Calcium and Potassium Nutrition Increases the Water Use Efficiency in Coffee: A Promising Strategy to Adapt to Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Location
2.2. Water Use Efficiency Calculation
2.3. Statistical Analysis
3. Results
3.1. Soil Moisture and Water Balance Distribution
3.2. Influence of the Potassium and Calcium Nutrition on Water Use Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hoegh-Guldberg, O.; Jacob, O.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, S.; Djalante, R.; Ebi, E.; et al. The Human Imperative of Stabilizing Global Climate Change at 1.5 °C. Science 2019, 365, 1263. [Google Scholar] [CrossRef] [Green Version]
- Ruane, C.A.; Phillips, M.M.; Rosenzweig, C. Climate Shifts within Mayor Agricultural Seasons for +1.5 and 2.0 °C Worlds: HAPPI Projections and AgMIP Modeling Scenarios. Agric. For. Meteorol. 2018, 259, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Tol, R.S.J. The Distributional Impact of the Climate Change. Ann. N. Y. Acad. Sci. 2020, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Bunn, C.; Läderach, P.; Ovalle, R.O.; Kirschke, D. A Bitter Cup: Climate Change Profile of Global Production of Arabica and Robusta Coffee. Clim. Chang. 2015, 129, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Bunn, C.; Läderach, P.; Perez, J.J.G.; Christophe, M.; Schilling, T. Multiclass Classification of Agro-Ecological Zones for Arabica Coffee: An Improved Understanding of the Impacts of the Climate Change. PLoS ONE 2015, 10, e0140490. [Google Scholar] [CrossRef]
- Davis, A.P.; Gole, T.W.; Baena, S.; Moat, J. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea Arabica): Predicting Future Trends and Identifying Priorities. PLoS ONE 2012, 7, e47981. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.C.; Estrada, F.; Conde, D.; Eakin, H.; Villers, L. Potential Impacts of Climate Change on Agriculture: A Case of Study of Coffee Production in Veracruz, Mexico. Clim. Chang. 2006, 79, 259–288. [Google Scholar] [CrossRef]
- Ovalle, R.O.; Läderech, P.; Bunn, D.; Oberteiner, M.; Schrith, G. Projected shifth in Coffea arabica sustainability among major global production regions due to climate change. PloS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef] [Green Version]
- Phan, Y.; Reardon, S.K.; Mushtaq, S.; Cockfield, G. The Impact of the Climate Change and Variability on Coffee Production: A Systematic Review. Clim. Chang. 2019, 159, 609–630. [Google Scholar] [CrossRef]
- Läderach, P.; Ramirez, V.J.; Narro, R.C.; Zelaya, C.; Martinez, V.A.; Jarvis, A. Climate Change Adaptation of Coffee Production in Space and Time. Clim. Chang. 2017, 141, 47–62. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data (accessed on 1 April 2021).
- Verburg, R.; Rahn, E.; Verwij, P.; van Kuijik, M.; Ghazoul, J. An Innovation Perspective to Climate Change Adaptation in Coffee Systems. Environ. Sci. Policy 2019, 97, 16–24. [Google Scholar] [CrossRef]
- Wood, S.; Sebastian, K.; Scherr, S.J. Soil Resources Conditions. In Pilot Analysis of Global Ecosystems: Agroecosystems; World Resources Institute: Washinghton, DC, USA, 2000; pp. 45–54. [Google Scholar]
- Laviola, G.B.; Prieto, M.G.; Bartolomeu de Souza, R.; Alvarez, V.H. Dinámica de cálcio e magnésio en folhas e frutos de Caffea arabica. Rev. Bras. Ciência Solo 2007, 31, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, F.; Bertsch, F.; Mora, L. Nutrient Consumption by Caturra Coffee Fruits and Bandolas during a Development and Maturation Cycle in Aquiares, Turrialba, Costa Rica (in Spanish). Agron. Costarricense. 2002, 26, 33–42. [Google Scholar]
- Cuzato, M.M.A.; Peres, S.R.; Alexandre, C.C.; Spadotti, A.C.G. Effect of the Potassium Sources and Rates on Arabica Coffee Yield, Nutrition and Macronutrient Export. Rev. Bras. Ciência Solo 2014, 38, 1448–1456. [Google Scholar]
- Bergmann, W. Nutritional Disorders of Plants: Visual and Analytical Diagnosis (English, French, Spanish); Gustav Fisher Verlag Jena: Stuttgart, Germany, 1992; 741p. [Google Scholar]
- Waraich, A.E.; Ahmad, R.; Ashra, Y.M.; Saifullah; Ahmad, M. Improving Agricultural Water Uses Efficiency by Nutrient Management in Crop Plants. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 291–304. [Google Scholar] [CrossRef]
- Grzebisz, W.; Gransee, A.; Szczepaniak, W.; Diatta, J. The Effect of Potassium Fertilization on Water-Uses Efficiency in Crop Plants. J. Plant Nutr. Soil Sci. 2013, 176, 355–374. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in Plants. Rev. Artic. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, B.V.H.; Küsters, J.; de Souza, R.T.; Simmes, C. Calcium Nutrition in Coffee and Its Influence on Growth, Stress Tolerance, Cations Uptake, and Productivity. Fron. Agron. 2020, 2, 590892. [Google Scholar] [CrossRef]
- Liu, J.; Williams, J.R.; Zehnder, J.B.A.; Yang, H. GEPIC-Modelling Wheat Yield and Crop Water Productivity with High Resolution on a Global Scale. Agric. Syst. 2007, 94, 478–493. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Bosso, B. Water Uses Efficiency is Not a Constant When Crop Water Supply is Adequate or Fixed: The Role of the Agronomic Management. Eur. J. Agron. 2008, 28, 273–281. [Google Scholar] [CrossRef]
- González, O.H.; Salamanca, J.A. Representative Soil Units of the Colombian Coffee Zone; Chinchiná Cenicafé: Caldas, CO, USA, 2008; 25p. [Google Scholar]
- Alvarado, G.; Posada, H.E.; Cortina, H.A. CASTILLO a New Coffee Variety with Rust Resistance. Av. Tec. Cenicafe 2005, 337, 1–8. [Google Scholar]
- Viets, F.G., Jr. Fertilizers and the Efficient Use of Water. Adv. Agron. 1962, 14, 223–264. [Google Scholar]
- Howell, T.A. Enhancing Water Use Efficiency in Irrigated Agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Arcila, P.J.; Buhr, L.; Bleiholder, H.; Hack, H.; Meier, U.; Wicke, H. Application of the Extended BBCH Scale for the Description of the Growing Stages of Coffee (Coffea spp.). Ann. Appl. Biol. 2002, 141, 19–27. [Google Scholar] [CrossRef]
- Allen, G.R.; Pereira, S.L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agricultural Organization of the United Nations (FAO): Rome, Italy, 1998; Publication No. 56; 300p. [Google Scholar]
- Ramirez, B.V.H.; Jaramillo, R.A.; Arcila, P.J.; Montoya, R.E.C. Estimation of the Soil Moisture in Full Sunshine Coffee Production Systems (in Spanish). Cenicafé 2010, 61, 251–259. [Google Scholar]
- Jaramillo, R.A.; Cháves, C.B. Hydrological Aspects of a Forest and Coffee Plantations (Coffea Arabica L.) with and without Shade (in Spanish). Cenicafé 1999, 50, 97–105. [Google Scholar]
- Ramirez, B.V.H.; Jaramillo, R.A. Rainfall Distribution into Four Crops Coverages in the Andean Region (in Spanish). Inves. Unisarc. Bol. 2007, 5, 19–33. [Google Scholar]
- Ramirez, B.V.H.; Mejia, A.; Marin, E.V.; Arango, R. Evaluation of Models for Estimating the Reference Evapotranspiration in Colombia Coffee Zone. Agron. Colomb. 2011, 29, 107–114. [Google Scholar]
- da Silva, A.L. Variability of Water Balance Components: A Case State in a Coffee Crop (Coffea Arabica L.) in Brazil (in Portuguese). Ph.D. Thesis, Universidad de Sao Pablo-Escuela Superior de Agricultura Luiz do Queiroz, Piracicaba, Brazil, 2005; 73p. [Google Scholar]
- Sadeghian, K.S.; Diaz, M.C. Soil Acidity Correction: Effects on the Initial Coffee Growth. Cenicafé 2020, 71, 21–31. [Google Scholar] [CrossRef]
- Silva, S.J.; Lima, N.J.C.; Prieto, M.H.E.; Alvarez, V.V.H. Relationship between Coffee Leaf Analysis and Soil Chemical Analysis. Rev. Bras. Ciência Solo 2018, 42, 13p. [Google Scholar] [CrossRef]
- Cerda, R.; Avelino, J.; Gary, C.; Tixier, P.; Lechevallier, E.; Allinne, C. Primary and Secondary Yield Losses Caused by Pest and Disease: Assessment and Modeling in Coffee. PLoS ONE 2017, 12, e0169133. [Google Scholar] [CrossRef] [Green Version]
- Arcila, P.J.; Jaramillo, R.A. Relation between Soil Moisture, Flowering and Fruit Development in Coffee Plantations (in Spanish). Av. Tec. Cenicafé 2003, 397, 1–4. [Google Scholar]
- Jaramillo, R.A. The Climate of the Coffee Regions in Colombia (In Spanish); Coffee Growers Federation-National Coffee Research Center, FNC-Cenicafé: Chinchiná, Caldas, CO, USA, 2018; 205p, ISBN 978-958-8490-21-1. [Google Scholar]
- Peña, Q.A.J.; Ramirez, B.V.H.; Valencia, A.J.; Jaramillo, R.A. The Rainfall as a Threat Factor for the Coffee Crop in Colombia. Av. Tec. Cenicafé 2012, 415, 1–8. [Google Scholar]
- Ramirez, B.V.H.; Jaramillo, R.A. Relationship between the Ocean Niño Index and the Rainfall in the Colombia Central Coffee Zone (in Spanish). Cenicafé 2009, 60, 161–172. [Google Scholar]
- Ramirez, B.V.H.; Jaramillo, R.A. Relationship between the El Niño/La Niña (ENSO) and the Solar Radiation in the Colombia Coffee Zone (in Spanish). Cenicafé 2012, 63, 90–97. [Google Scholar]
- National Oceanic and Atmospheric Administration-NOAA/National Weather Service/Climate Prediction Center. ONI Data Base. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 1 April 2021).
- Trenberth, E.K. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef] [Green Version]
- Pagotto, R.C.; Rodrigues, M.F. Flowering Percentage in Arabica Coffee Crop Respond on the Water Deficit Level Applied during the Pre-Flowering Stage. Rev. Caatinga. 2020, 33, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Crisosto, C.H.; Grantz, D.A.; Meizer, F.C. Effect of the Water Deficit on Flower Opening in Coffee (Coffea Arabica L.). Tree Physiol. 1992, 10, 127–139. [Google Scholar] [CrossRef]
- Ramirez, B.V.H. Vulnerability of some Soils of the Colombian Coffee Zone to Water Deficit (in Spanish). Av. Tec. Cenicafé 2014, 449, 8p. [Google Scholar]
- DaMatta, M.F.; Ronchi, P.C.; Maestri, M.; Barros, S.R. Ecophysiology of the Coffee Growth and Production. Braz. J. Plant. Physiol. 2007, 19, 485–519. [Google Scholar]
- Ramirez, B.V.H.; Jaramillo, R.A.; Arcila, P.J. Climatic Factors that Influence on the Coffee Crop Production in Colombia (in Spanish). In Manual del Cafetero Colombiano Tom II; National Coffee Research Center-Cenicafé: Chinchiná, Caldas, CO, USA, 2013; Volume 205, p. 237. [Google Scholar]
- Salamanca, J.A.; Doane, A.T.; Horwath, R.W. Coffee Response to Nitrogen and Soil Water Content during the Early Growth Stage. J. Plant Nutr. Soil. Sci. 2017, 180, 614–623. [Google Scholar] [CrossRef]
Year | T. Min (°C) | T. Max (°C) | T. Med (°C) | R.H (%) | Rainfall (mm) | Sunshine (hours) |
---|---|---|---|---|---|---|
2014 | 15.7 | 23.6 | 19.1 | 74.6 | 1741.3 | 1233.1 |
2015 | 15.8 | 24.2 | 19.5 | 72.3 | 1319.6 | 1243.1 |
2016 | 16.1 | 24.1 | 19.6 | 73.4 | 1625.3 | 1241.4 |
2017 | 15.7 | 23.6 | 19.1 | 70.5 | 1976.3 | 1211.2 |
2018 | 15.7 | 23.5 | 19.0 | 75.3 | 1761.9 | |
2019 | 1482.1 | |||||
Mean | 15.8 | 23.8 | 19.3 | 73.2 | 1651.1 | 1231.2 |
Trial | PH CaCl2 | C.org | P | K | Ca | Mg | Al |
---|---|---|---|---|---|---|---|
% | mg.kg−1 | ||||||
Castillo | 4.0 (low) | 1.38 (low) | 1.8 (low) | 141 (med) | 448 (low) | 150 (high) | 196 (high) |
Caturra | 4.4 (low) | 2.14 (low) | 5.0 (low) | 254 (high) | 274 (low) | 98 (med) | 244 (high) |
Variety | Year | Kc |
---|---|---|
Coffea arabica cv. Castillo | 2014 | 0.9 |
2015 | 0.9 | |
2016 | 1.0 | |
2017 | 1.1 | |
2018 | 1.1 | |
Coffea arabica cv. Caturra | 2014 | 0.6 |
2015 | 0.7 | |
2016 | 0.8 | |
2017 | 1.0 | |
2018 | 1.2 | |
2019 | 1.2 |
Variety | Period | Harvest Year | P | Pe | R | ETact | Deficit + |
---|---|---|---|---|---|---|---|
mm | |||||||
Castillo | May 2014–December 2015 | 2015 | 2.293 | 1.234 | 108 | 1.119 | 362 |
May 2015–December 2016 | 2016 | 2.234 | 1.191 | 105 | 1.058 | 408 | |
May 2016–December 2017 | 2017 | 3.126 | 1.703 | 159 | 1.382 | 299 | |
May 2017–July 2018 | 2018 | 2.053 | 1.117 | 102 | 1.067 | 393 | |
Caturra | May 2015–December 2016 | 2016 | 2.234 | 1.191 | 105 | 1.021 | 361 |
May 2016–December 2017 | 2017 | 3.126 | 1.703 | 159 | 1.310 | 296 | |
May 2017–December 2018 | 2018 | 2.826 | 1.471 | 140 | 1.366 | 636 | |
May 2018–July 2019 | 2019 | 1.806 | 888 | 89 | 988 | 438 |
Variety | Harvest Year | kg CaO ha−1 | kg K2O ha−1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | 100 | 180 | 230 | ||
WUE kg ha−1 mm−1 | ||||||||
Castillo | 2015 | 12.9 | 11.6 | 12.6 | 13.2 | 11.8 | 13.5 | 13.2 |
2016 | 18.9 | 19.2 | 21.0 | 21.2 | 17.2 | 22.1 | 21.2 | |
2017 | 12.6 | 15.4 | 16.5 | 15.6 | 13.9 | 15.1 | 15.6 | |
2018 + | 9.2 a | 17.2 b | 16.3 c | 16.6 c | 13.6 A | 17.2 B | 16.6 B | |
Caturra | 2016 | 9.7 | 8.4 | 12.9 | 9.3 | 9.7 | 14.3 | 9.3 |
2017 | 24.5 | 25.3 | 29.1 | 27.3 | 25.6 | 23.0 | 27.3 | |
2018 | 5.4 | 6.8 | 8.4 | 8.6 | 8.7 | 7.3 | 8.6 | |
2019 + | 9.7a | 10.1 b | 18.8 c | 12.4 b | 13.5 A | 17.6 B | 12.4 C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Builes, V.H.; Küsters, J. Calcium and Potassium Nutrition Increases the Water Use Efficiency in Coffee: A Promising Strategy to Adapt to Climate Change. Hydrology 2021, 8, 75. https://doi.org/10.3390/hydrology8020075
Ramírez-Builes VH, Küsters J. Calcium and Potassium Nutrition Increases the Water Use Efficiency in Coffee: A Promising Strategy to Adapt to Climate Change. Hydrology. 2021; 8(2):75. https://doi.org/10.3390/hydrology8020075
Chicago/Turabian StyleRamírez-Builes, Victor Hugo, and Jürgen Küsters. 2021. "Calcium and Potassium Nutrition Increases the Water Use Efficiency in Coffee: A Promising Strategy to Adapt to Climate Change" Hydrology 8, no. 2: 75. https://doi.org/10.3390/hydrology8020075
APA StyleRamírez-Builes, V. H., & Küsters, J. (2021). Calcium and Potassium Nutrition Increases the Water Use Efficiency in Coffee: A Promising Strategy to Adapt to Climate Change. Hydrology, 8(2), 75. https://doi.org/10.3390/hydrology8020075