Optimization of Ale-Type Craft Beer Through the Addition of Cañihua Malt (Chenopodium pallidicaule) and Aguaymanto Juice (Physalis peruviana) Using a D-Optimal Experimental Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Production of Cañihua Malt
2.3. D-Optimal Experimental Design
2.4. Production of Ale-Type Craft Beer
2.5. Physicochemical and Technological Characterization of the Beer
2.6. Sensory Analysis Test
2.7. Statistical Analysis
3. Results and Discussion
3.1. Raw Material Characteristics
3.2. Physicochemical and Technological Characteristics of Craft Beers
3.3. Sensory Analysis
3.4. Regression Models and Response Surface Analysis
3.5. Optimal Formulation for Physicochemical and Technological Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garavaglia, C. Industry evolution: Evidence from the Italian brewing industry. Compet. Chang. 2022, 26, 75–95. [Google Scholar] [CrossRef]
- Herkenhoff, M.E.; Brödel, O.; Frohme, M. Aroma component analysis by HS-SPME/GC–MS to characterize Lager, Ale, and Sour beer styles. Food Res. Int. 2024, 194, 114763. [Google Scholar] [CrossRef] [PubMed]
- Nedyalkov, P.; Bakardzhiyski, I.; Shikov, V.; Kaneva, M.; Shopska, V. Possibilities for Utilization of Cherry Products (Juice and Pomace) in Beer Production. Beverages 2023, 9, 95. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Salvador-Reyes, R.; Castillo-Martinez, W.E.; Símpalo-López, W.D.; Verona-Ruiz, A.; Lavado-Cruz, A.; Quezada-Berrú1, S.; López-Rodriguez, W. Use of Andean pseudocereals in beer production. Sci. Agropecu. 2022, 13, 395–410. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Castillo-Martínez, W.E.; Simpalo-Lopez, W.D.; Verona-Ruiz, A.; Lavado-Cruz, A.; Martínez-Villaluenga, C.; Peñas, E.; Frias, J.; Schmiele, M. Performance of Thermoplastic Extrusion, Germination, Fermentation, and Hydrolysis Techniques on Phenolic Compounds in Cereals and Pseudocereals. Foods 2022, 11, 1957. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, M.J.; Andrade-Cuvi, Y.; Argüello, M.G.; Vernaza. Effect of the addition of malted and unmalted quinoa (Chenopodium quinoa wild) in Ale type beer with barley (Hordeum vulgare) malt. Enfoque UTE 2018, 9, 15–26. [Google Scholar] [CrossRef]
- Bustillos Amésquita, G.M.; Grove, T.K.; Laguna Loayza, M.M.; Fernandini Umbert, R. Cerveza artesanal sin gluten. Bachelor’s Thesis, Universidad Peruana de Ciencias Aplicadas, Lima, Peru, 2018. [Google Scholar]
- Montenegro, D. Desarrollo de Cerveza a Base de Amaranto. Licentiate Thesis, Universidad Tecnológica Equinoccial, Lima, Peru, 2016. [Google Scholar]
- Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-Berecka, M. Utilization of brewery wastes in food industry. PeerJ 2020, 8, e9427. [Google Scholar] [CrossRef]
- Chañi-Paucar, L.O.; Chagua-Rodríguez, P.; Cuadrado-Campó, W.J.; Lobato Calderón, G.R.; Maceda Santivañez, J.C.; Figueiredo Angolini, C.F.; Meireles, M.A.A. Tumbo, an Andean fruit: Uses, nutrition, processing, and biomolecules. Heliyon 2024, 10, e30327. [Google Scholar] [CrossRef]
- Burini, J.A.; Eizaguirre, J.I.; Loviso, C.; Libkind, D. Levaduras no convencionales como herramientas de innovación y diferenciación en la producción de cerveza. Rev. Argent. Microbiol. 2021, 53, 359–377. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, Q.; Zeng, Y.; Cheng, C.; Coldea, T.E.; Zhao, H. Differences in structure, stability and antioxidant activity of melanoidins from lager and ale beers. LWT 2024, 205, 116517. [Google Scholar] [CrossRef]
- Garavaglia, C.; Swinnen, J. Industry Concentration and the Entry of Craft Producers. In New Developments in the Brewing Industry: The Role of Institutions and Ownership; Oxford University Press: Oxford, UK, 2020; p. 216. [Google Scholar] [CrossRef]
- AACC. Approved Methods of Analysis; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; Association of Official Analytical Chemists: Arlington, TX, USA, 2005. [Google Scholar]
- Instituto Argentino de Normalización y Certificación. Cervezas. Norma (IRAM 14520). Método de Determinación de la Acidez Total; Instituto Argentino de Racionalización de Materiales: Buenos Aires, Argentina, 1960. [Google Scholar]
- Abderrahim, F.; Huanatico, E.; Repo-Carrasco-Valencia, R.; Arribas, S.M.; Gonzalez, M.C.; Condezo-Hoyos, L. Effect of germination on total phenolic compounds, total antioxidant capacity, Maillard reaction products and oxidative stress markers in canihua (Chenopodium pallidicaule). J. Cereal Sci. 2012, 56, 410–417. [Google Scholar] [CrossRef]
- Valenzuela Venegas, R.A. Elaboración Artesanal de Cervaza Orgánica de Quínoa. Licentiate Thesis, Universidad de Chile, Santiago, Chile, 2007. Available online: https://repositorio.uchile.cl/handle/2250/105661 (accessed on 20 November 2024).
- EBC Analytica. EBC Analytica 9.35—pH of Beer. 2004. Available online: https://brewup.eu/ebc-analytica/beer/ph-of-beer-formerly-published-as-iob-method-9-42/9.35 (accessed on 20 November 2024).
- Kirk, R.S.; Sawyer, R.; Egan, H. Composición y Análisis de Alimentos, 2nd ed.; Compañía Editorial Continental: Ciudad de México, México, 1996. [Google Scholar]
- AOAC 988.06-2008; Specific Gravity of Beer and Wort. Association of Official Analytical Chemists: Washington, DC, USA, 2008.
- ASTM D446-93-1993; Standard Specifications and Operating Instructions for Glass Capillary Kinematic Viscometers. ASTM: West Conshohocken, PA, USA, 1993.
- EBC Analytica. EBC Analytica 9.6—Colour of Beer: Spectrophotometric Method (IM). 2000. Available online: https://brewup.eu/ebc-analytica/beer/colour-of-beer-spectrophotometric-method-im/9.6 (accessed on 20 November 2024).
- EBC Analytica. EBC Analytica 9.29—Haze in Beer: Calibration of Haze Meters. 2015. Available online: https://brewup.eu/ebc-analytica/beer/haze-in-beer-calibration-of-haze-meters/9.29 (accessed on 20 November 2024).
- Garduño, A.; López, I.; Ruíz, A.; Martínez-Romero, S. Simulación del proceso de fermentación de cerveza artesanal. Ing. Investig. Tecnol. 2014, 15, 221–232. [Google Scholar]
- EBC Analytica. EBC Analytica 9.8—Bitterness of Beer (IM). 2020. Available online: https://brewup.eu/ebc-analytica/beer/bitterness-of-beer-im/9.8 (accessed on 20 November 2024).
- Ramos Nemocóm, A.F.; Talero Garzón, V. Análisis de los Compuestos Fenólicos Antioxidantes en Diferentes Bagazos de Cerveza Artesanal “Master Beer". Licentiate Thesis, Fundación Universidad de América, Bogotá, Colombia, 2022. Available online: http://repository.uamerica.edu.co/bitstream/20.500.11839/9050/1/6171274-2022-2-IQ.pdf (accessed on 20 November 2024).
- Muñoz, A.; Barbosa, A.; Bustos, D.; Ramírez, Y.; Vásquez, Y.; García, J.; Guancha, M. Conservación de uchuva (Physalis peruviana) mediante la aplicación de un recubrimiento a base de quitosano y áloe vera, utilizando el método de aspersión. Inf. Técnico 2017, 81, 86–94. [Google Scholar] [CrossRef]
- Bazalar Pereda, M.S.; Nazareno, M.A.; Viturro, C. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the Argentinian northern Andean region. Plant Foods Hum. Nutr. 2019, 74, 68–75. [Google Scholar] [CrossRef] [PubMed]
- De la Vega, J.C.; Olmedo, V.; Ortega, C.G.; Lara, M.V. Conservation advances on Physalis peruviana L. and Spondia purpurea: A review. Food Sci. Technol. 2022, 42, e27520. [Google Scholar] [CrossRef]
- Moraes, D.P.; Lozano-Sánchez, J.; Machado, M.L.; Vizzotto, M.; Lazzaretti, M.; Leyva-Jimenez, F.J.J.; da Silveira, T.L.; Ries, E.F.; Barcia, M.T. Characterization of a new blackberry cultivar BRS Xingu: Chemical composition, phenolic compounds, and antioxidant capacity in vitro and in vivo. Food Chem. 2020, 322, 126783. [Google Scholar] [CrossRef] [PubMed]
- Inocente-Camones, M.A.; Arias-Arroyo, G.C.; Mauricio-Alza, S.M.; Bravo-Araujo, G.T.; Capcha-Siccha, M.F.; Cabanillas-Alvitrez, E. Polyphenols, carotenoids and flavonoids in an antioxidant probiotic yogurt made with tumbo pulp (Passiflora tripartita Kunth). Braz. J. Food Technol. 2022, 25, e2021175. [Google Scholar] [CrossRef]
- Costa, G.M.; Gazola, A.C.; Zucolotto, S.M.; Castellanos, L.; Ramos, F.A.; Reginatto, F.H.; Schenkel, E.P. Chemical profiles of traditional preparations of four South American Passiflora species by chromatographic and capillary electrophoretic techniques. Rev. Bras. Farmacogn. 2016, 26, 451–458. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Hellström, J.K.; Pihlava, J.M.; Mattila, P.H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Simpalo-López, W.D.; Castillo-Martínez, W.E.; Esquivel-Paredes, L.J.; Martínez-Villaluenga, C.L. Improving Nutritional and Health Benefits of Biscuits by Optimizing Formulations Based on Sprouted Pseudocereal Grains. Foods 2022, 11, 1533. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, F.L. Higiene: Factores Limitantes a la Proliferación de Microorganismos en Alimentos; Signus: São Paulo, Brazil, 2001. [Google Scholar]
- Rebello, F.D.F.P. Produção de cerveja. Rev. Agrogeoambient. 2009, 1, 145–155. [Google Scholar] [CrossRef]
- Pinto, L.; Zambelli, R.; Santos, E.S.; Pontes, D.F. Desenvolvimento de cerveja artesanal com acerola (Malpighia emarginata DC) e abacaxi (Ananas comosus L. Merril). Rev. Verde Agroecol. Desenvolv. Sustentável 2015, 10, 67–71. [Google Scholar] [CrossRef]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT 2019, 103, 139–146. [Google Scholar] [CrossRef]
- NOM-199-SCFI-2017; Bebidas Alcohólicas-Denominación, Especificaciones Fisicoquímicas, Información Comercial y Métodos de Prueba. Diario Oficial de la Federación: Ciudad de México, Mexico, 2017.
- Costa, P.M.C.D.; Almeida, I.L.M.L.D.; Bianchini, A.; Bianchini, M.D.G.A.; Vassoler e Silva, R.E.; Rossignoli, P.A. Blond ale craft beer production with addition of pineapple pulp. J. Exp. Agric. Int. 2019, 38, 1–5. [Google Scholar] [CrossRef]
- Kunze, W. Tecnología Para Cerveceros y Malteros; VLB Berlin: Berlin, Germany, 2006. [Google Scholar]
- Olaniran, A.; Hiralal, L.; Mokoena, M.; Pillay, B. Flavouractive volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Maziarz, K.; Sterczyńska, M.; Stachnik, M.; Piepiórka-Stepuk, J.; Ivanišová, E.; Bieńczak, A.; Woźniak, P. Analysis of Haze Susceptibility in Beers with Unmalted Barley Addition Under Varying Storage Conditions. J. Res. Appl. Agric. Eng. 2023, 68, 4991. [Google Scholar] [CrossRef]
- Apaza, R.; Atencio, Y. Tecnología Para la Elaboración de Una Cerveza Artesanal Tipo ale Con Sustitución Parcial de Malta (Hordeum Vulgare) por Guiñapo de Maiz Morado (Zea Mays). Licentiate Thesis, Universidad Nacional Agraria de la Selva, Arequipa, Perú, 2017. [Google Scholar]
- Guimaraes, N. Utilización de Diferentes Concentraciones de Pulpa de Camu Camu (Myrciaria Dubia) en la Elaboración de Cerveza Tipo Ale en la Ciudad de Pucallpa. Licentiate Thesis, Universidad Nacional de Ucayali, Pucallpa, Perú, 2022. [Google Scholar]
- Sousa, W.J.B. Análise Físico-Química de Cervejas; Universidade Estadual da Paraíba: Campina Grande, Brazil, 2009. [Google Scholar]
- Style Guidelines; Beer Judge Certification Program: St. Louis Park, MN, USA, 2017.
- Hennemann, M.; Gastl, M.; Becker, T. Inhomogeneity in the lauter tun: A chromatographic view. Eur. Food Res. Technol. 2019, 245, 521–533. [Google Scholar] [CrossRef]
- Blšáková, L.; Gregor, T.; Mešťánek, M.; Hřivna, L.; Kumbár, V. The use of unconventional malts in beer production and their effect on wort viscosity. Foods 2021, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Pecuária e Abastecimento. Regulamenta a Lei no. 8.918, de 14 de Julho de 1994. Decreto no. 6.871; Ministério da Agricultura: Brasília, Brazil, 2009.
- He, G.; Du, J.; Zhang, K.; Wei, G.; Wang, W. Antioxidant capability and potableness of fresh cloudy wheat beer stored at different temperatures. J. Inst. Brew. 2012, 118, 386–392. [Google Scholar] [CrossRef]
- Bortoleto, G.G.; Gomes, W.P.C.; Ushimura, L.C.; Bonança, R.A.; Novello, E.H. Evaluation of the profile of volatile organic compounds in industrial and craft beers. J. Microbiol. Biotechnol. Food Sci. 2022, 12, e5532. [Google Scholar] [CrossRef]
- Depraetere, S.A.; Delvaux, F.; Coghe, S.; Delvaux, F.R. Wheat variety and barley malt properties: Influence on haze intensity and foam stability of wheat beer. J. Inst. Brew. 2004, 110, 200–206. [Google Scholar] [CrossRef]
- Dos Santos, S.T.; da Paz, M.F.; Altemio, A.D.C. Evaluation of two Brazilian native yeast strains (Pichia kudriavzevii) in craft beer. Res. Soc. Dev. 2022, 11, e17311124783. [Google Scholar] [CrossRef]
- Hu, X.; Jin, Y.; Du, J. Differences in protein content and foaming properties of cloudy beers based on wheat malt content. J. Inst. Brew. 2019, 125, 235–241. [Google Scholar] [CrossRef]
- Silva, S.; Oliveira, A.I.; Cruz, A.; Oliveira, R.F.; Almeida, R.; Pinho, C. Physicochemical properties and antioxidant activity of Portuguese craft beers and raw materials. Molecules 2022, 27, 8007. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, D.C.; Sousa, T.L.; Santana, J.F.S.; Almeida, A.B.; Silva, F.G.; Egea, M.B. Commercial craft beers of Midwest Brazil: Biochemical and physicochemical properties and their relationship with sensory profile. Food Sci. Technol. 2023, 43, e112222. [Google Scholar] [CrossRef]
- Donadini, G.; Porretta, S. Uncovering patterns of consumers’ interest for beer: A case study with craft beers. Food Res. Int. 2017, 91, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.R.; Chheang, S.L.; Jin, D.; Roigard, C.M.; Ares, G. Check-all-that-apply (CATA) questions: Sensory term citation frequency reflects rated term intensity and applicability. Food Qual. Prefer. 2020, 86, 103986. [Google Scholar] [CrossRef]
Experiment | PM (%) | CM (%) | AJ (%) |
---|---|---|---|
E1 | 70 | 21 | 9 |
E2 | 75 | 15 | 10 |
E3 | 74 | 16 | 10 |
E4 | 75 | 15 | 10 |
E5 | 80 | 13 | 7 |
E6 | 70 | 15 | 15 |
E7 | 75 | 15 | 10 |
E8 | 76 | 19 | 5 |
E9 | 70 | 15 | 15 |
E10 | 70 | 25 | 5 |
E11 | 80 | 13 | 7 |
E12 | 78 | 7 | 15 |
E13 | 75 | 11 | 14 |
Composition | Cañihua Malt (g/100 g) |
---|---|
Moisture | 10.01 |
Protein | 20.61 |
Fat | 6.18 |
Ash | 2.76 |
Starch | 41.21 |
Total dietary fiber | 8.08 |
Insoluble dietary fiber | 6.32 |
Soluble dietary fiber | 1.76 |
Exp. | pH | Titratable Acidity (g/mL) | Soluble Solids (°Brix) | Turbidity (NTU) | Absolute Density (g/mL) | Viscosity (mPa·s) | Color (EBC) | Alcohol Content (%) | Foaming Capacity (%E) | Bitterness (IBU) |
---|---|---|---|---|---|---|---|---|---|---|
E1 | 4.21 abc | 0.42 h | 4.75 f | 28.13 d | 1.019 ab | 1.43 cdef | 10.08 ab | 5.53 def | 52.50 bc | 16 b |
E2 | 4.12 a | 0.36 fgh | 4.50 e | 21.41 bc | 1.018 ab | 1.42 cde | 8.62 a | 5.89 ef | 42.50 b | 16 b |
E3 | 4.24 abc | 0.32 a | 3.75 b | 25.88 cd | 1.015 ab | 1.39 bc | 9.23 ab | 5.32 cdef | 12.50 a | 16 b |
E4 | 4.12 a | 0.35 cde | 4.50 e | 22.06 bcd | 1.018 ab | 1.43 cdef | 9.16 ab | 6.07 f | 102.50 fg | 16 b |
E5 | 4.20 abc | 0.34 cd | 4.25 d | 102.32 g | 1.017 ab | 1.48 fg | 9.05 ab | 5.41 cdef | 85.00 e | 15 a |
E6 | 4.33 cde | 0.41 gh | 5.50 g | 41.71 e | 1.022 b | 1.40 cd | 9.63 ab | 4.73 bcd | 47.50 bc | 16 b |
E7 | 4.12 a | 0.35 bc | 4.50 e | 21.49 bc | 1.018 ab | 1.49 g | 11.64 b | 4.71 bc | 72.50 d | 16 b |
E8 | 4.41 e | 0.36 cdef | 4.50 e | 15.85 ab | 1.018 ab | 1.33 a | 7.65 ab | 4.62 bc | 107.50 g | 16 b |
E9 | 4.26 bcd | 0.39 fg | 5.50 g | 42.70 e | 1.022 b | 1.46 efg | 8.60 a | 4.24 b | 42.50 b | 16 b |
E10 | 4.42 e | 0.32 ab | 5.75 h | 13.34 a | 1.018 ab | 1.38 cd | 7.95 a | 3.24 a | 72.50 d | 16 b |
E11 | 4.22 abc | 0.37 ef | 4.25 d | 121.22 h | 1.017 ab | 1.34 ab | 9.13 ab | 4.81 bcd | 57.50 c | 15 a |
E12 | 4.17 ab | 0.40 fgh | 3.50 a | 26.02 cd | 1.014 a | 1.44 defg | 17.31 c | 4.67 bc | 60.00 c | 16 b |
E13 | 4.39 de | 0.34 cd | 3.75 b | 45.75 e | 1.015 ab | 1.39 cd | 28.30 d | 4.12 b | 92.50 ef | 16 b |
Control | 4.26 bcd | 0.29 a | 4.00 c | 56.84 f | 1.018 ab | 1.57 h | 16.50 c | 5.07 cde | 52.50 bc | 16 b |
Exp. | Aroma | Color | Flavor | Appearance | Purchase Intention |
---|---|---|---|---|---|
E1 | 7.07 abc | 7.23 a | 6.13 abc | 6.89 abc | 3.30 ab |
E2 | 7.13 bc | 6.86 a | 6.85 c | 7.25 abc | 3.87 c |
E3 | 6.22 a | 6.95 a | 5.73 ab | 6.76 abc | 3.19 a |
E4 | 7.13 bc | 6.86 a | 6.85 c | 7.25 abc | 3.87 c |
E5 | 6.63 ab | 7.20 a | 5.84 abc | 7.02 abc | 3.49 abc |
E6 | 6.66 abc | 7.19 a | 5.29 a | 6.58 a | 3.21 a |
E7 | 7.13 bc | 6.86 a | 6.85 c | 7.25 abc | 3.87 c |
E8 | 7.52 c | 7.47 a | 6.90 c | 7.41 abc | 3.83 c |
E9 | 6.81 abc | 7.24 a | 6.55 bc | 7.41 abc | 3.63 bc |
E10 | 7.38 bc | 7.57 a | 6.66 bc | 7.53 c | 3.70 bc |
E11 | 6.78 abc | 7.34 a | 6.22 abc | 7.33 abc | 3.49 abc |
E12 | 6.60 ab | 6.96 a | 6.07 abc | 7.12 abc | 3.36 ab |
E13 | 6.99 abc | 7.10 a | 5.87 abc | 6.66 ab | 3.49 abc |
Control | 7.24 bc | 7.03 a | 5.94 abc | 7.41 bc | 3.78 c |
Dependent Variables | Model * | p-Value | R2 (Predicted) | R2 (Adjusted) |
---|---|---|---|---|
pH | Y = 8.76X1 + 4.42X2 + 5.49X3 − 6.25X1X2 − 10.42X1X3 − 2.63X2X3 − 90.45X12X2X3 + 20.92X1X22X3 + 62.63X1X2X32 | 0.0043 | 97.89 | 93.66 |
Titratable acidity | Y = −1.03X1 + 0.32X2 − 0.12X3 + 2.14X1X2 + 3.19X1X3 + 1.18X2X3 + 27.37X12X2X3 − 15.65X1X22X3 − 13.08X1X2X32 | 0.0221 | 95.06 | 85.19 |
Turbidity | Y = 1115.28X1 + 13.3X2 + 44.1X3 − 1562.35X1X2 − 2024.98X1X3 + 54X2X3 − 8114.38X12X2X3 + 2577.74X1X22X3 + 8105.85X1X2X32 | 0.0018 | 98.64 | 95.91 |
Absolute density | Y = 0.01X1 + 0.01X2 + 0.02X3 − 0.00002X1X2 − 0.0001X1X2 − 0.00001X2X3 | 0.0134 | 82.74 | 70.42 |
Color | Y = 76.52X1 + 7.95X2 − 3.56X3 − 99.39X1X2 − 154.65X1X3 + 27.67X2X3 − 548.31X12X2X3 − 674.91X1X22X3 + 2694.21X1X2X32 | 0.0021 | 98.51 | 95.54 |
Response Variables | Criterion | Lower Limit | Upper Limit | Importance | Expected Values |
---|---|---|---|---|---|
PM | In range | 70 | 80 | 3 | 74.52 |
CM | In range | 5 | 25 | 3 | 15.55 |
AJ | In range | 5 | 15 | 3 | 8.93 |
pH | Minimize | 4.12 | 4.42 | 3 | 4.14 |
Titratable acidity | Minimize | 0.32 | 0.42 | 3 | 0.342 |
Turbidity | Minimize | 13.34 | 121.22 | 3 | 12.63 |
Absolute density | In range | 1.001 | 1.040 | 3 | 1.017 |
Color | Minimize | 7.65 | 28.30 | 3 | 4.879 |
Optimum desirability value (D) | 0.915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paucar-Menacho, L.M.; Salvador-Reyes, R.; Simpalo-Lopez, W.D.; Lavado-Cruz, A.; Verona-Ruiz, A.; Campos-Rodriguez, J.; Acosta-Coral, K.; Castillo-Martinez, W.E.; López-Rodriguez, W.; Quezada-Berrú, S. Optimization of Ale-Type Craft Beer Through the Addition of Cañihua Malt (Chenopodium pallidicaule) and Aguaymanto Juice (Physalis peruviana) Using a D-Optimal Experimental Design. Beverages 2025, 11, 4. https://doi.org/10.3390/beverages11010004
Paucar-Menacho LM, Salvador-Reyes R, Simpalo-Lopez WD, Lavado-Cruz A, Verona-Ruiz A, Campos-Rodriguez J, Acosta-Coral K, Castillo-Martinez WE, López-Rodriguez W, Quezada-Berrú S. Optimization of Ale-Type Craft Beer Through the Addition of Cañihua Malt (Chenopodium pallidicaule) and Aguaymanto Juice (Physalis peruviana) Using a D-Optimal Experimental Design. Beverages. 2025; 11(1):4. https://doi.org/10.3390/beverages11010004
Chicago/Turabian StylePaucar-Menacho, Luz Maria, Rebeca Salvador-Reyes, Wilson Daniel Simpalo-Lopez, Alicia Lavado-Cruz, Anggie Verona-Ruiz, Jordy Campos-Rodriguez, Katherine Acosta-Coral, Williams Esteward Castillo-Martinez, William López-Rodriguez, and Soledad Quezada-Berrú. 2025. "Optimization of Ale-Type Craft Beer Through the Addition of Cañihua Malt (Chenopodium pallidicaule) and Aguaymanto Juice (Physalis peruviana) Using a D-Optimal Experimental Design" Beverages 11, no. 1: 4. https://doi.org/10.3390/beverages11010004
APA StylePaucar-Menacho, L. M., Salvador-Reyes, R., Simpalo-Lopez, W. D., Lavado-Cruz, A., Verona-Ruiz, A., Campos-Rodriguez, J., Acosta-Coral, K., Castillo-Martinez, W. E., López-Rodriguez, W., & Quezada-Berrú, S. (2025). Optimization of Ale-Type Craft Beer Through the Addition of Cañihua Malt (Chenopodium pallidicaule) and Aguaymanto Juice (Physalis peruviana) Using a D-Optimal Experimental Design. Beverages, 11(1), 4. https://doi.org/10.3390/beverages11010004