Considering Growth, Body Size, Slaughter, and Meat Quality Traits in Turkey. Veterinary Sciences. 2023; 10(4):270. https://doi.org/10.3390/vetsci10040270
Chicago/Turabian StyleKader Esen, Vasfiye, and Selim Esen. 2023. "Association of the IGF1 5′UTR Polymorphism in Meat-Type Sheep Breeds Considering Growth, Body Size, Slaughter, and Meat Quality Traits in Turkey" Veterinary Sciences 10, no. 4: 270. https://doi.org/10.3390/vetsci10040270
APA StyleKader Esen, V., & Esen, S. (2023). Association of the IGF1 5′UTR Polymorphism in Meat-Type Sheep Breeds Considering Growth, Body Size, Slaughter, and Meat Quality Traits in Turkey. Veterinary Sciences, 10(4), 270. https://doi.org/10.3390/vetsci10040270