Restoration of Joint Line Obliquity May Not Influence Lower Extremity Peak Frontal Plane Moments During Stair Negotiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Stair Ascent Biomechanics
3.2. Stair Descent Biomechanics
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, K.D.; Golightly, Y.M. State of the evidence. Curr. Opin. Rheumatol. 2015, 27, 276–283. [Google Scholar] [CrossRef]
- Lawrence, R.C.; Felson, D.T.; Helmick, C.G.; Arnold, L.M.; Choi, H.; Deyo, R.A.; Gabriel, S.; Hirsch, R.; Hochberg, M.C.; Hunder, G.G.; et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008, 58, 26–35. [Google Scholar] [CrossRef]
- Song, J.; Chang, R.W.; Dunlop, D.D. Population impact of arthritis on disability in older adults. Arthritis Rheum. 2006, 55, 248–255. [Google Scholar] [CrossRef]
- Arden, N.; Nevitt, M.C. Osteoarthritis: Epidemiology. Best Pract. Res. Clin. Rheumatol. 2006, 20, 3–25. [Google Scholar] [CrossRef]
- Cram, P.; Lu, X.; Kates, S.L.; Singh, J.A.; Li, Y.; Wolf, B.R. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991–2010. JAMA 2012, 308, 1227–1236. [Google Scholar] [CrossRef]
- Maradit Kremers, H.; Larson, D.R.; Crowson, C.S.; Kremers, W.K.; Washington, R.E.; Steiner, C.A.; Jiranek, W.A.; Berry, D.J. Prevalence of total hip and knee replacement in the United States. J. Bone Jt. Surg. Am. 2015, 97, 1386–1397. [Google Scholar] [CrossRef]
- Anderson, J.G.; Wixson, R.L.; Tsai, D.; Stulberg, S.D.; Chang, R.W. Functional outcome and patient satisfaction in total knee patients over the age of 75. J. Arthroplast. 1996, 11, 831–840. [Google Scholar] [CrossRef]
- Bourne, R.B.; Chesworth, B.; Davis, A.; Mahomed, N.; Charron, K. Comparing patient outcomes after THA and TKA: Is there a difference? Clin. Orthop. Relat. Res. 2010, 468, 542–546. [Google Scholar] [CrossRef]
- Dunbar, M.J.; Robertsson, O.; Ryd, L.; Lidgren, L. Appropriate questionnaires for knee arthroplasty. Results of a survey of 3600 patients from the Swedish Knee Arthroplasty Registry. J. Bone Jt. Surg Br. 2001, 83, 339–344. [Google Scholar] [CrossRef]
- Chesworth, B.M.; Mahomed, N.N.; Bourne, R.B.; Davis, A.M.; Group, O.S. Willingness to go through surgery again validated the WOMAC clinically important difference from THR/TKR surgery. J. Clin. Epidemiol. 2008, 61, 907–918. [Google Scholar] [CrossRef]
- Andriacchi, T.P. Dynamics of knee malalignment. Orthop. Clin. N. Am. 1994, 25, 395–403. [Google Scholar] [CrossRef]
- Schipplein, O.D.; Andriacchi, T.P. Interaction between active and passive knee stabilizers during level walking. J. Orthop. Res. 1991, 9, 113–119. [Google Scholar] [CrossRef]
- Hunt, M.A.; Birmingham, T.B.; Giffin, J.R.; Jenkyn, T.R. Associations among knee adduction moment, frontal plane ground reaction force, and lever arm during walking in patients with knee osteoarthritis. J. Biomech. 2006, 39, 2213–2220. [Google Scholar] [CrossRef]
- Sharma, L.; Hurwitz, D.E.; Thonar, E.J.-M.A.; Sum, J.A.; Lenz, M.E.; Dunlop, D.D.; Schnitzer, T.J.; Kirwan-Mellis, G.; Andriacchi, T.P. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum. 1998, 41, 1233–1240. [Google Scholar] [CrossRef]
- Mündermann, A.; Dyrby, C.O.; Andriacchi, T.P. Secondary gait changes in patients with medial compartment knee osteoarthritis: Increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 2005, 52, 2835–2844. [Google Scholar] [CrossRef]
- Thorp, L.E.; Sumner, D.R.; Block, J.A.; Moisio, K.C.; Shott, S.; Wimmer, M.A. Knee joint loading differs in individuals with mild compared with moderate medial knee osteoarthritis. Arthritis Rheum. 2006, 54, 3842–3849. [Google Scholar] [CrossRef]
- Alnahdi, A.H.; Zeni, J.A.; Snyder-Mackler, L. Gait after unilateral total knee arthroplasty: Frontal plane analysis. J. Orthop. Res. 2011, 29, 647–652. [Google Scholar] [CrossRef]
- Hatfield, G.L.; Hubley-Kozey, C.L.; Astephen Wilson, J.L.; Dunbar, M.J. The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J. Arthroplast. 2011, 26, 309–318. [Google Scholar] [CrossRef]
- Mandeville, D.; Osternig, L.R.; Lantz, B.A.; Mohler, C.G.; Chou, L.S. The effect of total knee replacement on the knee varus angle and moment during walking and stair ascent. Clin. Biomech. 2008, 23, 1053–1058. [Google Scholar] [CrossRef]
- Luepongsak, N.; Amin, S.; Krebs, D.E.; McGibbon, C.A.; Felson, D. The contribution of type of daily activity to loading across the hip and knee joints in the elderly. Osteoarthr. Cartil. 2002, 10, 353–359. [Google Scholar] [CrossRef]
- Guo, M.; Axe, M.J.; Manal, K. The influence of foot progression angle on the knee adduction moment during walking and stair climbing in pain free individuals with knee osteoarthritis. Gait Posture 2007, 26, 436–441. [Google Scholar] [CrossRef]
- Zhao, D.; Banks, S.A.; Mitchell, K.H.; D’Lima, D.D.; Colwell, C.W., Jr.; Fregly, B.J. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J. Orthop. Res. 2007, 25, 789–797. [Google Scholar] [CrossRef]
- Hurley, M.V. The role of muscle weakness in the pathogenesis of osteoarthritis. Rheum. Dis. Clin. N. Am. 1999, 25, 283–298, vi. [Google Scholar] [CrossRef]
- Slemenda, C.; Brandt, K.D.; Heilman, D.K.; Mazzuca, S.; Braunstein, E.M.; Katz, B.P.; Wolinsky, F.D. Quadriceps weakness and osteoarthritis of the knee. Ann. Intern. Med. 1997, 127, 97–104. [Google Scholar] [CrossRef]
- Slemenda, C.; Heilman, D.K.; Brandt, K.D.; Katz, B.P.; Mazzuca, S.A.; Braunstein, E.M.; Byrd, D. Reduced quadriceps strength relative to body weight: A risk factor for knee osteoarthritis in women? Arthritis Rheum. 1998, 41, 1951–1959. [Google Scholar] [CrossRef]
- Powell, D.W.; Andrews, S.; Stickley, C.; Williams, D.S. High- compared to low-arched athletes exhibit smaller knee abduction moments in walking and running. Hum. Mov. Sci. 2016, 50, 47–53. [Google Scholar] [CrossRef]
- Simic, M.; Hunt, M.A.; Bennell, K.L.; Hinman, R.S.; Wrigley, T.V. Trunk lean gait modification and knee joint load in people with medial knee osteoarthritis: The effect of varying trunk lean angles. Arthritis Care Res. 2012, 64, 1545–1553. [Google Scholar] [CrossRef]
- Fenner, V.U.; Behrend, H.; Kuster, M.S. Joint Mechanics After Total Knee Arthroplasty While Descending Stairs. J. Arthroplast. 2017, 32, 575–580. [Google Scholar] [CrossRef]
- Fang, D.M.; Ritter, M.A.; Davis, K.E. Coronal alignment in total knee arthroplasty: Just how important is it? J. Arthroplast. 2009, 24, 39–43. [Google Scholar] [CrossRef]
- Jeffery, R.S.; Morris, R.W.; Denham, R.A. Coronal alignment after total knee replacement. J. Bone Jt. Surg. Br. 1991, 73, 709–714. [Google Scholar] [CrossRef]
- Bargren, J.H.; Blaha, J.D.; Freeman, M.A. Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clin. Orthop. Relat. Res. 1983, 173, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Ritter, M.A.; Davis, K.E.; Meding, J.B.; Pierson, J.L.; Berend, M.E.; Malinzak, R.A. The effect of alignment and BMI on failure of total knee replacement. J. Bone Jt. Surg. Am. 2011, 93, 1588–1596. [Google Scholar] [CrossRef]
- Sikorski, J.M. Alignment in total knee replacement. J. Bone Jt. Surg. Br. 2008, 90, 1121–1127. [Google Scholar] [CrossRef]
- Berend, M.E.; Ritter, M.A.; Meding, J.B.; Faris, P.M.; Keating, E.M.; Redelman, R.; Faris, G.W.; Davis, K.E. Tibial component failure mechanisms in total knee arthroplasty. Clin. Orthop. Relat. Res. 2004, 428, 26–34. [Google Scholar] [CrossRef]
- Parratte, S.; Pagnano, M.W.; Trousdale, R.T.; Berry, D.J. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J. Bone Jt. Surg. Am. 2010, 92, 2143–2149. [Google Scholar] [CrossRef]
- Nishida, K.; Matsumoto, T.; Takayama, K.; Ishida, K.; Nakano, N.; Matsushita, T.; Kuroda, R.; Kurosaka, M. Remaining mild varus limb alignment leads to better clinical outcome in total knee arthroplasty for varus osteoarthritis. Knee Surg Sports Traumatol. Arthrosc. 2017, 25, 3488–3494. [Google Scholar] [CrossRef]
- Kuroda, Y.; Takayama, K.; Ishida, K.; Hayashi, S.; Hashimoto, S.; Nishida, K.; Matsushita, T.; Niikura, T.; Kuroda, R.; Matsumoto, T. Influence of limb alignment and prosthetic orientation on patient-reported clinical outcomes in total knee arthroplasty. J. Orthop. Sci. 2019, 24, 668–673. [Google Scholar] [CrossRef]
- Howell, S.M.; Papadopoulos, S.; Kuznik, K.T.; Hull, M.L. Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2271–2280. [Google Scholar] [CrossRef]
- Dossett, H.G.; Estrada, N.A.; Swartz, G.J.; LeFevre, G.W.; Kwasman, B.G. A randomised controlled trial of kinematically and mechanically aligned total knee replacements: Two-year clinical results. Bone Jt. J. 2014, 96-B, 907–913. [Google Scholar] [CrossRef]
- Niki, Y.; Nagura, T.; Nagai, K.; Kobayashi, S.; Harato, K. Kinematically aligned total knee arthroplasty reduces knee adduction moment more than mechanically aligned total knee arthroplasty. Knee Surg Sports Traumatol. Arthrosc. 2018, 26, 1629–1635. [Google Scholar] [CrossRef]
- Cherches, M.; Coss, N.; Nguyen, K.; Halvorson, R.; Allahabadi, S.; Bini, S. No correlation between clinical outcomes and changes in the tibia-metaphyseal angle following total knee arthroplasty: A retrospective study. J. Arthroplast. 2022, 37, 1793–1798. [Google Scholar] [CrossRef]
- Winnock de Grave, P.; Van Criekinge, T.; Luyckx, T.; Moreels, R.; Gunst, P.; Claeys, K. Restoration of the native tibial joint line obliquity in total knee arthroplasty with inverse kinematic alignment does not increase knee adduction moments. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4692–4704. [Google Scholar] [CrossRef]
- Rauh, M.A.; Boyle, J.; Mihalko, W.M.; Phillips, M.J.; Bayers-Thering, M.; Krackow, K.A. Reliability of measuring long-standing lower extremity radiographs. Orthopedics 2007, 30, 299–303. [Google Scholar] [CrossRef]
- Alzahrani, M.M.; Wood, T.J.; Somerville, L.E.; Howard, J.L.; Lanting, B.A.; Vasarhelyi, E.M. Correlation of short knee radiographs and full-length radiographs in patients undergoing total knee arthroplasty. J. Am. Acad. Orthop. Surg. 2019, 27, e516–e521. [Google Scholar] [CrossRef]
- Nelson-Tranum, A.K.; Ford, M.C.; Hou, N.; Powell, D.W.; Guyton, J.L.; Crockarell, J.R.; Holland, C.T.; Mihalko, W.M. Kinematic alignment compared with mechanical alignment techniques results in greater peak three-dimensional knee joint moments during stair negotiation. J. Arthroplast. 2025, 40, S347–S353. [Google Scholar] [CrossRef]
- Augustine, S.; Foster, R.; Barton, G.; Lake, M.J.; Sharir, R.; Robinson, M.A. The inter-trial and inter-session reliability of Theia3D-derived markerless gait analysis in tight versus loose clothing. PeerJ 2025, 13, e18613. [Google Scholar] [CrossRef]
- Scataglini, S.; Abts, E.; Van Bocxlaer, C.; Van den Bussche, M.; Meletani, S.; Truijen, S. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Sensors 2024, 24, 3686. [Google Scholar] [CrossRef]
- Nelson, A.K.; Fong, H.; Carnall, A.M.; Puppa, M.J.; Beeler, D.; Stickley, C.; Mihalko, W.; Powell, D.W. Increasing trunk mass evokes lower extremity biomechanical plasticity during stair descent. Int. J. Exerc. Sci. 2023, 16, 942–953. [Google Scholar] [CrossRef]
- Milner, C.E. Interlimb asymmetry during walking following unilateral total knee arthroplasty. Gait Posture 2008, 28, 69–73. [Google Scholar] [CrossRef]
- Joglekar, S.; Gioe, T.J.; Yoon, P.; Schwartz, M.H. Gait analysis comparison of cruciate retaining and substituting TKA following PCL sacrifice. Knee 2012, 19, 279–285. [Google Scholar] [CrossRef]
- Kelman, G.J.; Biden, E.N.; Wyatt, M.P.; Ritter, M.A.; Colwell, C.W., Jr. Gait laboratory analysis of a posterior cruciate-sparing total knee arthroplasty in stair ascent and descent. Clin. Orthop. Relat. Res. 1989, 248, 21–25, discussion 25–26. [Google Scholar] [CrossRef]
- Standifird, T.W.; Saxton, A.M.; Coe, D.P.; Cates, H.E.; Reinbolt, J.A.; Zhang, S. Influence of total knee arthroplasty on gait mechanics of the replaced and non-replaced limb during stair negotiation. J. Arthroplast. 2016, 31, 278–283. [Google Scholar] [CrossRef]
- Zeni, J., Jr.; Abujaber, S.; Flowers, P.; Pozzi, F.; Snyder-Mackler, L. Biofeedback to promote movement symmetry after total knee arthroplasty: A feasibility study. J. Orthop. Sports Phys. Ther. 2013, 43, 715–726. [Google Scholar] [CrossRef]
- Arauz, P.; Peng, Y.; Kwon, Y.M. Knee motion symmetry was not restored in patients with unilateral bi-cruciate retaining total knee arthroplasty-in vivo three-dimensional kinematic analysis. Int. Orthop. 2018, 42, 2817–2823. [Google Scholar] [CrossRef]
Pre-—Post-Op JLO | Restored, n (%) | Pre-—Post-Op JLO | Unrestored, n (%) |
---|---|---|---|
Neutral–Neutral | 18 (81.8) | Apex Distal–Neutral | 18 (60) |
Apex Distal–Apex Distal | 3 (13.6) | Apex Distal–Apex Proximal | 4 (13.3) |
Apex Proximal–Apex Proximal | 1 (4.5) | Neutral–Apex Distal | 2 (6.7) |
Apex Proximal–Neutral | 3 (10) | ||
Neutral–Apex Proximal | 3 (10) |
Group | n | Age | BMI | Male | Female | KOOS, JR | FJS | Years Post-Op |
---|---|---|---|---|---|---|---|---|
Restored | 22 | 61.9 ±7.1 | 31 ±6 | 14 | 8 | 4.1 ±0.9 | 3 ±1.5 | 2.3 ±1.0 |
Unrestored | 30 | 61.8 ±7.6 | 31 ±5 | 16 | 14 | 4.0 ±0.8 | 3 ±1.5 | 2.7 ±1.2 |
Ankle Inversion (Nm/kg) | Knee Abduction (Nm/kg) | Hip Abduction (Nm/kg) | |||||
---|---|---|---|---|---|---|---|
Task | Limb | Un | Restored | Un | Restored | Un | Restored |
Ascent | TKA | 0.16 ± 0.13 | 0.18 ± 0.13 | 0.40 ± 0.21 | 0.32 ± 0.13 | 0.94 ± 0.27 | 0.84 ± 0.14 |
CON | 0.14 ± 0.10 | 0.11 ± 0.11 | 0.42 ± 0.19 | 0.45 ± 0.19 | 0.92 ± 0.21 | 0.97 ± 0.22 | |
Descent | TKA | 0.29 ± 0.16 | 0.23 ± 0.14 | 0.50 ± 0.18 | 0.48 ± 0.22 | 1.06 ± 0.14 | 1.03 ± 0.22 |
CON | 0.26 ± 0.17 | 0.27 ± 0.13 | 0.55 ± 0.21 | 0.51 ± 0.18 | 1.06 ± 0.28 | 1.02 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson-Tranum, A.K.; Ford, M.C.; Hou, N.; Powell, D.W.; Holland, C.T.; Mihalko, W.M. Restoration of Joint Line Obliquity May Not Influence Lower Extremity Peak Frontal Plane Moments During Stair Negotiation. Bioengineering 2025, 12, 803. https://doi.org/10.3390/bioengineering12080803
Nelson-Tranum AK, Ford MC, Hou N, Powell DW, Holland CT, Mihalko WM. Restoration of Joint Line Obliquity May Not Influence Lower Extremity Peak Frontal Plane Moments During Stair Negotiation. Bioengineering. 2025; 12(8):803. https://doi.org/10.3390/bioengineering12080803
Chicago/Turabian StyleNelson-Tranum, Alexis K., Marcus C. Ford, Nuanqiu Hou, Douglas W. Powell, Christopher T. Holland, and William M. Mihalko. 2025. "Restoration of Joint Line Obliquity May Not Influence Lower Extremity Peak Frontal Plane Moments During Stair Negotiation" Bioengineering 12, no. 8: 803. https://doi.org/10.3390/bioengineering12080803
APA StyleNelson-Tranum, A. K., Ford, M. C., Hou, N., Powell, D. W., Holland, C. T., & Mihalko, W. M. (2025). Restoration of Joint Line Obliquity May Not Influence Lower Extremity Peak Frontal Plane Moments During Stair Negotiation. Bioengineering, 12(8), 803. https://doi.org/10.3390/bioengineering12080803