A Model-Based Tool for Assessing the Impact of Land Use Change Scenarios on Flood Risk in Small-Scale River Systems—Part 1: Pre-Processing of Scenario Based Flood Characteristics for the Current State of Land Use
Abstract
:1. Introduction
1.1. Background
- (1)
- Statistical analysis of historic time series.
- (2)
- Statistical regionalization of flood characteristics.
- (3)
- Hydrologic modeling (if a water table is required, supplemented by hydrodynamic models).
1.2. Objectives and Structure of the Study
- (4)
- To develop a concept to setup and parametrize a deterministic distributed model based on available geodata.
- (5)
- To develop a simplified algorithm for analyzing land-use change scenarios that is based on the models developed but can be used by regional planning practitioners.
2. Materials and Methods
2.1. Study Area and Data Used
2.2. Data Processing and Modelling Software
- Freeware for wide transferability and applicability.
- Combined representation of rainfall-runoff and hydrodynamic streamflow processes to avoid external coupling of different models.
- Physically based, parameters widely derivable from geodata.
- Sufficient spatial distribution, capable to allocate distinct land use changes in the regarded river basin.
- Easy and automatable setup and parametrization of the model.
2.3. The General Concept
2.4. Homogenization of Available Geodata
2.5. Development of VBA Macros to Automate the Setup of a Combined Hydrological Rainfall-Runoff and a Hydrodynamic Stream Model
2.6. Model Setup, Calibration, Parameter Transfer and Validation
2.7. Scenario Simulation on the Basis of Defined Rain Events
2.7.1. Selection of Statistical Rainfall Events
2.7.2. Initial Condition
3. Results and Discussion
3.1. Parameterization
3.2. Calibration Results
3.3. Validation Results
3.4. Error Discussion
- Input precipitation.
- Storm water disposals.
- Size of subcatchments.
- Measured flows.
3.5. Szenario Simulations Based on Defined Rain Events at the Example of the Schmarler Bach
3.5.1. Initial Condition
3.5.2. Intensity Course of Model Rainfall
3.5.3. Flood Characteristics for the Current State of Land Use
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, T.; Endreny, T. The Straightening of a River Meander Leads to Extensive Losses in Flow Complexity and Ecosystem Services. Water 2020, 12, 1680. [Google Scholar] [CrossRef]
- Park, G.; Park, H. Influence analysis of land use by population growth on urban flood risk using system dynamics using system dynamics. In Environmental Impact IV; Environmental Impact 2018, Naples, Italy, 6/20/2018–6/22/2018; Casares, J., Passerini, G., Perillo, G., Eds.; WIT Press: Southampton, UK, 2018; pp. 195–205. [Google Scholar]
- Handayani, W.; Chigbu, U.E.; Rudiarto, I.; Putri, I.H.S. Urbanization and Increasing Flood Risk in the Northern Coast of Central Java—Indonesia: An Assessment towards Better Land Use Policy and Flood Management. Land 2020, 9, 343. [Google Scholar] [CrossRef]
- Poelmans, L.; van Rompaey, A.; Batelaan, O. Coupling urban expansion models and hydrological models: How important are spatial patterns? Land Use Policy 2010, 27, 965–975. [Google Scholar] [CrossRef]
- Ungaro, F.; Calzolari, C.; Pistocchi, A.; Malucelli, F. Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: A hydropedological approach. J. Hydrol. Hydromech. 2014, 62, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, D.D.; Grillakis, M.G.; Koutroulis, A.G.; Agapiou, A.; Themistocleous, K.; Tsanis, I.K.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K.; et al. GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: The case study of Yialias basin in Cyprus. Nat. Hazards Earth Syst. Sci. 2014, 14, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. The 100-Year Flood. Available online: https://www.usgs.gov/special-topic/water-science-school/science/100-year-flood?qt-science_center_objects=0#qt-science_center_objects (accessed on 28 June 2021).
- Seibert, J. Regionalisation of parameters for a conceptual rainfall-runoff model. Agric. Forest Meteorol. 1999, 98–99, 279–293. [Google Scholar] [CrossRef]
- Song, J.-H.; Her, Y.; Suh, K.; Kang, M.-S.; Kim, H. Regionalization of a Rainfall-Runoff Model: Limitations and Potentials. Water 2019, 11, 2257. [Google Scholar] [CrossRef] [Green Version]
- Servat, E.; Dezetter, A. Rainfall-runoff modelling and water resources assessment in northwestern Ivory Coast. Tentative extension to ungauged catchments. J. Hydrol. 1993, 148, 231–248. [Google Scholar] [CrossRef]
- Ibrahim, A.B.; Cordery, I. Estimation of recharge and runoff volumes from ungauged catchments in eastern Australia. Hydrol. Sci. J. 1995, 40, 499–515. [Google Scholar] [CrossRef]
- Garambois, P.A.; Roux, H.; Larnier, K.; Labat, D.; Dartus, D. Parameter regionalization for a process-oriented distributed model dedicated to flash floods. J. Hydrol. 2015, 525, 383–399. [Google Scholar] [CrossRef] [Green Version]
- Tränckner, J.; Walter, A.; Bill, R.; Richter, B.; Hoche, H.; Hoffmann, T.; Jungnickl, C.; Kachholz, F.; Mehl, D.; Schmeil, S.; et al. KOGGE: Kommunale Gewässer gemeinschaftlich entwickeln: Ein Handlungskonzept für kleine urbane Gewässer am Beispiel der Hanse- und Universitätsstadt Rostock; Universität Rostock, Professur für Wasserwirtschaft, Agrar- und Umweltwissenschaftliche Fakultät: Rostock, Germany, 2018; ISBN 978-3-86009-476-1. [Google Scholar]
- Kachholz, F.; Tränckner, J. Long-Term Modelling of an Agricultural and Urban River Catchment with SWMM Upgraded by the Evapotranspiration Model UrbanEVA. Water 2020, 12, 3089. [Google Scholar] [CrossRef]
- QGIS.org. QGIS User Guide: Release 2.18. Available online: https://docs.qgis.org/2.18/pdf/en/QGIS-2.18-UserGuide-en.pdf (accessed on 9 April 2021).
- QGIS.org. QGIS Geographic Information System. QGIS Association. 2021. Available online: http://www.qgis.org (accessed on 5 May 2021).
- Microsoft Corporation. Microsoft Excel; Microsoft Ireland Operations Limited: Dublin, Ireland, 2019. [Google Scholar]
- The Document Foundation. LibreOffice Calc; The Document Foundation: Berlin, Germany, 2020. [Google Scholar]
- Waseem, M.; Kachholz, F.; Tränckner, J. Suitability of common models to estimate hydrology and diffuse water pollution in North-eastern German lowland catchments with intensive agricultural land use. Front. Agr. Sci. Eng. 2018. [Google Scholar] [CrossRef] [Green Version]
- US Army Corps of Engineers—Hydrologic Engineering Center. HEC-HMS (Hydrologic Modeling System); US Army Corps of Engineers—Hydrologic Engineering Center: Davis, CA, USA, 2021.
- US Army Corps of Engineers—Hydrologic Engineering Center. HEC-RAS (River Analysis System); US Army Corps of Engineers—Hydrologic Engineering Center: Davis, CA, USA, 2021. [Google Scholar]
- Hörnschemeyer, B.; Henrichs, M.; Uhl, M. SWMM-UrbanEVA: A Model for the Evapotranspiration of Urban Vegetation. Water 2021, 13, 243. [Google Scholar] [CrossRef]
- U.S. EPA. Storm Water Management Model (SWMM); U.S. EPA—United States Environmental Protection Agency: Durham, NC, USA, 2020.
- Rossman, L. Storm Water Management Model: User’s Manual Version 5.1. EPA/600/R-14/413 (NTIS EPA/600/R-14/413b). Available online: https://www.epa.gov/sites/production/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf (accessed on 23 June 2021).
- Mehl, D.; Hoffmann, T.; Schneider, M.; Lange, A.; Foy, T. Integraler Entwässerungsleitplan (IELP) für die Hansestadt Rostock: Definition von Hauptentwässerungsachsen (HEA). Available online: https://rathaus.rostock.de/media/rostock_01.a.4984.de/datei/Endbericht_IELP_20161108.pdf (accessed on 29 April 2021).
- Otter, J.; Königer, W. Bemessungsregen für Kanalnetz, Regenüberläufe und Regenbecken. Gas-Wasser-Abwasser 1986, 66, 124–128. [Google Scholar]
- DWA. Arbeitsblatt DWA-A 118. Hydraulische Bemessung und Nachweis von Entwässerungssystemen; März 2006; DWA: Hennef, Germany, 2006; ISBN 3939057150. [Google Scholar]
- Junghänel, T.; Ertel, H.; Deutschländer, T. KOSTRA-DWD-2010R Deutscher Wetterdienst: Bericht zur Revision der Koordinierten Starkregenregionalisierung und -Auswertung des Deutschen Wetterdienstes in der Version 2010. Offenbach am Main. 2017. Available online: https://www.dwd.de/DE/leistungen/kostra_dwd_rasterwerte/download/bericht_revision_kostra_dwd_2010.pdf?__blob=publicationFile&v=6 (accessed on 7 July 2021).
- Schmidtbauer, B. Starkregen verschärft Gefahren an den Steilküsten in MV. Ostsee-Zeitung. 4 January 2018. Available online: https://www.ostsee-zeitung.de/Nachrichten/MV-aktuell/Starkregen-verschaerft-Gefahren-an-den-Steilkuesten-in-MV (accessed on 20 April 2021).
- Tretropp, S. Unwetter in Rostock: Straßen gesperrt, Keller voll, Autos abgesoffen. svz.de. 20 July 2017. Available online: https://www.svz.de/lokales/rostock/strassen-gesperrt-keller-voll-autos-abgesoffen-id17360741.html (accessed on 20 April 2021).
- DWA-Arbeitsgruppe ES-2 1. und BWK_Arbeitsgruppe 2. Arbeitsblatt DWA-A 102-1/BWK-A 3-1 Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen zur Einleitung in Oberflächengewässer—Teil 1: Allgemeines; Dezember 2020; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall: Hennef, Germany, 2020; ISBN 9783968620459. [Google Scholar]
Available Geodata | Format | Attributes Derived for SWMM |
---|---|---|
hydrodynamic stream model | ||
open channel segments | vector (line) | WIN, chainage, positioning |
watercourse routes | vector (line) with measures | WIN, chainage, positioning |
Pipes, culverts | vector (line) | chainage, diameter, material (roughness) |
storm water disposals (water rights) | vector (points) | diameter, material (roughness) |
DEM_0.2 | raster (0.2 m resolution) | stream cross sections/transects |
DEM_5 | raster (5 m resolution) | ground elevation above pipes, culverts and storm water disposals |
rainfall-runoff model | ||
surface catchments for 50 m-stream segments | vector (polygon) | area size, flow length, outlet (computation node of hydrodynamic model) |
land use maps | vector (polygon) | generalized land use types, leaf area index, crop factor, detention storage, roughness |
groundwater isohypses | vector (lines) | average groundwater level for each subcatchment |
soil maps | vector (polygon) | conductivity, porosity, field capacity, wilting point |
DEM_5 | raster (5 m resolution) | average slope |
soil sealing maps | raster (10 m resolution) | degree of sealing |
Category | Land Use Classes |
---|---|
water | water surface |
near natural/ cultivated land | agriculture; wetland; grassland; deciduous forest; mixed forest; coniferous forest; parks; orchard; beach |
urban | industry/trade; residential area; traffic area |
Designation | Abbreviated Designation | Formula | No. |
---|---|---|---|
Volume error | EVol | (1) | |
Mean absolute error | MAE | (2) | |
Correlation coefficient | R | (3) | |
Nash Sutcliffe efficiency | NSE | (4) | |
Peak error | Epeak | (5) |
Protection Level/Return Period | Land Use Class | |
---|---|---|
0 a |
|
|
2 a |
| |
10 a |
|
|
25 a |
|
|
100 a |
|
|
Duration | Return Period | Intensity Course |
---|---|---|
1 h | 2 a, 100 a | statistical calculation according to [28] as described in [29] |
3 h | 10 a, 25 a, 50 a, 100 a | assumption of a block rain |
6 h | 10 a, 25 a, 50 a, 100 a | assumption of a block rain |
9 h | 10 a, 25 a, 50 a, 100 a | assumption of a block rain |
12 h | 10 a, 25 a, 50 a, 100 a | assumption of a block rain |
Parameter | Unit | Value, Range, or Calculation Formula | Subject to Calibration | Spatial Distribution 1,2 | Source/Derived from |
---|---|---|---|---|---|
Surface Runoff | |||||
width | m | yes | individual | function of area size | |
percent of impervious area | % | 0–94 | no | individual | satellite data |
average slope | % | 0–37 | no | individual | DEM |
roughness pervious | s/(m1/3) | 0.3 | yes | pervious area share | in accordance with literature values |
roughness impervious | s/(m1/3) | 0.025 | yes | impervious area share | in accordance with literature values |
detention storage pervious | mm | 12 | yes | pervious area share | in accordance with literature values |
detention storage impervious | mm | 0.5 | yes | impervious area share | in accordance with literature values |
Soil infiltration/percolation | |||||
max. Infiltration Rate | mm/h | 19–281 | no | individual | soil maps |
min. Infiltration Rate | mm/h | 2 −171 | no | individual | soil maps |
soil porosity | - | 0.23–0.79 | no | individual | soil maps |
field capacity | - | 0.1–0.75 | no | individual | soil maps |
wilting point | - | 0.04–0.36 | no | individual | soil maps |
seepage rate | mm/h | 2–171 | no | individual | soil maps |
Plant parameters * | |||||
vegetation factor vf | - | 0.7–1.3 | yes | land use class dependent | in accordance with literature values |
average leaf area index (LAI) | m/m | 1.7–3.6 | no | land use class dependent | satellite data |
LAI monthly coefficients | - | 0.2–1.7 | no | land use class dependent | satellite data |
Groundwater flow | |||||
conductivity | mm/h | 150 | yes | global | in accordance with borehole data and literature values |
porosity | - | 0.43 | yes | global | in accordance with borehole data and literature values |
wilting point | - | 0.05 | yes | global | in accordance with borehole data and literature values |
field capacity | - | 0.12 | yes | global | in accordance with borehole data and literature values |
threshold water table elevation | m | 1.2 m below ground elevation | yes | global | DEM |
lower groundwater loss rate | mm/h | 5.0 × 10−6 | yes | global | in accordance with borehole data and literature values |
EVol [%] | MAE [m3 s−1] | R [-] | NSE [-] |
---|---|---|---|
2.4 | 0.032 | 0.84 | 0.84 |
① | ② | ③ | ④ | |
---|---|---|---|---|
Date | 23 June 2017 | 30 June 2017 | 20 July 2017 | 25 July 2017 |
Peak error (%) | 95 | 110 | 318 | 108 |
① | ② | ③ | ④ | |
---|---|---|---|---|
Date | 23 June 2017 | 30 June 2017 | 20 July 2017 | 25 July 2017 |
Duration of rain event (h) | 2.3 | 17.5 | 1.3 | 4.8 |
Total amount of rain event (mm) | 18 | 41 | 38 | 28 |
EVol [%] | MAE [m3 s−1] | R [-] | NSE [-] |
---|---|---|---|
−9.6 | 0.045 | 0.88 | 0.59 |
① | ② | ③ | ④ | |
---|---|---|---|---|
Date | 23 June 2017 | 30 June 2017 | 20 July 2017 | 25 July 2017 |
Peak error (%) | 126 | 127 | 394 | 178 |
Designation | Unit | Declaration | ||
---|---|---|---|---|
Watercourses | Conduits | Full_Flow | m3 s−1 | Maximum flow at normal flow (water level gradient = bottom gradient) |
max_Flow_rate | m3 s−1 | Maximum flow | ||
max_Flow_velocity | m s−1 | Maximum flow velocity | ||
max_Capacity | - | Proportion of the cross profile filled with water at the time of the maximum water level | ||
Q_free | m3 s−1 | Flow rate that would additionally fit into the cross profile at maximum flow rate; value calculated from model results: Q_free = Full_Flow—max_Flow_rate | ||
Nodes | max_Hydraulic_head | m above sea level | Maximum absolute Water level | |
max_Volume_stored_ ponded | m3 | Max. stored volume above banks in case of flooding | ||
max_Lateral_inflow | m3 s−1 | Lateral inflow from the subcatchments | ||
max_Total_inflow | m3 s−1 | Inflow from upstream + lateral inflow from the subcatchments | ||
max_Flow_lost_flooding | m3 s−1 | Excess flow with fully exhausted cross profile; flood volume per unit of time | ||
Subcatchments | max_Runoff_rate | m3 s−1 | Maximum direct runoff (surface runoff) | |
sum_Runoff_rate | m3 | Sum of direct runoff (surface runoff) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kachholz, F.; Tränckner, J. A Model-Based Tool for Assessing the Impact of Land Use Change Scenarios on Flood Risk in Small-Scale River Systems—Part 1: Pre-Processing of Scenario Based Flood Characteristics for the Current State of Land Use. Hydrology 2021, 8, 102. https://doi.org/10.3390/hydrology8030102
Kachholz F, Tränckner J. A Model-Based Tool for Assessing the Impact of Land Use Change Scenarios on Flood Risk in Small-Scale River Systems—Part 1: Pre-Processing of Scenario Based Flood Characteristics for the Current State of Land Use. Hydrology. 2021; 8(3):102. https://doi.org/10.3390/hydrology8030102
Chicago/Turabian StyleKachholz, Frauke, and Jens Tränckner. 2021. "A Model-Based Tool for Assessing the Impact of Land Use Change Scenarios on Flood Risk in Small-Scale River Systems—Part 1: Pre-Processing of Scenario Based Flood Characteristics for the Current State of Land Use" Hydrology 8, no. 3: 102. https://doi.org/10.3390/hydrology8030102
APA StyleKachholz, F., & Tränckner, J. (2021). A Model-Based Tool for Assessing the Impact of Land Use Change Scenarios on Flood Risk in Small-Scale River Systems—Part 1: Pre-Processing of Scenario Based Flood Characteristics for the Current State of Land Use. Hydrology, 8(3), 102. https://doi.org/10.3390/hydrology8030102