Characterization of Key Aroma Compounds in Xiaoqu Liquor and Their Contributions to the Sensory Flavor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments
2.3. Methods
2.3.1. Sensory Evaluation of Xiaoqu Liquor
2.3.2. SBSE Conditions
2.3.3. GC-MS Analysis
2.3.4. GC-MS-O Analysis
2.3.5. Aroma Recombination and Omission Experiments
2.4. Data Processing
2.4.1. Qualitative Method
2.4.2. Quantitative Method
2.4.3. Odor Active Value (OAV) Calculation
3. Results and Discussion
3.1. Qualitative Analysis of Xiaoqu Liquor
3.2. GC-FID and SBSE-GC-MS Analysis
3.3. Analysis of Aroma Active Compounds in Xiaoqu Liquor
3.4. Aroma Recombination and Omission Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, M.; Yongguang, H. Volatile components and aroma characteristics of Maotai Fen—Flavored liquor. Food Sci. 2019, 40, 241–248. [Google Scholar]
- Mingxia, Z.; Xuna, Z.; Tianyou, Y.; Zhengyang, H. Optimization of Headspace Solid Phase Microextraction Conditions for GC-MS Analysis of Aromatic Constituents in White Liquor. Food Sci. 2011, 32, 49–53. [Google Scholar] [CrossRef]
- Bin, C.; Hongkui, H.; Guoying, L.; Fengjie, Z.; Anjun, L.; Xinglin, H. The influence of the Daqu, Xiaoqu and the fermentation way on the flavor of Fen-flavor Baijiu (Chinese liquor). Food Ferment. Ind. 2018, 8, 166–171. [Google Scholar] [CrossRef]
- Kong, Y.; Wu, Q.; Zhang, Y.; Xu, Y. In Situ Analysis of Metabolic Characteristics Reveals the Key Yeast in the Spontaneous and Solid-State Fermentation Process of Chinese Light-Style Liquor. Appl. Environ. Microbiol. 2014, 80, 3667–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Fan, S.; Yan, Y.; Yang, L.; Chen, S.; Xu, Y. Characterization of Potent Odorants Causing a Pickle-like Off-Odor in Moutai-Aroma Type Baijiu by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Addition, and Omission Studies. J. Agric. Food Chem. 2020, 68, 1666–1677. [Google Scholar] [CrossRef]
- Lingling, W.; Wenlai, F.; Yan, X. Analysis of capillary chromatographic skeleton compounds in Chinese soy sauce aroma type liquor by liquid-liquid microextraction and aroma recombination. Sci. Technol. Food Ind. 2012, 33, 304–308. [Google Scholar] [CrossRef]
- Wenlai, F.; Qingqing, N.; Yan, X. Key aroma compounds of Yanghe Supple and Mellow Aroma Style Liquors. Food Sci. 2013, 34, 135–139. [Google Scholar]
- Nguyen, H.; Campi, E.M.; Jackson, W.; Patti, A.F. Effect of oxidative deterioration on flavour and aroma components of lemon oil. Food Chem. 2009, 112, 388–393. [Google Scholar] [CrossRef]
- Siru, J.; Ting, Q.; Xichang, W.; Qiyan, S. Identification of the key odorant compounds in the gonad of steamed Chinese mitten crab. Mod. Food Sci. Technol. 2019, 2, 323–329. [Google Scholar] [CrossRef]
- Grosch, W. Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem. Senses 2001, 26, 533–545. [Google Scholar] [CrossRef]
- Gao, W.; Fan, W.; Xu, Y. Characterization of the Key Odorants in Light Aroma Type Chinese Liquor by Gas Chromatography–Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2014, 62, 5796–5804. [Google Scholar] [CrossRef] [PubMed]
- Wenlai, F.; Qian, M.C. Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese “Yanghe Daqu” liquors. J. Agric. Food Chem. 2005, 53, 7931–7938. [Google Scholar]
- Matsui, T.; Guth, H.; Grosch, W. A comparative study of potent odorants in peanut, hazelnut, and pumpkin seed oils on the basis of aroma extract dilution analysis (AEDA) and gas chromatography olfactometry of headspace samples (GCOH). Fett Lipid 1998, 100, 51–56. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, B.; Zhao, M.; Zheng, F.; Huang, M.; Sun, J.; Sun, X.; Li, H. Characterization of the Key Odorants in Chinese Zhima Aroma-Type Baijiu by Gas Chromatography–Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2016, 64, 5367–5374. [Google Scholar] [CrossRef] [PubMed]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Qian, Z.; Qinya, L.; Minquan, H.; Jihong, W.; Jinyuan, S.; Xiaotao, S.; Fuping, Z.; Baoguo, S. Analysis of odor-active compounds in 2 sesame-flavor Chinese Baijiu. Food Sci. 2019, 40, 214–222. [Google Scholar]
- Zhao, D.; Shi, D.; Sun, J.; Li, A.; Sun, B.; Zhao, M.; Chen, F.; Sun, X.; Li, H.; Huang, M.; et al. Characterization of key aroma compounds in Gujinggong Chinese Baijiu by gas chromatography–olfactometry, quantitative measurements, and sensory evaluation. Food Res. Int. 2018, 105, 616–627. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gandara, J. Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chem. 2013, 139, 1052–1061. [Google Scholar] [CrossRef]
- Zhu, S.; Lü, X.; Ji, K.; Guo, K.; Li, Y.; Wu, C.; Xua, G. Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta 2007, 597, 340–348. [Google Scholar] [CrossRef]
- Jinyuan, S.; Lili, G.; Guoying, L.; Hehe, L.; Xiaotao, S.; Mingquan, H.; Fuping, Z.; Baoguo, S. Analysis of volatile compounds in fermented grains of Chinese Gujinggong liquor by solvent-assisted flavor evaporation combined with GC-MS and GC-O. Food Sci. 2016, 37, 87–93. [Google Scholar]
- Zhang, W.-X.; Wu, Z.-Y.; Zhang, Q.-S.; Wang, R.; Li, H. Combination of newly developed high quality Fuqu with traditional Daqu for Luzhou-flavor liquor brewing. World J. Microbiol. Biotechnol. 2009, 25, 1721–1726. [Google Scholar] [CrossRef]
- Langos, D.; Granvogl, M.; Schieberle, P. Characterization of the Key Aroma Compounds in Two Bavarian Wheat Beers by Means of the Sensomics Approach. J. Agric. Food Chem. 2013, 61, 11303–11311. [Google Scholar] [CrossRef] [PubMed]
- Marcq, P.; Schieberle, P. Characterization of the Key aroma compounds in a Commercial Amontillado Sherry Wine by Means of the Sensomics Approach. J. Agric. Food Chem. 2015, 63, 4761–4770. [Google Scholar] [CrossRef] [PubMed]
- Jiahui, D.; Jianxue, L.; Sihai, H.; Xuan, L.; Jinke, L.; Xinluo, D.; Peiyan, L.; Baocheng, X.; Denglin, L. Effect of microwave radiation on acetic acid and ethyl acetate in Luzhou-flavor liquor. Food Mach. 2019, 2, 33–54. [Google Scholar] [CrossRef]
Score | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Intensity | None or not present | Detectable or threshold | Weak | Intermediate | Strong | Very strong |
No. | Compounds | RI | FD | Identification | Aroma Description | |
---|---|---|---|---|---|---|
DB-FFAP | HP-5MS | |||||
1 | Acetaldehyde | 882 | - | 32 | MS, Std, Odor, RI | Fruity, grass |
2 | Ethyl acetate | 895 | 576 | 8 | MS, Std, Odor, RI | Pineapple, apple, fruity |
3 | 1,1-diethoxyethane | 897 | 721 | 32 | Std, Odor, RI | Fruity |
4 | 3-methylbutyraldehyde | 923 | 624 | 1 | MS, Odor, RI | Grass, malt |
5 | Ethyl 2-methylbutyrate | 965 | - | 2 | MS, Odor, RI | Nail enamel |
6 | Sec-butanol | 1008 | - | 4 | Std, Odor, RI | Fruity |
7 | Isobutyl acetate | 1014 | - | 2 | MS, Odor, RI | Fruity |
8 | Ethyl butyrate | 1016 | 803 | 4 | MS, Std, Odor, RI | Apple, pineapple, fruity |
9 | N-propanol | 1029 | 569 | 4 | Std, Odor, RI | Fruity, floral, grass |
10 | Ethyl isovalerate | 1064 | 856 | 8 | MS, Std, Odor, RI | Apple |
11 | Isobutanol | 1078 | 611 | 8 | MS, Std, Odor, RI | Fruity |
12 | Ethyl valerate | 1122 | 903 | 2 | MS, Std, Odor, RI | Fruity, apple, strawberry |
13 | Isoamyl acetate | 1131 | 883 | 32 | MS, Std, Odor, RI | Banana |
14 | N-butanol | 1144 | 656 | 2 | MS, Std, Odor, RI | Pungent odor, mellow |
15 | Isoamyl alcohol | 1193 | 763 | 4 | Std, Odor, RI | Fruity, floral, foul odor |
16 | Ethyl hexanoate | 1219 | 1013 | 32 | MS, Std, Odor, RI | Sweet, fruity, cellar aroma |
17 | Isoamyl butyrate | 1254 | 2 | MS, Std, Odor, RI | Fruity, floral | |
18 | N-amyl alcohol | 1259 | 763 | 2 | MS, Std, Odor, RI | Fruity |
19 | Dimethyl trisulfide | 1352 | - | 16 | MS, Std, Odor, RI | Gas odor, rot vegetable odor, garlic odor |
20 | 3-hydroxy-2-butanone | 1374 | 755 | 1 | MS, Std, Odor, RI | Burning, sweet |
21 | Ethyl lactate | 1309 | 820 | 2 | MS, Std, Odor, RI | Fruity, grass |
22 | N-hexanol | 1315 | 868 | 4 | MS, Std, Odor, RI | Grass, floral |
23 | Ethyl heptanoate | 1317 | 1121 | 2 | MS, Std, Odor, RI | Pineapple, floral |
24 | 2-nonanone | 1384 | 1032 | 4 | MS, Std, Odor, RI | Milk |
25 | Trans-2-hexene-1-ol | 1400 | - | 1 | MS, Odor, RI | Grass |
26 | Ethyl octanoate | 1413 | 1211 | 256 | MS, Std, Odor, RI | Pear, litchi, fruity |
27 | Acetic acid | 1431 | - | 2 | Std, Odor, RI | Sour, vinegar |
28 | Furfural | 1449 | 831 | 1 | MS, Std, Odor, RI | Burning odor, nuts |
29 | 1-octen-3-ol | 1455 | 990 | 16 | MS, Std, Odor, RI | Grass, fruity, dust |
30 | Benzaldehyde | 1509 | 966 | 2 | MS, Std, Odor, RI | Apricot, nut |
31 | Ethyl nonanoate | 1513 | 1289 | 2 | MS, Std, Odor, RI | Sweet, fruity |
32 | Propionic acid | 1525 | 698 | 4 | Std, Odor, RI | Water odor |
33 | Ethyl caprate | 1617 | 1395 | 8 | MS, Std, Odor, RI | Pineapple, floral |
34 | Butyric acid | 1618 | 811 | 4 | MS, Std, Odor, RI | Sweat odor, acidic odor, cellar mud odor |
35 | Phenylacetaldehyde | 1636 | 1041 | 4 | MS, Std, Odor, RI | Rose |
36 | N-nonanol | 1647 | 1168 | 2 | MS, Std, Odor, RI | Lipid, floral |
37 | Isovaleric acid | 1659 | 842 | 4 | MS, Std, Odor, RI | Sweat odor |
38 | Ethyl benzoate | 1660 | 1165 | 2 | MS, Std, Odor, RI | Flower |
39 | Diethyl succinate | 1665 | 1188 | 2 | MS, Std, Odor, RI | Sweet |
40 | 2-thiophene formaldehyde | 1710 | - | 2 | MS, Odor, RI | Cooked cabbage |
41 | Ethyl undecanoate | 1716 | - | 2 | MS, Odor, RI | Floral |
42 | Valeric acid | 1719 | 903 | 16 | MS, Std, Odor, RI | Cellar mud odor, sweat odor, acid odor |
43 | Ethyl phenylacetate | 1788 | 1241 | 2 | MS, Std, Odor, RI | fruity |
44 | Phenethyl acetate | 1815 | 1259 | 2 | MS, Std, Odor, RI | Rose, floral, rubber |
45 | Ethyl laurate | 1824 | 1589 | 8 | MS, Std, Odor, RI | Sweet, fruity |
46 | Hexanoic acid | 1845 | 980 | 2 | MS, Std, Odor, RI | Sweat odor, animal odor, acid odor |
47 | Ethyl phenylpropionate | 1885 | 1348 | 1 | MS, Std, Odor, RI | Jack fruit, fruit drops, honey |
48 | Phenethyl alcohol | 1907 | 1110 | 2 | MS, Std, Odor, RI | Rose, Chinese rose |
49 | Heptanoic acid | 1919 | - | 1 | MS, Std, Odor, RI | Acid odor, sweat odor |
50 | 4-methylguaiacol | 1966 | 1087 | 1 | MS, Std, Odor, RI | Smoking, soy sauce |
51 | Ethyl myristate | 2036 | 1688 | 4 | MS, Std, Odor, RI | Floral |
52 | 4-ethylguaiacol | 2053 | 1277 | 1 | MS, Std, Odor, RI | Melon, fruity, sweet |
53 | Caprylic | 2059 | - | 2 | MS, Std, Odor, RI | Fatty |
54 | γ-nonalactone | 2072 | 1368 | 4 | MS, Std, Odor, RI | Cream, coconut, cream Biscuit |
55 | Ethyl palmitate | 2255 | - | 4 | MS, Std, Odor, RI | Nuts |
56 | Ethyl oleate | 2477 | - | 1 | MS, Std, Odor, RI | Fatty |
57 | Ethyl linoleate | 2528 | - | 1 | MS, Std, Odor, RI | Fatty |
No. | Compounds | Quantitative Ion | Linear Equation | R2 | Threshold μg/L | Content μg/L |
---|---|---|---|---|---|---|
1 | Acetaldehyde b | - | 1200 [17] | 151,980 ± 2200.54 | ||
2 | Ethyl acetate b | - | 32,600.00 [17] | 537,920 ± 3221.14 | ||
3 | 1,1-diethoxyethane b | - | 2090.00 [17] | 96,040 ± 2376.11 | ||
4 | 3-methylbutyraldehyde b | 44 | Y = 0.0364x + 0.0412 | 0.9997 | 179,000 [17] | 421.45 ± 21.25 |
5 | Ethyl 2-methylbutyrate b | 57 | Y = 0.135x + 0.04631 | 0.9996 | - | 115.43 ± 9.88 |
6 | Sec-butanol b | - | 50,000.00 [21] | 138,820 ± 1356.89 | ||
7 | Isobutyl acetate b | 88 | Y = 0.1356x + 0.0035 | - | 45.67 ± 6.98 | |
8 | Ethyl butyrate a | 71 | Y = 0.3334x + 0.004 | 0.9999 | 80.50 [17] | 529.76 ± 36.98 |
9 | N-propanol b | - | 53,952.63 [17] | 520,420 ± 3654.76 | ||
10 | Ethyl isovalerate a | 88 | Y = 0.4286x + 0.007 | 0.9999 | 6.90 [17] | 88.92 ± 4.76 |
11 | Isobutanol b | - | 28,300.00 [17] | 427,310 ± 3761.56 | ||
12 | Ethyl valerate a | 85 | Y = 0.4443x + 0.0174 | 0.9999 | 26.80 [17] | 180.74 ± 13.14 |
13 | Isoamyl acetate a | 70 | Y = 0.4885x + 0.0021 | 0.9999 | 93.93 [17] | 7099.8 ± 437.81 |
14 | N-butanol b | - | 2733.35 [17] | 6080 ± 465.77 | ||
15 | Isoamyl alcohol b | - | 179,190.83 [17] | 1,003,550 ± 6543.65 | ||
16 | Ethyl hexanoate a | 88 | Y = 0.988x + 0.0394 | 0.9999 | 55.33 [17] | 2283.89 ± 111.43 |
17 | Isoamyl butyrate a | 71 | Y = 0.2916x + 0.0016 | 0.9999 | - | 8.31 ± 2.11 |
18 | N-amyl alcohol a | 55 | Y = 0.0105x + 0.0027 | 0.9999 | 64,000.00 [17] | 421.2 ± 27.44 |
19 | Dimethyl trisulfide a | 126 | Y = 0.118x + 0.04361 | 0.9999 | 0.18 [19] | 4.22 ± 0.02 |
20 | Ethyl lactate b | - | 128,000.00 [17] | 442,370 ± 4356.32 | ||
21 | N-hexanol a | 56 | Y = 0.0368x + 0.0094 | 0.9999 | 5370.00 [19] | 1200.1 ± 81.22 |
22 | Ethyl heptanoate a | 88 | Y = 1.9144x + 0.0224 | 0.9999 | 13,153.17 [17] | 118.86 ± 15.43 |
23 | 2-nonanone a | 71 | Y = 0.351x + 0.0015 | 0.9999 | 200.00 [20] | 17.8 ± 3.43 |
24 | Trans-2-hexene-1-ol | 57 | Y = 0.0886x + 0.2365 | 0.9967 | - | 15.9 ± 4.43 |
25 | 3-hydroxy-2-butanone | 45 | Y = 0.9168x + 0.0381 | 0.9957 | - | 16.87 ± 2.41 |
26 | Ethyl caprylate a | 88 | Y = 3.5369x + 0.1477 | 0.9993 | 12.87 [16] | 5502.82 ± 300.25 |
27 | Acetic acid b | - | Y = 0.1593x + 0.1712 | 0.9927 | 160,000.00 [17] | 526,890 ± 5436.87 |
28 | Furfural a | 96 | Y = 0.0164x + 0.0214 | 0.9996 | 44,029.73 [17] | 7440.7 ± 633.21 |
29 | 1-octen-3-ol a | 72 | Y = 0.178x + 0.0761 | 0.9999 | 6.12 [17] | 127.3 ± 11.54 |
30 | Benzaldehyde a | 106 | Y = 0.0696x + 0.1094 | 0.9998 | 4200.00 [17] | 379.6 ± 31.01 |
31 | Ethyl nonanoate a | 88 | Y = 4.5654x + 0.4416 | 0.9994 | 3150.61 [17] | 59.99 ± 22.55 |
32 | Propionic acid b | - | Y = 0.3745x + 0.0127 | 0.9956 | 18,200 [17] | 44,000 ± 3879.54 |
33 | Ethyl caprate a | 88 | Y = 11.147x + 0.1139 | 0.9997 | 1122.30 [17] | 5638.78 ± 453.33 |
34 | Butyric acid b | - | Y = 0.5299x + 0.0148 | 0.9977 | 964.00 [17] | 8590 ± 598.45 |
35 | Phenylacetaldehyde a | 91 | Y = 0.0318x + 0.0185 | 0.9998 | 262.00 [17] | 2371.58 ± 54.76 |
36 | 1-nonanol a | 70 | Y = 0.1021x + 0.0705 | 0.9994 | 80.00 [20] | 300.6 ± 21.25 |
37 | Isovaleric acid b | - | Y = 0.4347x + 0.0165 | 0.9903 | 1050.00 [19] | 7900 ± 664.31 |
38 | Ethyl benzoate a | 105 | Y = 5.3927x + 1.871 | 0.9972 | 1430.00 [17] | 13.96 ± 5.43 |
39 | Diethyl succinate a | 101 | Y = 0.0655x + 0.0935 | 0.9973 | 353,193.2 [17] | 12,744.58 ± 1153.43 |
40 | 2-thiophene formaldehyde | 111 | Y = 0.2458x + 0.1877 | 0.9996 | - | 42.54 ± 1.64 |
41 | Ethyl undecanoate a | 88 | Y = 3.1092x + 0.0019 | 0.9999 | 1000.00 [20] | 15.5 ± 1.44 |
42 | Valeric acid b | - | Y = 0.5067x + 0.0144 | 0.996 | 389.00 [17] | 11,750 ± 435.76 |
43 | Ethyl phenylacetate a | 91 | Y = 3.8913x + 0.535 | 0.9996 | 406.83 [17] | 71.35 ± 22.14 |
44 | Phenethyl acetate a | 104 | Y = 0.5141x + 0.3711 | 0.9995 | 909.00 [17] | 1927.65 ± 132.43 |
45 | Ethyl laurate a | 88 | Y = 13.156x + 7.4179 | 0.9836 | 400.00 [20] | 2827.21 ± 212.45 |
46 | Hexanoic acid b | - | Y = 0.7798x + 0.0158 | 0.9973 | 2520.00 [17] | 4950 ± 445.65 |
47 | Ethyl phenylpropionate a | 104 | Y = 4.5528x + 0.5711 | 0.9996 | 125.00 [17] | 68.75 ± 13.54 |
48 | Phenethyl alcohol a | 91 | Y = 0.0217x + 0.001 | 0.9999 | 28,922.73 [17] | 33,223.98 ± 2341.60 |
49 | Heptanoic acid b | - | Y = 0.5468x + 0.0165 | 0.9959 | - | 5157 ± 413.54 |
50 | 4-methylguaiacol a | 138 | Y = 0.0545x + 0.0268 | 0.9999 | 314.56 [17] | 252.8 ± 15.87 |
51 | Ethyl myristate a | 88 | Y = 17.385x + 3.0862 | 0.9973 | 180.00 [17] | 1721.8 ± 23.46 |
52 | 4-ethylguaiacol a | 137 | Y = 0.2148x + 0.1277 | 0.9998 | 122.74 [17] | 85.9 ± 32.77 |
53 | Caprylic b | - | Y = 0.6233x + 0.0172 | 0.9955 | 2701.23 [17] | 3790 ± 378.65 |
54 | γ-nonalactonea | 85 | Y = 0.1615x + 0.0014 | 0.9999 | 90.70 [17] | 142.7 ± 11.65 |
55 | Ethyl palmitate a | 88 | Y = 10.878x + 0.5365 | 0.997 | 39,299.35 [17] | 10,168.61 ± 981.45 |
56 | Ethyl oleate a | 55 | Y = 1.2131x + 0.6878 | 0.9357 | 130,000.00 [23] | 1942.51 ± 165.66 |
57 | Ethyl linoleate a | 67 | Y = 1.2392x + 0.4638 | 0.9592 | - | 3099.13 ± 564.32 |
No. | Compounds | OAV | No. | Compounds | OAV | No. | Compounds | OAV |
---|---|---|---|---|---|---|---|---|
1 | Ethyl octanoate a | 427.57 | 12 | N-propanol b | 9.65 | 23 | Ethyl lactate b | 3.46 |
2 | Acetaldehyde b | 126.65 | 13 | Ethyl myristate a | 9.57 | 24 | Acetic acid b | 3.29 |
3 | Isoamyl acetate a | 75.59 | 14 | Phenylacetaldehyde a | 9.05 | 25 | Sec-butanol b | 2.78 |
4 | 1,1-diethoxyethane b | 45.95 | 15 | Butyric acid b | 8.91 | 26 | Propionic acid b | 2.42 |
5 | Ethyl hexanoate a | 41.28 | 16 | Isovaleric acid a | 7.52 | 27 | N-butanol b | 2.22 |
6 | Valeric acid a | 30.21 | 17 | Ethyl laurate a | 7.07 | 28 | Phenethyl acetate a | 2.12 |
7 | Dimethyl trisulfide a | 23.44 | 18 | Ethyl valerate a | 6.74 | 29 | Hexanoic acid b | 1.96 |
8 | 1-octen-3-ol a | 20.8 | 19 | Ethyl butyrate a | 6.58 | 30 | γ-nonalactone a | 1.57 |
9 | Ethyl acetate b | 16.5 | 20 | Isoamyl alcohol b | 5.6 | 31 | Caprylic b | 1.4 |
10 | Isobutanol b | 15.1 | 21 | Ethyl caprate a | 5.02 | 32 | Phenethyl alcohol a | 1.15 |
11 | Ethyl isovalerate a | 12.89 | 22 | 1-nonanol a | 3.76 |
No. | Compounds Omitted from the Recombination | n a | Significance b |
---|---|---|---|
1 | All esters | 10 | *** |
1-1 | Ethyl octanoate | 7 | * |
1-2 | Ethyl acetate | 8 | ** |
1-3 | Ethyl lactate | 5 | |
1-4 | Ethyl acetate and ethyl lactate | 8 | ** |
1-5 | Isoamyl acetate | 6 | |
1-6 | Ethyl isovalerate | 6 | |
2 | 1,1-diethoxyethane | 8 | ** |
3 | Acetic acid and valeric acid | 10 | *** |
4 | 1-octen-3-ol | 4 | |
5 | All alcohols | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Sun, X.; Liu, Y.; Yang, H. Characterization of Key Aroma Compounds in Xiaoqu Liquor and Their Contributions to the Sensory Flavor. Beverages 2020, 6, 42. https://doi.org/10.3390/beverages6030042
Wang Z, Sun X, Liu Y, Yang H. Characterization of Key Aroma Compounds in Xiaoqu Liquor and Their Contributions to the Sensory Flavor. Beverages. 2020; 6(3):42. https://doi.org/10.3390/beverages6030042
Chicago/Turabian StyleWang, Zhe, Xizhen Sun, Yuancai Liu, and Hong Yang. 2020. "Characterization of Key Aroma Compounds in Xiaoqu Liquor and Their Contributions to the Sensory Flavor" Beverages 6, no. 3: 42. https://doi.org/10.3390/beverages6030042
APA StyleWang, Z., Sun, X., Liu, Y., & Yang, H. (2020). Characterization of Key Aroma Compounds in Xiaoqu Liquor and Their Contributions to the Sensory Flavor. Beverages, 6(3), 42. https://doi.org/10.3390/beverages6030042