Musty and Moldy Taint in Wines: A Review
Abstract
:1. Musty and Moldy Taint
2. Haloanisoles
2.1. 2,4,6-Trichloroanisole (TCA)
2.2. 2,4,6-Tribromoanisole (TBA)
3. Geosmin
4. 2-Methylisoborneol (2-MIB)
5. Guaiacol and 4-Methylguaiacol
6. 1-Octen-3-One and 1-Octen-3-Ol
7. Pyrazines
7.1. 2-Ethoxy-3,5-Dimethylpyrazine (MDMP)
7.2. Other Pyrazines
8. Stoppers, Barriers and Scalping Phenomena
9. Prevention
10. Cure
11. Conclusions
Funding
Conflicts of Interest
References
- Dettori, S.; Filigheddu, M.R. Cork and Enology. Analysis of the Domestic Chain. Italian J. For. Mt. Environ. 2016, 71, 331–343. [Google Scholar] [CrossRef]
- Pereira, H. Cork: Biology, Production and Uses; Elsevier: Amsterdam, The Netherlands, 2007; p. 336. ISBN 978-044452967-1. [Google Scholar]
- Gil, L. Cork: A strategic material. Front. Chem. 2014, 2, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribéreau, G.P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Trattato di Enologia 2, 4th ed.; Edagricole: Bologna, Italia, 2018. [Google Scholar]
- Rocha, S.M.; Coimbra, M.A.; Delgadillo, I. Demonstration of pectic polysaccharides in cork cell wall from Quercus suber L. J. Agric. Food Chem. 2000, 48, 2003–2007. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Andrade, E.; Stchigel, A.M.; Guarro, J.; Cano-Lira, J.F. Fungal Diversity of Deteriorated Sparkling Wine and Cork Stoppers in Catalonia, Spain. Microorganisms 2019, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, H.; Kato, H.; Kurahashi, T. 2,4,6-trichloroanisole is a potent suppressor of olfactory signal transduction. Proc. Natl. Acad. Sci. USA 2013, 110, 16235–16240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, D. Organohalogen Taints in Foods; Australian Food & Grocery Council: Canberra, Australia, 2007; pp. 1–15. [Google Scholar]
- McGarrity, M.J.; McRoberts, C.; Fitzpatrick, M. Identification, cause, and prevention of musty off-flavors in beer. Tech. Q. Master Brew. Assoc. Am. 2003, 40, 44–47. [Google Scholar]
- Juanola, R.; Regueiro, J.A.G.; Subirá, D.; Salvadó, V.; Anticó, E. Migration of 2,4,6-trichloroanisole from cork stoppers to wine. Eur. Food Res. Technol. 2004, 220, 347–352. [Google Scholar] [CrossRef]
- Salvatella, P.; Prat, C.; Roselló, J.; Anticó, E. Chloroanisoles and Other Chlorinated Compounds in Cork from Different Geographical Areas. Toxics 2019, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Prak, S.; Günata, Z.; Guiraud, J.-P.; Schorr-Galindo, S. Fungal strains isolated from cork stoppers and the formation of 2,4,6-trichloroanisole involved in the cork taint of wine. Food Microbiol. 2007, 24, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.F.; Sefton, M.A. Origin and fate of 2,4,6-trichloroanisole in cork bark and wine corks. Aust. J. Grape Wine Res. 2007, 13, 106–116. [Google Scholar] [CrossRef]
- Chatonnet, P.; Fleury, A.; Boutou, S. Identification of a New Source of Contamination of Quercus sp. Oak Wood by 2,4,6-Trichloroanisole and Its Impact on the Contamination of Barrel-Aged Wines. J. Agric. Food Chem. 2010, 58, 10528–10538. [Google Scholar] [CrossRef] [PubMed]
- Cacho, J.; Nicolas, J.; Viñas, P.; Campillo, N.; Hernandez-Cordoba, M. Control of halophenol and haloanisole concentration in wine cellar environments, wines, corks and wood staves using gas chromatography with mass spectrometry. Aust. J. Grape Wine Res. 2016, 22, 391–398. [Google Scholar] [CrossRef]
- Tarasov, A.; Rauhut, D.; Jung, R. “Cork taint” responsible compounds. Determination of haloanisoles and halophenols in cork matrix: A review. Talanta 2017, 175, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Callejón, R.; Ubeda, C.; Ríos-Reina, R.; Morales, M.; Troncoso, A.M. Recent developments in the analysis of musty odour compounds in water and wine: A review. J. Chromatogr. A 2016, 1428, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.R. Analytical methods for determination of cork-taint compounds in wine. TrAC. Trends Anal. Chem. 2012, 37, 135–147. [Google Scholar] [CrossRef]
- De La Fuente, A.; Lopez, R.; Cacho, J.; Ferreira, V. Evaluation of Gas Chromatography-Olfactometry for Screening Purposes of Wine Off-Flavors; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 423–428. [Google Scholar]
- Mazzoleni, V.; Maggi, L. Effect of wine style on the perception of 2,4,6-trichloroanisole, a compound related to cork taint in wine. Food Res. Int. 2007, 40, 694–699. [Google Scholar] [CrossRef]
- Cravero, M.C.; Bonello, F.; Alvarez, M.D.C.P.; Tsolakis, C.; Borsa, D. The sensory evaluation of 2,4,6-trichloroanisole in wines. J. Inst. Brew. 2015, 121, 411–417. [Google Scholar] [CrossRef]
- Griffiths, N.M. SENSORY PROPERTIES OF THE CHLORO-ANISOLES. Chem. Senses 1974, 1, 187–195. [Google Scholar] [CrossRef]
- Casey, J. Controversies about corks. Aust. N. Z. Grapegrow. Winemak. 2003, 475, 68–74. [Google Scholar]
- Prescott, J.; Norris, L.; Kunst, M.; Kim, S. Estimating a “consumer rejection threshold” for cork taint in white wine. Food Qual. Prefer. 2005, 16, 345–349. [Google Scholar] [CrossRef]
- Teixeira, M.I.V.; San Romao, M.V.; Bronze, M.R.; Vilas, B.L. 2,4,6-trichloroanisole: A consumer panel evaluation. Cienc. e Tec. Vitivinic. 2006, 21, 53–65. [Google Scholar]
- McKay, M.; Bauer, F.; Panzeri, V.; Buica, A. Testing the Sensitivity of Potential Panelists for Wine Taint Compounds Using a Simplified Sensory Strategy. Foods 2018, 7, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, G. Les goûts de bouchon, mise au point. Rev. Fr. Oenol. 2003, 202, 20–22. [Google Scholar]
- Chatonnet, P.; Bonnet, S.; Boutou, S.; Labadie, M.-D. Identification and Responsibility of 2,4,6-Tribromoanisole in Musty, Corked Odors in Wine. J. Agric. Food Chem. 2004, 52, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Tempere, S.; Cuzange, E.; Malak, J.; Bougeant, J.C.; De Revel, G.; Sicard, G. The Training Level of Experts Influences their Detection Thresholds for Key Wine Compounds. Chemosens. Percept. 2011, 4, 99–115. [Google Scholar] [CrossRef]
- Dumoulin, M.; Riboulet, J.M. Analyse de géosmine dans les vins: Apport de la microextraction en phase solide (SPME) couplée à l’analyse par GC-MS. Rev. Française Oenol. 2004, 208, 28–30. [Google Scholar]
- La Guerche, S.; Dauphin, B.; Pons, M.; Blancard, D.; Darriet, P. Characterization of Some Mushroom and Earthy Off-Odors Microbially Induced by the Development of Rot on Grapes. J. Agric. Food Chem. 2006, 54, 9193–9200. [Google Scholar] [CrossRef]
- La Guerche, S.; Chamont, S.; Blancard, D.; Dubourdieu, D.; Darriet, P. Origin of (−)-Geosmin on Grapes: On the Complementary Action of Two Fungi, Botrytis Cinerea and Penicillium Expansum. Anton. Leeuw. 2005, 88, 131–139. [Google Scholar] [CrossRef]
- Ribéreau, G.P.; Glories, Y.; Maujean, A.; Dubourdieu, D. 8.8.2 La (-) geosmina principale composto responsabile del difetto terroso. In Trattato di Enologia 2, 4th ed.; Edagricole: Bologna, Italia, 2018; pp. 307–311. [Google Scholar]
- Weingart, G.; Schwartz-Zimmermann, H.; Eder, R.; Sontag, G. Determination of geosmin and 2,4,6-trichloroanisole in white and red Austrian wines by headspace SPME-GC/MS and comparison with sensory analysis. Eur. Food Res. Technol. 2010, 231, 771–779. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Gambuti, A.; Genovese, A.; Piombino, P.; Moio, L. Earthy off-flavour in wine: Evaluation of remedial treatments for geosmin contamination. Food Chem. 2014, 154, 171–178. [Google Scholar] [CrossRef]
- Pradelles, R.; Chassagne, D.; Vichi, S.; Gougeon, R.; Alexandre, H. (−)Geosmin sorption by enological yeasts in model wine and FTIR spectroscopy characterization of the sorbent. Food Chem. 2010, 120, 531–538. [Google Scholar] [CrossRef]
- Behr, M.; Cocco, E.; Lenouvel, A.; Guignard, C.; Evers, D. Earthy and Fresh Mushroom Off-Flavors in Wine: Optimized Remedial Treatments. Am. J. Enol. Vitic. 2013, 64, 545–549. [Google Scholar] [CrossRef]
- Ferreira, V.; Juan, F.S.; Escudero, A.; Culleré, L.; Zurbano, P.F.; Sáenz-Navajas, M.-P.; Cacho, J. Modeling Quality of Premium Spanish Red Wines from Gas Chromatography−Olfactometry Data. J. Agric. Food Chem. 2009, 57, 7490–7498. [Google Scholar] [CrossRef] [PubMed]
- Pinar, A.L.; Ghadiriasli, R.; Darriet, P.; Buettner, A. Unexpected impact of 2-methylisoborneol as off-odour substance in aged wines. Food Chem. 2017, 220, 498–504. [Google Scholar] [CrossRef]
- Sefton, M. Hydrolytically-released volatile secondary metabolites from a juice sample of Vitis vinifera grape cvs Merlot and Cabernet Sauvignon. Aust. J. Grape Wine Res. 1998, 4, 30–38. [Google Scholar] [CrossRef]
- Wirth, J.; Guo, W.; Baumes, R.; Günata, Z. Volatile compounds released by enzymatic hydrolysis of glycoconjugates of leaves and grape berries from Vitis vinifera Muscat of Alexandria and Shiraz cultivars. J. Agric. Food Chem. 2001, 49, 2917–2923. [Google Scholar] [CrossRef]
- Parker, M.; Osidacz, P.; Baldock, G.A.; Hayasaka, Y.; Black, C.A.; Pardon, K.H.; Jeffery, D.W.; Geue, J.P.; Herderich, M.J.; Francis, L. Contribution of Several Volatile Phenols and Their Glycoconjugates to Smoke-Related Sensory Properties of Red Wine. J. Agric. Food Chem. 2012, 60, 2629–2637. [Google Scholar] [CrossRef]
- Boidron, J.-N.; Chatonnet, P.; Pons, M. Influence du bois sur certaines substances odorantes des vins. OENO One 1988, 22, 275. [Google Scholar] [CrossRef]
- Singh, D.; Chong, H.; Pitt, K.; Cleary, M.; Dokoozlian, N.; Downey, M. Guaiacol and 4-methylguaiacol accumulate in wines made from smoke-affected fruit because of hydrolysis of their conjugates. Aust. J. Grape Wine Res. 2011, 17, S13–S21. [Google Scholar] [CrossRef]
- Simonato, B.; Lorenzini, M.; Cipriani, M.; Finato, F.; Zapparoli, G. Correlating Noble Rot Infection of Garganega Withered Grapes with Key Molecules and Odorants of Botrytized Passito Wine. Foods 2019, 8, 642. [Google Scholar] [CrossRef] [Green Version]
- Pons, M.; Dauphin, B.; La Guerche, S.; Pons, A.; Lavigne-Cruege, V.; Shinkaruk, S.; Bunner, D.; Richard, T.; Monti, J.-P.; Darriet, P. Identification of Impact Odorants Contributing to Fresh Mushroom Off-Flavor in Wines: Incidence of Their Reactivity with Nitrogen Compounds on the Decrease of the Olfactory Defect. J. Agric. Food Chem. 2011, 59, 3264–3272. [Google Scholar] [CrossRef]
- Simpson, R.F.; Capone, D.L.; Sefton, M.A. Isolation and Identification of 2-Methoxy-3,5-dimethylpyrazine, a Potent Musty Compound from Wine Corks. J. Agric. Food Chem. 2004, 52, 5425–5430. [Google Scholar] [CrossRef] [PubMed]
- Chatonnet, P.; Fleury, A.; Boutou, S. Origin and Incidence of 2-Methoxy-3,5-dimethylpyrazine, a Compound with a “Fungal” and “Corky” Aroma Found in Cork Stoppers and Oak Chips in Contact with Wines. J. Agric. Food Chem. 2010, 58, 12481–12490. [Google Scholar] [CrossRef] [PubMed]
- Pickering, G.; Lin, J.; Riesen, R.; Reynolds, A.; Brindle, I.; Soleas, G. Influence of Harmonia axyridis on the sensory properties of white and red wine. Am. J. Enol. Vitic. 2004, 55, 153–159. [Google Scholar]
- Pickering, G.J.; Lin, Y.; Reynolds, A.; Soleas, G.; Riesen, R.; Brindle, I. The Influence of Harmonia axyridison Wine Composition and Aging. J. Food Sci. 2005, 70, S128–S135. [Google Scholar] [CrossRef]
- Blake, A.; Kotseridis, Y.; Brindle, I.; Inglis, D.; Sears, M.; Pickering, G.J. Effect of Closure and Packaging Type on 3-Alkyl-2-methoxypyrazines and Other Impact Odorants of Riesling and Cabernet Franc Wines. J. Agric. Food Chem. 2009, 57, 4680–4690. [Google Scholar] [CrossRef]
- Capone, D.L.; Skouroumounis, G.K.; Barker, D.; McLean, H.; Pollnitz, A.P.; Sefton, M. Absorption of chloroanisoles from wine by corks and by other materials. Aust. J. Grape Wine Res. 1999, 5, 91–98. [Google Scholar] [CrossRef]
- Capone, D.L.; Skouroumounis, G.K.; Sefton, M.A. Permeation of 2,4,6-trichloroanisole through cork closures in wine bottles. Aust. J. Grape Wine Res. 2002, 8, 196–199. [Google Scholar] [CrossRef]
- Pereira, B.; Lopes, P.; Marques, J.; Pimenta, M.; Alves, C.; Roseira, I.; Mendes, A.M.; Cabral, M. Sealing effectiveness of different types of closures towards volatile phenols and haloanisoles. OENO One 2013, 47, 145. [Google Scholar] [CrossRef]
- Tarasov, A.; Rauhut, D.; Jung, R. Bottle capsules as a barrier against airborne 2,4,6-trichloroanisole. Food Chem. 2018, 268, 463–467. [Google Scholar] [CrossRef]
- Giacosa, S.; Gabrielli, M.; Torchio, F.; Segade, S.R.; Grobas, A.M.M.; Aimonino, D.R.; Gay, P.; Gerbi, V.; Maury, C.; Rolle, L. Relationships among electrolyzed water postharvest treatments on winegrapes and chloroanisoles occurrence in wine. Food Res. Int. 2019, 120, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Tablino, L. Cosa si nasconde dietro i tappi? Vignevini 2010, 38, 52–56. [Google Scholar]
- OIV Part III Good Practices Guide for Bulk Wine Transportation, in International Code of Oenological Practices. 2019, p. 431. Available online: http://www.oiv.int/public/medias/6558/code-2019-en.pdf (accessed on 26 February 2020).
- A.A.V.V. Nuovo Disciplinare Sulle Metodiche Analitiche per il Controllo del Tappo di Sughero ad Uso Enologico; Crugnola Comunicazione e Design: Milano, Italia, 2011; p. 42. [Google Scholar]
- Cioni, G.A.; Cadinu, T. Physical Chemical Method to Remove the Cork Taste and in General Anomalous Smells of Cork Materials. WIPO Patent 2001 WO/2001/041989A2, 14 June 2001. [Google Scholar]
- Swan, J.S. Process for Removing Off-Flavors and Odors from Foods and Beverages. U.S. Patent US6610342B22003, 2003. [Google Scholar]
- Vuchot, P.; Puech, C.; Fernandez, O.; Fauveau, C.; Pellerin, P.; Vidal, S. Elimination des goûts de bouchon/moisi et de l’OTA à l’aide d’écorces de levures hautement adsorbantes. Rev. Vitic. Oenol. 2007, 2, 62–72. [Google Scholar]
- Garde-Cerdán, T.; Zalacain, A.; Lorenzo, C.; Alonso, J.L.; Salinas, M.R. Molecularly imprinted polymer-assisted simple clean-up of 2,4,6-TCA and ethylphenols from aged red wines. Am. J. Vitic. Enol. 2008, 59, 396–400. [Google Scholar]
- Varelas, V.; Sanvicens, N.; Marco, M.-P.; Kintzios, S. Development of a cellular biosensor for the detection of 2,4,6-trichloroanisole (TCA). Talanta 2011, 84, 936–940. [Google Scholar] [CrossRef]
- Cunningham, J. Highly Selective Molecular Confinement for the Prevention and Removal of Taint in Foods and Beverages. US Patent WO 2007/061602 A1, 31 May 2007. [Google Scholar]
- Valdés, O.; Marican, A.; Avila-Salas, F.; Castro, R.; Amalraj, J.; Laurie, V.F.; Santos, L.S. Polyaniline Based Materials as a Method to Eliminate Haloanisoles in Spirits Beverages. Ind. Eng. Chem. Res. 2018, 57, 8308–8318. [Google Scholar] [CrossRef]
- Valdés, O.; Marican, A.; Avila-Salas, F.; Castro, R.; Mirabal, Y.; Amalraj, J.; Abril, D.; Durán-Lara, E.F.; Santos, L.S. Simple approach for cleaning up 2,4,6-trichloroanisole from alcoholic-beverage-reconstituted solutions using polymeric materials. Aust. J. Grape Wine Res. 2019, 25, 327–337. [Google Scholar] [CrossRef]
- Silva, M.A.; Julien, M.; Jourdes, M.; Teissedre, P.-L. Impact of closures on wine post-bottling development: A review. Eur. Food Res. Technol. 2011, 233, 905–914. [Google Scholar] [CrossRef]
Molecule | Origin | Odor Description | References |
---|---|---|---|
2,4,6-trichloroanisole (TCA) | Fungi contamination of water, cork, cork stoppers, woody materials (oak barrels, pallets), paints, cartons, bottles, wines | mold, damp cellar, wet cardboard | [4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,52,53,54,55,56,60,61,62,63,64,65,66,67] |
2,4,6-Tribromoanisole (TBA) | Fungi or air contamination of water, wine, wood barrels or chips, cork stoppers | mold, mushrooms | [4,14,15,27,28,65,66] |
Geosmin | Various microrganisms contamination of water, grapes, oak wood, and cork stoppers | damp earth, humus, red beets, mold, dump cellar | [4,29,30,31,32,33,34,35,36,37] |
2-methylisoborneol (2-MIB) | Actinomycetes contamination of cork or B. cinerea affected grapes | earthy, mushroom, damp earth, camphor | [4,31,38,39] |
Guaiacol | Bacteria (Streptomyces) contamination of cork and wood barrels or “smoke taint” | smoked, phenolic, medicine | [4,26,40,41,42,43,44,54] |
4-methylguaiacol | |||
1-octen-3-one 1-octen-3-ol | Mushrooms contamination of cork stoppers, wood barrels or B. cinerea affected grapes | fresh mushrooms and metal | [4,31,37,45,46] |
2-methoxy-3,5-dimethylpyrazine (MDMP) | Rhizobium excellensis contamination of cork bark | earthy, herbaceous, potato, unripe hazelnut, dirty | [47,48] |
3-isobutyl-2-Methoxyipirazine (IBMP), 3-Sec-butyl-2-methoxyipirazine (SBMP), 3-isopropyl-2-Methoxyipirazine (IPMP) | Contaminated cork stopper, undesired insects (Harmonia axyridis) presence during fermentation | green pepper, peas, potatoes | [29,49,50,51] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cravero, M.C. Musty and Moldy Taint in Wines: A Review. Beverages 2020, 6, 41. https://doi.org/10.3390/beverages6020041
Cravero MC. Musty and Moldy Taint in Wines: A Review. Beverages. 2020; 6(2):41. https://doi.org/10.3390/beverages6020041
Chicago/Turabian StyleCravero, Maria Carla. 2020. "Musty and Moldy Taint in Wines: A Review" Beverages 6, no. 2: 41. https://doi.org/10.3390/beverages6020041
APA StyleCravero, M. C. (2020). Musty and Moldy Taint in Wines: A Review. Beverages, 6(2), 41. https://doi.org/10.3390/beverages6020041