Review of Linear-Array-Transducer-Based Volumetric Ultrasound Imaging Techniques and Their Biomedical Applications
Abstract
1. Introduction
2. Linear Translational Scanning
Scanning | Transducer | Imaging Mode | Application | Ref. | |||
---|---|---|---|---|---|---|---|
Volume [mm3] | Time [s] | [MHz] | [MHz] | ||||
40 × 75 × 30 * | 30 * | 8.5 | 3–12 | 128 | US, PA | Rat gastrointestinal tract, human forearm | [50] |
40 × 50 × 24 * | 25 * | 8.5 | 3–12 | 128 | US, PA | Mouse gastrointestinal tract | [51] |
114 × 160 × 30 * | 211 | 8.5 | 3–12 | 128 | US, PA | Human foot | [52] |
38.4 × 40 × 30 | 20 | 8.5 | 3–12 | 128 | US, PA | Human neck, wrist, thigh | [53] |
38.1 × 31.4 × 25 * | 11.4 | 8.5 | 3–12 | 128 | US, PA | Human melanoma | [54] |
12.8 × 12.8 × 20 | 1200 | 15 | – | 128 | US, UFD | Mouse brain | [55] |
24 × 12.8 × 15 | 840 | 18 | 14–22 | 128 | US, UFD | Rat kidney | [56] |
6 × 6 × 6 | 1.5 | 18 | 14–22 | 128 | US, UFD | Mouse brain | [57] |
100 × 100 × 120 * | 75 * | 7.5 | 3–10 | 192 | US | Human residual limbs | [58] |
128 × 180 × 180 * | – | 3.5 | 2–4.75 | 128 | US | Breast phantom | [59] |
128 × 180 × 180 | 180 | 3.5 | 2–4.75 | 128 | US | Breast phantom | [60] |
100 × 100 × 250 | 9.4 | 5 | 4–7 | 128 | US | Human hand, wrist, forearm | [61] |
3. Robot Arm Scanning
Scanning | Transducer | Imaging Mode | Application | Ref. | |||
---|---|---|---|---|---|---|---|
Volume [mm3] | Time [s] | [MHz] | [MHz] | ||||
– | – | 7.5 | 4–9 | 128 | US | Fetus phantom | [62] |
10 × 100 × 20 | – | 10 | 5–12 | 192 | US | Vascular phantom | [63] |
– | – | 10 | 5–14 | 128 | US | Human thyroid lobe | [64] |
– | – | – | 4–12 | 192 | US | Thyroid phantom | [65] |
– | – | 13 | – | – | US | Forearm phantom | [66] |
– | – | 12 | – | 256 | US | Human carotid artery | [67] |
– | – | – | 5–9 | – | US | Human thyroid | [68] |
4. Freehand Scanning
Scanning | Transducer | Imaging Mode | Application | Ref. | |||
---|---|---|---|---|---|---|---|
Volume [mm3] | Time [s] | [MHz] | [MHz] | ||||
350 × 50 × 200 | – | 9.5 * | 5–14 * | 128 * | US | Fetus phantom | [69] |
20 × 15 × 120 | 15–20 | 10 | 5–15 * | 128 * | US | Human Achilles tendon | [70] |
– | 60 * | 7.5 * | 5–12 * | 128 * | US | Carotid artery phantom | [71] |
– | – | 5.3 7.8 | – | 192 168 | US, UFD | Human brain | [72] |
– | 120 | 10 * | 6–14 | 128 * | US | Human spine | [73] |
8 × 8 × 8 * | 3 | 10 | 6–14 * | 128 | US Elastography | Elasticity phantom | [74] |
– | 90 | 8.5 * | 5–12 * | 192 * | US | Fetal phantom | [75] |
100 × 70 × 60 | – | 14 * | 13–15 | – | US | Breast phantom | [76] |
– | – | 5 | – | 128 | US | Human forearm | [77] |
46 × 83 × 55 | 9 | 8 * | 4–12 * | – | US | Human carotid artery | [78] |
100 × 200 × 500 | 120–240 | – | – | – | US | Human spine | [79] |
40 × 100 × 40 | ~23.5 * | 7.6 | – | 128 | US, PA | Human forearm | [80] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aldrich, J.E. Basic Physics of Ultrasound Imaging. Crit. Care Med. 2007, 35, S131–S137. [Google Scholar] [CrossRef] [PubMed]
- Moran, C.M.; Thomson, A.J. Preclinical Ultrasound Imaging—A Review of Techniques and Imaging Applications. Front. Phys. 2020, 8, 124. [Google Scholar] [CrossRef]
- Prinz, C.; Voigt, J.-U. Diagnostic Accuracy of a Hand-Held Ultrasound Scanner in Routine Patients Referred for Echocardiography. J. Am. Soc. Echocardiogr. 2011, 24, 111–116. [Google Scholar] [CrossRef]
- Eurenius, K.; Axelsson, O.; Gällstedt-Fransson, I.; Sjöden, P.O. Perception of Information, Expectations and Experiences among Women and Their Partners Attending a Second-Trimester Routine Ultrasound Scan. Ultrasound Obstet. Gynecol. 1997, 9, 86–90. [Google Scholar] [CrossRef]
- Luck, C.A. Value of Routine Ultrasound Scanning at 19 Weeks: A Four Year Study of 8849 Deliveries. Br. Med. J. 1992, 304, 1474–1478. [Google Scholar] [CrossRef]
- Bax, J.; Cool, D.; Gardi, L.; Knight, K.; Smith, D.; Montreuil, J.; Sherebrin, S.; Romagnoli, C.; Fenster, A. Mechanically Assisted 3D Ultrasound Guided Prostate Biopsy System. Med. Phys. 2008, 35, 5397–5410. [Google Scholar] [CrossRef]
- Ferraioli, G.; Monteiro, L.B.S. Ultrasound-based Techniques for the Diagnosis of Liver Steatosis. World J. Gastroenterol. 2019, 25, 6053. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Anil, G. Ultrasound-Guided Thyroid Nodule Ciopsy: Outcomes and Correlation with Imaging Features. Clin. Imaging 2015, 39, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Van Velthoven, V.; Auer, L. Practical Application of Intraoperative Ultrasound Imaging. Acta Neurochir. 1990, 105, 5–13. [Google Scholar] [CrossRef]
- Shung, K.K.; Zippuro, M. Ultrasonic Transducers and Arrays. IEEE Eng. Med. Biol. 1996, 15, 20–30. [Google Scholar] [CrossRef]
- Lee, W.; Roh, Y. Ultrasonic Transducers for Medical Diagnostic Imaging. Biomed. Eng. Lett. 2017, 7, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Oralkan, Ö.; Demirci, U.; Ergun, S.; Karaman, M.; Khuri-Yakub, P. Medical Imaging using Capacitive Micromachined Ultrasonic Transducer Arrays. Ultrasonics 2002, 40, 471–476. [Google Scholar] [CrossRef]
- Fenster, A.; Downey, D.B. Three-Dimensional Ultrasound Imaging. Annu. Rev. Biomed. Eng. 2000, 2, 457–475. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.; Kupesic Plavsic, S. Preimplantation 3D Ultrasound: Current Uses and Challenges. J. Perinat. Med. 2017, 45, 745–758. [Google Scholar] [CrossRef]
- Lee, S.; Pretorius, D.; Asfoor, S.; Hull, A.; Newton, R.; Hollenbach, K.; Nelson, T. Prenatal Three-Dimensional Ultrasound: Perception of Sonographers, Sonologists and Undergraduate Students. Ultrasound Obstet. Gynecol. 2007, 30, 77–80. [Google Scholar] [CrossRef]
- Merz, E.; Pashaj, S. Advantages of 3D Ultrasound in the Assessment of Fetal Abnormalities. J. Perinat. Med. 2017, 45, 643–650. [Google Scholar] [CrossRef]
- Chavignon, A.; Heiles, B.; Hingot, V.; Orset, C.; Vivien, D.; Couture, O. 3D Transcranial Ultrasound Localization Microscopy in the Rat Brain with a Multiplexed Matrix Probe. IEEE Trans. Biomed. Eng. 2021, 69, 2132–2142. [Google Scholar] [CrossRef]
- Iommi, D.; Hummel, J.; Figl, M.L. Evaluation of 3D Ultrasound for Image Guidance. PLoS ONE 2020, 15, e0229441. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zeng, Z. A Review on Real-time 3D Ultrasound Imaging Technology. BioMed Res. Int. 2017, 2017, 6027029. [Google Scholar] [CrossRef]
- Fenster, A.; Downey, D.B. 3-D Ultrasound Imaging: A Review. IEEE Eng. Med. Biol. 1996, 15, 41–51. [Google Scholar] [CrossRef]
- Park, E.-Y.; Park, S.; Lee, H.; Kang, M.; Kim, C.; Kim, J. Simultaneous Dual-Modal Multispectral Photoacoustic and Ultrasound Macroscopy for Three-Dimensional Whole-Body Imaging of Small Animals. Photonics 2021, 8, 13. [Google Scholar] [CrossRef]
- He, L.; Wang, B.; Wen, Z.; Li, X.; Wu, D. 3-D High Frequency Ultrasound Imaging by Piezo-Driving a Single-Element Transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 1932–1942. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Park, S.; Cho, S.; Yoo, J.; Kim, C.; Kim, J. Ultrasound-Guided Breath-Compensation in Single-Element Photoacoustic Imaging for Three-Dimensional Whole-Body Images of Mice. Front. Phys. 2022, 10, 457. [Google Scholar] [CrossRef]
- Smith, S.; Trahey, G.; Von Ramm, O. Two-Dimensional Arrays for Medical Ultrasound. Ultrason. Imaging 1992, 14, 213–233. [Google Scholar] [CrossRef]
- Roh, Y. Ultrasonic Transducers for Medical Volumetric Imaging. Jpn. J. Appl. Phys. 2014, 53, 07KA01. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, X.; Shen, I.-M.; Liu, J.-H.; Li, P.-C.; Wang, M. A Monolithic Three-Dimensional Ultrasonic Transducer Array for Medical Imaging. J. Microelectromech. Syst. 2007, 16, 1015–1024. [Google Scholar] [CrossRef]
- Leung, K.-Y. Applications of Advanced Ultrasound Technology in Obstetrics. Diagnostics 2021, 11, 1217. [Google Scholar] [CrossRef]
- Tonni, G.; Martins, W.P.; Guimarães Filho, H.; Júnior, E.A. Role of 3-D Ultrasound in Clinical Obstetric Practice: Evolution over 20 Years. Ultrasound Med. Biol. 2015, 41, 1180–1211. [Google Scholar] [CrossRef]
- Steiner, H.; Staudach, A.; Spitzer, D.; Schaffer, H. Diagnostic Techniques: Three-Dimensional Ultrasound in Obstetrics and Gynaecology: Technique, Possibilities and Limitations. Hum. Reprod. 1994, 9, 1773–1778. [Google Scholar] [CrossRef]
- Bernard, S.; Monteiller, V.; Komatitsch, D.; Lasaygues, P. Ultrasonic Computed Tomography based on Full-Waveform Inversion for Bone Quantitative Imaging. Phys. Med. Biol. 2017, 62, 7011. [Google Scholar] [CrossRef] [PubMed]
- Goss, S.A.; Johnston, R.L.; Dunn, F. Comprehensive Compilation of Empirical Ultrasonic Properties of Mammalian Tissues. J. Acoust. Soc. Am. 1978, 64, 423–457. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.J.; Lerner, R.M.; Waag, R.C. Attenuation of Ultrasound: Magnitude and Frequency Dependence for Tissue Characterization. Radiology 1984, 153, 785–788. [Google Scholar] [CrossRef]
- Park, E.-Y.; Lee, H.; Han, S.; Kim, C.; Kim, J. Photoacoustic Imaging Systems Based on Clinical Ultrasound Platform. Exp. Biol. Med. 2022, 247, 551–560. [Google Scholar] [CrossRef]
- Zafar, H.; Breathnach, A.; Subhash, H.M.; Leahy, M.J. Linear-Array-Based Photoacoustic Imaging of Human Microcirculation with a Range of High Frequency Transducer Probes. J. Biomed. Opt. 2015, 20, 051021. [Google Scholar] [CrossRef]
- Gateau, J.; Caballero, M.Á.A.; Dima, A.; Ntziachristos, V. Three-Dimensional Optoacoustic Tomography using a Conventional Ultrasound Linear Detector Array: Whole-Body Tomographic System for Small Animals. Med. Phys. 2013, 40, 013302. [Google Scholar] [CrossRef]
- Paul, S.; Lee, S.A.; Zhao, S.; Chen, Y.-S. Model-Informed Deep-Learning Photoacoustic Reconstruction for Low-Element Linear Array. Photoacoustics 2025, 44, 100732. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Qu, Z.; Amjadian, M.; Tang, X.; Chen, J.; Wang, L. All-Fiber Three-Wavelength Laser for Functional Photoacoustic Microscopy. Photoacoustics 2025, 42, 100703. [Google Scholar] [CrossRef]
- Lee, H.; Choi, W.; Kim, C.; Park, B.; Kim, J. Review on Ultrasound-Guided Photoacoustic Imaging for Complementary Analyses of Biological Systems in Vivo. Exp. Biol. Med. 2023, 248, 762–774. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, D.; Mo, S.; Hong, X.; Xie, J.; Chen, Y.; Liu, L.; Song, D.; Tang, S.; Wu, H.; et al. Multimodal PA/US Imaging in Rheumatoid Arthritis: Enhanced Correlation with Clinical Scores. Photoacoustics 2024, 38, 100615. [Google Scholar] [CrossRef] [PubMed]
- Menezes, G.L.; Pijnappel, R.M.; Meeuwis, C.; Bisschops, R.; Veltman, J.; Lavin, P.T.; Van De Vijver, M.J.; Mann, R.M. Downgrading of Breast Masses Suspicious for Cancer by using Optoacoustic Breast Imaging. Radiology 2018, 288, 355–365. [Google Scholar] [CrossRef]
- Zhou, J.; Ou, M.; Yuan, B.; Yan, B.; Wang, X.; Qiao, S.; Huang, Y.; Feng, L.; Huang, L.; Luo, Y. Dual-Modality Ultrasound/Photoacoustic Tomography for Mapping Tissue Oxygen Saturation Distribution in Intestinal Strangulation. Photoacoustics 2025, 43, 100721. [Google Scholar] [CrossRef]
- Bak, S.; Park, S.M.; Song, Y.; Kim, J.; Nam, T.W.; Han, D.-W.; Kim, C.-S.; Cho, S.-W.; Bouma, B.E.; Lee, H. High Spectral Energy Density All-Fiber Nanosecond Pulsed 1.7 μm Light Source for Photoacoustic Microscopy. Photoacoustics 2025, 44, 100744. [Google Scholar]
- Tan, Y.; Zhang, M.; Wu, Z.; Chen, J.; Ren, Y.; Liu, C.; Gu, Y. Local Oxygen Concentration Reversal from Hyperoxia to Hypoxia Monitored by Optical-Resolution Photoacoustic Microscopy in Inflammation-Resolution Process. Photoacoustics 2025, 44, 100730. [Google Scholar] [CrossRef]
- Bercoff, J.; Montaldo, G.; Loupas, T.; Savery, D.; Mézière, F.; Fink, M.; Tanter, M. Ultrafast Compound Doppler imaging: Providing full Blood Flow Characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 134–147. [Google Scholar] [CrossRef]
- Tsedendamba, N.; Vial, J.-C.A.; Taylor, R.; Kim, J.; Choi, W. In Vivo Photoacoustic and Ultrafast Ultrasound Doppler Assessment of Vascularity for Potential Thyroid Cancer Diagnosis: A Comprehensive Review. J. Phys. Photonics 2025, 7, 022002. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, B.; Meng, F.; Luo, J.; Luo, X. Competitive Swarm Optimized SVD Clutter Filtering for Ultrafast Power Doppler Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2024, 71, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Osmanski, B.-F.; Pernot, M.; Montaldo, G.; Bel, A.; Messas, E.; Tanter, M. Ultrafast Doppler Imaging of Blood Flow Dynamics in the Myocardium. IEEE Trans. Med. Imaging 2012, 31, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Karlita, T.; Yuniarno, E.M.; Purnama, I.; Purnomo, M.H. Design and Development of a Mechanical Linear Scanning Device for the Three-Dimensional Ultrasound Imaging System. Int. J. Electr. Eng. Inform. 2019, 11, 272–295. [Google Scholar] [CrossRef]
- Chen, C.; Hendriks, G.A.; Fekkes, S.; Mann, R.M.; Menssen, J.; Siebers, C.C.; de Korte, C.L.; Hansen, H.H. In vivo 3D Power Doppler Imaging Using Continuous Translation and Ultrafast Ultrasound. IEEE Trans. Biomed. Eng. 2021, 69, 1042–1051. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Jung, Y.; Chang, S.; Park, J.; Zhang, Y.; Lovell, J.F.; Kim, C. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System. Sci. Rep. 2016, 6, 35137. [Google Scholar] [CrossRef]
- Park, S.; Park, G.; Kim, J.; Choi, W.; Jeong, U.; Kim, C. Bi2Se3 Nanoplates for Contrast-Enhanced Photoacoustic Imaging at 1064 nm. Nanoscale 2018, 10, 20548–20558. [Google Scholar] [CrossRef]
- Choi, W.; Park, E.-Y.; Jeon, S.; Yang, Y.; Park, B.; Ahn, J.; Cho, S.; Lee, C.; Seo, D.-K.; Cho, J.-H.; et al. Three-Dimensional Multistructural Quantitative Photoacoustic and US Imaging of Human Feet In Vivo. Radiology 2022, 303, 467–473. [Google Scholar] [CrossRef]
- Lee, C.; Choi, W.; Kim, J.; Kim, C. Three-Dimensional Clinical Handheld Photoacoustic/Ultrasound Scanner. Photoacoustics 2020, 18, 100173. [Google Scholar] [CrossRef]
- Park, B.; Bang, C.H.; Lee, C.; Han, J.H.; Choi, W.; Kim, J.; Park, G.S.; Rhie, J.W.; Lee, J.H.; Kim, C. 3D Wide-Field Multispectral Photoacoustic Imaging of Human Melanomas In Vivo: A Pilot Study. J. Eur. Acad. Dermatol. Venereol. 2020, 35, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Demené, C.; Tiran, E.; Sieu, L.-A.; Bergel, A.; Gennisson, J.L.; Pernot, M.; Deffieux, T.; Cohen, I.; Tanter, M. 4D Microvascular Imaging based on Ultrafast Doppler Tomography. NeuroImage 2016, 127, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.; Lee, D.; Heo, J.; Kweon, J.; Yong, U.; Jang, J.; Ahn, Y.J.; Kim, C. Contrast Agent-Free 3D Renal Ultrafast Doppler Imaging Reveals Vascular Dysfunction in Acute and Diabetic Kidney Diseases. Adv. Sci. 2023, 10, 2303966. [Google Scholar] [CrossRef] [PubMed]
- Generowicz, B.S.; Dijkhuizen, S.; Bosman, L.W.; De Zeeuw, C.I.; Koekkoek, S.K.; Kruizinga, P. Swept-3D Ultrasound Imaging of the Mouse Brain Using a Continuously Moving 1D-Array Part II: Functional Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023, 70, 1726–1738. [Google Scholar] [CrossRef]
- Ranger, B.J.; Feigin, M.; Zhang, X.; Moerman, K.M.; Herr, H.; Anthony, B.W. 3D Ultrasound Imaging of Residual Limbs with Camera-based Motion Compensation. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 207–217. [Google Scholar] [CrossRef]
- Liu, C.; Xue, C.; Zhang, B.; Zhang, G.; He, C. The Application of an Ultrasound Tomography Algorithm in a Novel Ring 3D Ultrasound Imaging System. Sensors 2018, 18, 1332. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, B.; Xue, C.; Zhang, W.; Zhang, G.; Cheng, Y. Multi-Perspective Ultrasound Imaging Technology of the Breast with Cylindrical Motion of Linear Arrays. Appl. Sci. 2019, 9, 419. [Google Scholar] [CrossRef]
- Park, E.-Y.; Cai, X.; Foiret, J.; Bendjador, H.; Hyun, D.; Fite, B.Z.; Wodnicki, R.; Dahl, J.J.; Boutin, R.D.; Ferrara, K.W. Fast Volumetric Ultrasound Facilitates High-Resolution 3D Mapping of Tissue Compartments. Sci. Adv. 2023, 9, eadg8176. [Google Scholar] [CrossRef]
- Huang, Q.; Lan, J. Remote Control of a Robotic Prosthesis Arm with Six-Degree-of-Freedom for Ultrasonic Scanning and Three-Dimensional Imaging. Biomed. Signal Process. Control 2019, 54, 101606. [Google Scholar] [CrossRef]
- Janvier, M.-A.; Durand, L.-G.; Cardinal, M.-H.R.; Renaud, I.; Chayer, B.; Bigras, P.; De Guise, J.; Soulez, G.; Cloutier, G. Performance Evaluation of a Medical Robotic 3D-Ultrasound Imaging System. Med. Image Anal. 2008, 12, 275–290. [Google Scholar] [CrossRef]
- Kojcev, R.; Khakzar, A.; Fuerst, B.; Zettinig, O.; Fahkry, C.; DeJong, R.; Richmon, J.; Taylor, R.; Sinibaldi, E.; Navab, N. On the Reproducibility of Expert-Operated and Robotic Ultrasound Acquisitions. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1003–1011. [Google Scholar] [CrossRef]
- Zielke, J.; Eilers, C.; Busam, B.; Weber, W.; Navab, N.; Wendler, T. RSV: Robotic Sonography for Thyroid Volumetry. IEEE Robot. Autom. Lett. 2022, 7, 3342–3348. [Google Scholar] [CrossRef]
- Kapravchuk, V.; Ishkildin, A.; Briko, A.; Borde, A.; Kodenko, M.; Nasibullina, A.; Shchukin, S. Method of Forearm Muscles 3D Modeling Using Robotic Ultrasound Scanning. Sensors 2025, 25, 2298. [Google Scholar] [CrossRef]
- Huang, Q.; Gao, B.; Wang, M. Robot-Assisted Autonomous Ultrasound Imaging for Carotid Artery. IEEE Trans. Instrum. Meas. 2024, 73, 1–9. [Google Scholar] [CrossRef]
- Zhou, J.; Tian, H.; Wang, W. Fully Automated Thyroid Ultrasound Screening Utilizing Multi-Modality Image and Anatomical Prior. Biomed. Signal Process. Control 2024, 87, 105430. [Google Scholar] [CrossRef]
- Huang, Q.-H.; Yang, Z.; Hu, W.; Jin, L.-W.; Wei, G.; Li, X. Linear Tracking for 3-D Medical Ultrasound Imaging. IEEE Trans. Cybern. 2013, 43, 1747–1754. [Google Scholar] [CrossRef]
- Obst, S.J.; Newsham-West, R.; Barrett, R.S. In vivo Measurement of Human Achilles Tendon Morphology using Freehand 3-D Ultrasound. Ultrasound Med. Biol. 2014, 40, 62–70. [Google Scholar] [CrossRef]
- Chung, S.W.; Shih, C.C.; Huang, C.C. Freehand Three-Dimensional Ultrasound Imaging of Carotid Artery using Motion Tracking Technology. Ultrasonics 2017, 74, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Verhoef, L.; Soloukey, S.; Mastik, F.; Generowicz, B.S.; Bos, E.M.; Schouten, J.W.; Koekkoek, S.K.; Vincent, A.J.; Klein, S.; Kruizinga, P. Freehand Ultrafast Doppler Ultrasound Imaging with Optical Tracking Allows for Detailed 3D Reconstruction of Blood Flow in the Human Brain. IEEE Trans. Med. Imaging 2025, 44, 3125–3138. [Google Scholar] [CrossRef]
- Cheung, C.-W.J.; Zhou, G.-Q.; Law, S.-Y.; Lai, K.-L.; Jiang, W.-W.; Zheng, Y.-P. Freehand Three-Dimensional Ultrasound System for Assessment of Scoliosis. J. Orthop. Transl. 2015, 3, 123–133. [Google Scholar] [CrossRef]
- Lee, F.F.; He, Q.; Luo, J. Electromagnetic Tracking-based Freehand 3D Quasi-Static Elastography with 1D Linear Array: A Phantom Study. Phys. Med. Biol. 2018, 63, 245006. [Google Scholar] [CrossRef] [PubMed]
- Herickhoff, C.D.; Morgan, M.R.; Broder, J.S.; Dahl, J.J. Low-Cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype. Ultrason. Imaging 2017, 40, 35–48. [Google Scholar] [CrossRef]
- Kim, T.; Kang, D.H.; Shim, S.; Im, M.; Seo, B.K.; Kim, H.; Lee, B.C. Versatile Low-Cost Volumetric 3D Ultrasound Imaging Using Gimbal-Assisted Distance Sensors and an Inertial Measurement Unit. Sensors 2020, 20, 6613. [Google Scholar] [CrossRef]
- Prevost, R.; Salehi, M.; Jagoda, S.; Kumar, N.; Sprung, J.; Ladikos, A.; Bauer, R.; Zettinig, O.; Wein, W. 3D Freehand Ultrasound without External Tracking using Deep Learning. Med. Image Anal. 2018, 48, 187–202. [Google Scholar] [CrossRef]
- Lyu, Y.; Shen, Y.; Zhang, M.; Wang, J. Real-Time 3D Ultrasound Imaging System based on a Hybrid Reconstruction Algorithm. Chin. J. Electron. 2024, 33, 245–255. [Google Scholar] [CrossRef]
- Chen, H.; Qian, L.; Gao, Y.; Zhao, J.; Tang, Y.; Li, J.; Le, L.H.; Lou, E.; Zheng, R. Development of Automatic Assessment Framework for Spine Deformity using Freehand 3-D Ultrasound Imaging System. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2024, 71, 408–422. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.; Seo, M.; Park, S.; Imrus, S.; Ashok, K.; Lee, D.; Park, C.; Lee, S.; Kim, J.; et al. Enhancing Free-hand 3D Photoacoustic and Ultrasound Reconstruction using Deep Learning. IEEE Trans. Med. Imaging 2025. [Google Scholar] [CrossRef]
- Luo, M.; Yang, X.; Yan, Z.; Cao, Y.; Zhang, Y.; Hu, X.; Wang, J.; Ding, H.; Han, W.; Sun, L.; et al. MoNetV2: Enhanced Motion Network for Freehand 3-D Ultrasound Reconstruction. IEEE Trans. Neural Netw. 2025. [Google Scholar] [CrossRef]
- Vourtsis, A. Three-Dimensional Automated Breast Ultrasound: Technical Aspects and First Results. Diagn. Interv. Imaging 2019, 100, 579–592. [Google Scholar] [CrossRef]
- Chang, J.M.; Moon, W.K.; Cho, N.; Park, J.S.; Kim, S.J. Radiologists’ Performance in the Detection of Benign and Malignant Masses with 3D Automated Breast Ultrasound (ABUS). Eur. J. Radiol. 2011, 78, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, V.; Giuliano, C. Improved Breast Cancer Detection in Asymptomatic Women using 3D-Automated Breast Ultrasound in Mammographically Dense Breasts. Clin. Imaging 2013, 37, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Wojcinski, S.; Farrokh, A.; Hille, U.; Wiskirchen, J.; Gyapong, S.; Soliman, A.A.; Degenhardt, F.; Hillemanns, P. The Automated Breast Volume Scanner (ABVS): Initial Experiences in Lesion Detection Compared with Conventional Handheld B-mode Ultrasound: A Pilot Study of 50 Cases. Int. J. Women’s Health 2011, 3, 337–346. [Google Scholar] [CrossRef]
- Wojcinski, S.; Farrokh, A.; Gyapong, S.; Hille, U.; Hillemanns, P.; Degenhardt, F. The Automated Breast Volume Scanner (ABVS): Initial Experiences in Lesion Detection and Interobserver Concordance of a New Method. Ultrasound Med. Biol. 2011, 37, S46–S47. [Google Scholar] [CrossRef]
- Arleo, E.K.; Saleh, M.; Ionescu, D.; Drotman, M.; Min, R.J.; Hentel, K. Recall Rate of Screening Ultrasound with Automated Breast Volumetric Scanning (ABVS) in Women with Dense Breasts: A First Quarter Experience. Clin. Imaging 2014, 38, 439–444. [Google Scholar] [CrossRef]
- Mundinger, A. 3D Supine Automated Ultrasound (SAUS, ABUS, ABVS) for Supplemental Screening Women with Dense Breasts. J. Breast Health 2016, 12, 52. [Google Scholar] [CrossRef]
- Tutar, B.; Esen Icten, G.; Guldogan, N.; Kara, H.; Arıkan, A.E.; Tutar, O.; Uras, C. Comparison of Automated Versus Hand-Held Breast US in Supplemental Screening in Asymptomatic Women with Dense Breasts: Is There a Difference Regarding Woman Preference, Lesion Detection and Lesion Characterization? Arch. Gynecol. Obstet. 2020, 301, 1257–1265. [Google Scholar] [CrossRef]
- De Jong, L.; Nikolaev, A.; Greco, A.; Weijers, G.; de Korte, C.L.; Fütterer, J.J. Three-Dimensional Quantitative Muscle Ultrasound in a Healthy Population. Muscle Nerve 2021, 64, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Ashir, A.; Jerban, S.; Barrère, V.; Wu, Y.; Shah, S.B.; Andre, M.P.; Chang, E.Y. Skeletal Muscle Assessment using Quantitative Ultrasound: A Narrative Review. Sensors 2023, 23, 4763. [Google Scholar] [CrossRef]
- De Jong, L.; Greco, A.; Nikolaev, A.; Weijers, G.; van Engelen, B.G.; de Korte, C.L.; Fütterer, J.J. Three-Dimensional Quantitative Muscle Ultrasound in Patients with Facioscapulohumeral Dystrophy and Myotonic Dystrophy. Muscle Nerve 2023, 68, 432–438. [Google Scholar] [CrossRef]
- MacGillivray, T.J.; Ross, E.; Simpson, H.A.; Greig, C.A. 3D Freehand Ultrasound for in vivo Determination of Human Skeletal Muscle Volume. Ultrasound Med. Biol. 2009, 35, 928–935. [Google Scholar] [CrossRef]
- Noltes, M.E.; Bader, M.; Metman, M.J.; Vonk, J.; Steinkamp, P.J.; Kukačka, J.; Westerlaan, H.E.; Dierckx, R.A.; van Hemel, B.M.; Brouwers, A.H.; et al. Towards In Vivo Characterization of Thyroid Nodules Suspicious for Malignancy using Multispectral Optoacoustic Tomography. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2736–2750. [Google Scholar] [CrossRef]
- Roll, W.; Markwardt, N.A.; Masthoff, M.; Helfen, A.; Claussen, J.; Eisenblätter, M.; Hasenbach, A.; Hermann, S.; Karlas, A.; Wildgruber, M.; et al. Multispectral Optoacoustic Tomography of Benign and Malignant Thyroid Disorders—A Pilot Study. J. Nucl. Med. 2019, 60, 1461–1466. [Google Scholar] [CrossRef]
- Kim, J.; Park, B.; Ha, J.; Steinberg, I.; Hooper, S.M.; Jeong, C.; Park, E.-Y.; Choi, W.; Liang, T.; Bae, J.-S.; et al. Multiparametric Photoacoustic Analysis of Human Thyroid Cancers In Vivo. Cancer Res. 2021, 81, 4849–4860. [Google Scholar] [CrossRef]
- Schoustra, S.M.; Piras, D.; Huijink, R.; Op’t Root, T.J.; Alink, L.; Kobold, W.M.F.; Steenbergen, W.; Manohar, S. Twente Photoacoustic Mammoscope 2: System Overview and Three-Dimensional Vascular Network Images in Healthy Breasts. J. Biomed. Opt. 2019, 24, 121909. [Google Scholar] [CrossRef]
- Nyayapathi, N.; Xia, J. Photoacoustic Imaging of Breast Cancer: A Mini Review of System Design and Image Features. J. Biomed. Opt. 2019, 24, 121911. [Google Scholar] [CrossRef]
- Becker, A.; Masthoff, M.; Claussen, J.; Ford, S.J.; Roll, W.; Burg, M.; Barth, P.J.; Heindel, W.; Schaefers, M.; Eisenblaetter, M.; et al. Multispectral Optoacoustic Tomography of the Human Breast: Characterisation of Healthy Tissue and Malignant Lesions using a Hybrid Ultrasound-Optoacoustic Approach. Eur. Radiol. 2018, 28, 602–609. [Google Scholar] [CrossRef]
- Neuschler, E.I.; Butler, R.; Young, C.A.; Barke, L.D.; Bertrand, M.L.; Böhm-Vélez, M.; Destounis, S.; Donlan, P.; Grobmyer, S.R.; Katzen, J.; et al. A Pivotal Study of Optoacoustic Imaging to Diagnose Benign and Malignant Breast Masses: A New Evaluation Tool for Radiologists. Radiology 2017, 287, 398–412. [Google Scholar] [CrossRef]
- Diot, G.; Metz, S.; Noske, A.; Liapis, E.; Schroeder, B.; Ovsepian, S.V.; Meier, R.; Rummeny, E.; Ntziachristos, V. Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer. Clin. Cancer. Res. 2017, 23, 6912–6922. [Google Scholar] [CrossRef]
- Riksen, J.J.; Schurink, A.W.; Francis, K.J.; Verhoef, C.; Grünhagen, D.J.; van Soest, G. Dual-Wavelength Photoacoustic Imaging of Sentinel Lymph Nodes in Patients with Melanoma and Breast Cancer. Photoacoustics 2025, 45, 100747. [Google Scholar] [CrossRef]
- Han, M.; Lee, Y.J.; Ahn, J.; Nam, S.; Kim, M.; Park, J.; Ahn, J.; Ryu, H.; Seo, Y.; Park, B.; et al. A Clinical Feasibility Study of a Photoacoustic Finder for Sentinel Lymph Node Biopsy in Breast Cancer Patients: A Prospective Cross-Sectional Study. Photoacoustics 2025, 43, 100716. [Google Scholar] [CrossRef]
- Zhou, Y.; Tripathi, S.V.; Rosman, I.; Ma, J.; Hai, P.; Linette, G.P.; Council, M.L.; Fields, R.C.; Wang, L.V.; Cornelius, L.A. Noninvasive Determination of Melanoma Depth Using a Handheld Photoacoustic Probe. J. Investig. Dermatol. 2017, 137, 1370–1372. [Google Scholar] [CrossRef]
- Attia, A.B.E.; Chuah, S.Y.; Razansky, D.; Ho, C.J.H.; Malempati, P.; Dinish, U.; Bi, R.; Fu, C.Y.; Ford, S.J.; Lee, J.S.-S.; et al. Noninvasive Real-Time Characterization of Non-Melanoma Skin Cancers with Handheld Optoacoustic Probes. Photoacoustics 2017, 7, 20–26. [Google Scholar] [CrossRef]
- Kim, M.; Han, J.H.; Ahn, J.; Kim, E.; Bang, C.H.; Kim, C.; Lee, J.H.; Choi, W. In Vivo 3D Photoacoustic and Ultrasound Analysis of Hypopigmented Skin Llesions: A Pilot Study. Photoacoustics 2025, 43, 100705. [Google Scholar] [CrossRef]
- Shen, Y.-T.; Chen, L.; Yue, W.-W.; Xu, H.-X. Artificial Intelligence in Ultrasound. Eur. J. Radiol. 2021, 139, 109717. [Google Scholar] [CrossRef]
- Guerrero, J.; Salcudean, S.E.; McEwen, J.A.; Masri, B.A.; Nicolaou, S. Real-Time Vessel Segmentation and Tracking for Ultrasound Imaging Applications. IEEE Trans. Med. Imaging 2007, 26, 1079–1090. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, G.; Lin, R.; Gong, X.; Song, L.; Li, T.; Wang, W.; Zhang, K.; Qian, X.; Zhang, H.; et al. Three-Dimensional Hessian Matrix-based Quantitative Vascular Imaging of Rat Iris with Optical-Resolution Photoacoustic Microscopy in Vivo. J. Biomed. Opt. 2018, 23, 046006. [Google Scholar] [CrossRef]
- Akbari, H.; Fei, B. 3D Ultrasound Image Segmentation using Wavelet Support Vector Machines. Med. Phys. 2012, 39, 2972–2984. [Google Scholar] [CrossRef]
- Gu, P.; Lee, W.-M.; Roubidoux, M.A.; Yuan, J.; Wang, X.; Carson, P.L. Automated 3D Ultrasound Image Segmentation to Aid Breast Cancer Image Interpretation. Ultrasonics 2016, 65, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Hauptmann, A.; Lucka, F.; Betcke, M.; Huynh, N.; Adler, J.; Cox, B.; Beard, P.; Ourselin, S.; Arridge, S. Model-based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography. IEEE Trans. Med. Imaging 2018, 37, 1382–1393. [Google Scholar] [CrossRef]
- Zhu, J.; Huynh, N.; Ogunlade, O.; Ansari, R.; Lucka, F.; Cox, B.; Beard, P. Mitigating the Limited View Problem in Photoacoustic Tomography for a Planar Detection Geometry by Regularized Iterative Reconstruction. IEEE Trans. Med. Imaging 2023, 42, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Lee, J.E.-Y.; Lee, C. Thin-Film PMUTs: A Review of Over 40 Years of Research. Microsyst. Nanoeng. 2023, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Atheeth, S.; Krishnan, K.; Arora, M. Review of pMUTs for Medical Imaging: Towards High Frequency Arrays. Biomed. Phys. Eng. Express 2023, 9, 022001. [Google Scholar] [CrossRef]
- Qiu, Y.; Gigliotti, J.V.; Wallace, M.; Griggio, F.; Demore, C.E.; Cochran, S.; Trolier-McKinstry, S. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging. Sensors 2015, 15, 8020–8041. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, H.; Yang, H.; Jiang, H.; Chen, Z.; Lu, Y.; Feng, P.X.-L.; Xie, H. Thin Ceramic PZT Dual-and Multi-Frequency pMUT Arrays for Photoacoustic Imaging. Microsyst. Nanoeng. 2022, 8, 122. [Google Scholar] [CrossRef]
- Demi, L.; Demi, M.; Prediletto, R.; Soldati, G. Real-Time Multi-Frequency Ultrasound Imaging for Quantitative Lung Ultrasound–First Clinical Results. J. Acoust. Soc. Am. 2020, 148, 998–1006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsedendamba, N.; Song, Y.; Park, E.-Y.; Kim, J. Review of Linear-Array-Transducer-Based Volumetric Ultrasound Imaging Techniques and Their Biomedical Applications. Bioengineering 2025, 12, 906. https://doi.org/10.3390/bioengineering12090906
Tsedendamba N, Song Y, Park E-Y, Kim J. Review of Linear-Array-Transducer-Based Volumetric Ultrasound Imaging Techniques and Their Biomedical Applications. Bioengineering. 2025; 12(9):906. https://doi.org/10.3390/bioengineering12090906
Chicago/Turabian StyleTsedendamba, Ninjbadgar, Yuon Song, Eun-Yeong Park, and Jeesu Kim. 2025. "Review of Linear-Array-Transducer-Based Volumetric Ultrasound Imaging Techniques and Their Biomedical Applications" Bioengineering 12, no. 9: 906. https://doi.org/10.3390/bioengineering12090906
APA StyleTsedendamba, N., Song, Y., Park, E.-Y., & Kim, J. (2025). Review of Linear-Array-Transducer-Based Volumetric Ultrasound Imaging Techniques and Their Biomedical Applications. Bioengineering, 12(9), 906. https://doi.org/10.3390/bioengineering12090906