Modeling of Hydrological Processes in a Coal Mining Subsidence Area with High Groundwater Levels Based on Scenario Simulations
Abstract
1. Introduction
2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Sources and Processing
3. Research Methods
3.1. Establishment of a Multi-Scenario Land Use Simulation Model
3.1.1. Driving Factors
3.1.2. Scenario Setup
3.2. Establishment of the Hydrological Process Simulation Model
3.2.1. Parameter Setting
3.2.2. Design Rainfall
3.2.3. Evaluation of the Applicability of the PLUS-MIKE21 Model
4. Results and Analysis
4.1. Land Use Analysis
4.2. Land Use Prediction Under Multiple Scenario Simulations
4.3. Hydrological Simulation Under Multiple Scenarios
4.3.1. Spatial Distribution Characteristics of Water Accumulation Range Under Multiple Scenarios
4.3.2. Distribution Characteristics of Water Accumulation Intensity Under Multiple Scenarios
4.3.3. Changes in Hydrological Characteristics Across Different Scenarios
5. Discussion
5.1. Intrinsic Causes of Hydrological Changes Under Multiple Scenarios
5.2. The Impact of Multi-Scenario Hydrological Simulation on Policies
5.3. Advantages of Model Integration and Limitations of the Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. World Energy Outlook. Available online: https://www.iea.org/search?q=World%20Energy%20Outlook (accessed on 28 April 2025).
- IEA. World Energy Outlook 2023. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 28 April 2025).
- Wang, J.; Lu, C.; Sun, Q.; Xiao, W.; Cao, G.; Li, H.; Yan, L.; Zhang, B. Simulating the hydrologic cycle in coal mining subsidence areas with a distributed hydrologic model. Sci. Rep. 2017, 7, 39983. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Fu, Y.; Wang, T.; Lv, X. Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield. Land Use Policy 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Luan, J.; Zhang, Y.; Tian, J.; Meresa, H.; Liu, D. Coal mining impacts on catchment runoff. J. Hydrol. 2020, 589, 125101. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, C.; Wang, J.; Sun, Q.; He, X.; Cao, G.; Zhao, Y.; Yan, L.; Gong, B. Using storage of coal-mining subsidence area for minimizing flood. J. Hydrol. 2019, 572, 571–581. [Google Scholar] [CrossRef]
- Mirdarsoltany, A.; Dariane, A.B.; Ghasemi, M.; Farhoodi, S.; Asadi, R.; Moghaddam, A. Linking Land Use Change and Hydrological Responses: The Role of Agriculture in the Decline of Urmia Lake. Hydrology 2024, 11, 209. [Google Scholar] [CrossRef]
- Aryal, S.; Babel, M.S.; Gupta, A.; Farjad, B.; Khadka, D.; Hassan, Q.K. Attribution of the Climate and Land Use Change Impact on the Hydrological Processes of Athabasca River Basin, Canada. Hydrology 2025, 12, 7. [Google Scholar] [CrossRef]
- Xu, J.; Yan, C.; Boota, M.W.; Chen, X.; Li, Z.; Liu, W.; Yan, X. Research on automatic identification of coal mining subsidence area based on InSAR and time series classification. J. Clean. Prod. 2024, 470, 143293. [Google Scholar] [CrossRef]
- Bo, H.; Lu, G.; Li, H.; Guo, G.; Li, Y. Development of a Dynamic Prediction Model for Underground Coal-Mining-Induced Ground Subsidence Based on the Hook Function. Remote Sens. 2024, 16, 377. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, X.; Chen, Y.; Liu, Y. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area. Sci. Total Environ. 2023, 906, 167772. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yang, S. Mineral resource sustainability in the face of the resource exploitation and green recovery: Challenges and solutions. Resour. Policy 2024, 88, 104535. [Google Scholar] [CrossRef]
- Hou, H.; Ding, Z.; Zhang, S.; Guo, S.; Yang, Y.; Chen, Z.; Mi, J.; Wang, X. Spatial estimate of ecological and environmental damage in an underground coal mining area on the Loess Plateau: Implications for planning restoration interventions. J. Clean. Prod. 2021, 287, 125061. [Google Scholar] [CrossRef]
- Neves, G.L.; Barbosa, M.A.G.A.; Anjinho, P.d.S.; Guimarães, T.T.; Filho, J.S.d.V.; Mauad, F.F. Evaluation of the impacts of climate change on streamflow through hydrological simulation and under downscaling scenarios: Case study in a watershed in southeastern Brazil. Environ. Monit. Assess. 2020, 192, 707. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D.; Wang, Y. Urban flood numerical simulation: Research, methods and future perspectives. Environ. Model. Softw. 2022, 156, 105478. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol. 2020, 585, 124822. [Google Scholar] [CrossRef]
- Ranjan, S.; Singh, V. Effect of land use land cover changes on hydrological response of Punpun River basin. Environ. Monit. Assess. 2023, 195, 1137. [Google Scholar] [CrossRef] [PubMed]
- Bibi, T.S. Modeling urban stormwater management in the town of Dodola based on landuse and climate change using SWMM 5.1. J. Hydrol. Reg. Stud. 2022, 44, 101267. [Google Scholar] [CrossRef]
- Bahmani, F.; Fattahi, M.H.; Sabzevari, T.; Haghighi, A.T.; Talebi, A. Spatial–temporal analysis of landslides in complex hillslopes of catchments using Dynamic Topmodel. Acta Geophys. 2022, 70, 1417–1432. [Google Scholar] [CrossRef]
- Gomes, M.M.d.A.; Verçosa, L.F.d.M.; Cirilo, J.A. Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation. Nat. Hazards 2021, 108, 3121–3157. [Google Scholar] [CrossRef]
- Nigussie, T.A.; Altunkaynak, A. Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model. Nat. Hazards 2019, 99, 1031–1047. [Google Scholar] [CrossRef]
- Zandsalimi, Z.; Feizabadi, S.; Yazdi, J.; Neyshabouri, S.A.A.S. Evaluating the Impact of Digital Elevation Models on Urban Flood Modeling: A Comprehensive Analysis of Flood Inundation, Hazard Mapping, and Damage Estimation. Water Resour. Manag. 2024, 38, 4243–4268. [Google Scholar] [CrossRef]
- Farjad, B.; Gupta, A.; Razavi, S.; Faramarzi, M.; Marceau, D.J. An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios. Water 2017, 9, 767. [Google Scholar] [CrossRef]
- Jayapadma, J.M.M.U.; Wickramaarachchi, T.N.; Silva, G.H.A.C.; Ishidaira, H.; Magome, J. Coupled hydrodynamic modelling approach to assess land use change induced flood characteristics. Environ. Monit. Assess. 2022, 194, 354. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; He, P.; Gao, X.; Lin, Z.; Huang, C.; Zhou, W.; Deng, O.; Xu, C.; Deng, L. Land use optimization of rural production–living–ecological space at different scales based on the BP–ANN and CLUE–S models. Ecol. Indic. 2022, 137, 108710. [Google Scholar] [CrossRef]
- Liu, X.; Wei, M.; Li, Z.; Zeng, J. Multi-scenario simulation of urban growth boundaries with an ESP-FLUS model: A case study of the Min Delta region, China. Ecol. Indic. 2022, 135, 108538. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, Y.; Guo, Y.; Zhang, P.P.; Lv, S.; Zhang, C.C. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions. Arid Land Geogr. 2022, 45, 1125–1136. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Q.; Sun, Y.; Du, Q.; Xiao, X.; Luo, H.; Zhang, J.; Mi, J. Simulation of future land use/cover change (LUCC) in typical watersheds of arid regions under multiple scenarios. J. Environ. Manag. 2023, 335, 117543. [Google Scholar] [CrossRef] [PubMed]
- Luan, C.; Liu, R.; Zhang, Q.; Sun, J.; Liu, J. Multi-objective land use optimization based on integrated NSGA–II–PLUS model: Comprehensive consideration of economic development and ecosystem services value enhancement. J. Clean. Prod. 2023, 434, 140306. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Wang, X.; Xu, G.; Pang, J. Spatio-temporal variations and multi-scenario simulation of landscape ecological risk in the drylands of the Yellow River Basin. Sci. Rep. 2024, 14, 22672. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Fu, H. Constructing an urban cooling network based on PLUS model: Implications for future urban planning. Ecol. Indic. 2023, 154, 110887. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Pichler, M.; König, A.W.; Reinstaller, S.; Muschalla, D. Fully automated simplification of urban drainage models on a city scale. Water Sci. Technol. 2024, 90, 2673–2695. [Google Scholar] [CrossRef]
- Shao, W.; Han, G.; Li, J.; Yang, Z.; Liu, J.; Xu, T. Establishing a river health evaluation index system for seven rivers in Jiamusi City of China. Water Sci. Technol. 2024, 89, 2254–2272. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fu, J.; Jiang, D.; Lin, G.; Cao, C. Land use optimization in Ningbo City with a coupled GA and PLUS model. J. Clean. Prod. 2022, 375, 134004. [Google Scholar] [CrossRef]
- Landsat Satellite Time Series Remote Sensing Images. Available online: http://www.resdc.cn (accessed on 7 July 2025).
- SAM Target Finder with BandMax Workflow, ENVI® V.6.1, NV5 Geospatial Software Documentation Center: Hollywood, FL, USA, 2025.
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- Ahmad, A.; Quegan, S. Analysis of maximum likelihood classification on multispectral data. Appl. Math. Sci. 2012, 6, 6425–6436. [Google Scholar]
- Zheng, S.; Chen, Q.; Du, H. ENVI Remote Sensing Image Processing Methods; Higher Education Press: Beijing, China, 2014. [Google Scholar]
- Resource and Environmental Science Data Platform. Available online: http://www.resdc.cn (accessed on 8 July 2025).
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Planning, H.M.B.o.N.R.a. Huai Bei City’s Ecological Restoration Plan for Territorial Space (2021–2035). Available online: https://www.huaibei.gov.cn/group1/M00/03/9E/CqET9GVwKqyAETgQADC0IX5V9BY403.pdf (accessed on 8 July 2025).
- Chang, X.; Zhang, F.; Cong, K.; Liu, X. Scenario simulation of land use and land cover change in mining area. Sci. Rep. 2021, 11, 12910. [Google Scholar] [CrossRef] [PubMed]
- ArcGIS Desktop, Version 10.3, Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2015.
- FAO; IIASA. Harmonized World Soil Database. Available online: https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en (accessed on 24 June 2025).
- Ma, G.; Li, Q.; Zhang, J.; Zhang, L.; Cheng, H.; Ju, Z.; Sun, G. Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China). Land 2022, 12, 120. [Google Scholar] [CrossRef]
- China Meteorological Data Network. Available online: https://data.cma.cn/ (accessed on 8 July 2025).
- Shen, L.; Zeng, Q. Multiscenario simulation of land use and land cover in the Zhundong mining area, Xinjiang, China. Ecol. Indic. 2022, 145, 109608. [Google Scholar] [CrossRef]
- Xu, X.; Kong, W.; Wang, L.; Wang, T.; Luo, P.; Cui, J. A novel and dynamic land use/cover change research framework based on an improved PLUS model and a fuzzy multiobjective programming model. Ecol. Inform. 2024, 80, 102460. [Google Scholar] [CrossRef]
- HBMPG. Announcement on ‘Huaibei City Urban Flood Defence Planning (2022–2035)’ to the Public for Comments. Available online: https://shuiwu.huaibei.gov.cn/gzdt/tzgg/57801129.html (accessed on 28 April 2025).
- HBMPG. Post-Approval Announcement of the Huabei City Territorial Spatial Master Plan (2021–2035). Available online: https://zrghj.huaibei.gov.cn/zwgk/public/48/64440796.html (accessed on 28 April 2025).
- Wenbo, Z.; Jingjing, Z.; Yaoping, C.; Hui, Z.; Lianqi, Z. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin. Acta Geogr. Sin. 2019, 74, 446–459. [Google Scholar] [CrossRef]
- Ping, C.; Chang-feng, F.; Jing-yao, Y.; Xiao-guang, J. Research on the Numerical Simulation of Flood Routing for the Flood Detention Basin Based on Mike China Rural. Water Hydropower 2017, 113–116. [Google Scholar]
- Li, X.; Huang, M.; Wang, R. Numerical Simulation of Donghu Lake Hydrodynamics and Water Quality Based on Remote Sensing and MIKE 21. ISPRS Int. J. Geo-Inf. 2020, 9, 94. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Fu, J.; Li, J.; Cao, Z.; Feng, P. Risk Assessment of Urban Floods Based on a SWMM-MIKE21-Coupled Model Using GF-2 Data. Remote Sens. 2021, 13, 4381. [Google Scholar] [CrossRef]
- Li, S.M.; Jin, H.; Li, P. Urban rainstorm inundation simulation based on MIKE FLOOD coupling model. South-North Water Transf. Water Sci. Technol. 1–13. Available online: https://link.cnki.net/urlid/13.1430.TV.20241121.1336.004 (accessed on 16 July 2025).
- Ma, Y.P.; Yuan, J.F.; Mao, Z.Z.; Lei, P. Research on the vulnerability of urban road traffic networks under rainstorm and waterlogging scenarios. J. Saf. Environ. 2024, 24, 3581–3588. [Google Scholar] [CrossRef]
- He, W.; Wang, Z. Flood risk analysis in the estuary region by using MlKE21 model. Tech. Superv. Water Resour. 2022, 138–141. [Google Scholar] [CrossRef]
- Huaibei, Anhui: The “Two Mountains” Theory Bears Fruit, Green Waters and Mountains Reflect Huaibei. Available online: https://zrghj.huaibei.gov.cn/gzdt/jndt/57773008.html (accessed on 2 June 2025).
- Li, G.; Hu, Z.; Li, P.; Yuan, D.; Wang, W.; Yang, K. The optimal framework and model to balance underground coal mining and cropland protection in Jining, eastern China. Resour. Policy 2021, 74, 102307. [Google Scholar] [CrossRef]
- Xiao, W.; Hu, Z.; Li, J.; Zhang, H.; Hu, J. A study of land reclamation and ecological restoration in a resource-exhausted city—A case study of Huaibei in China. Int. J. Min. Reclam. Environ. 2011, 25, 332–341. [Google Scholar] [CrossRef]
- Xu, C.; Yuan, L.; Cheng, Y.; Wang, K.; Zhou, A.; Shu, L. Square-form structure failure model of mining-affected hard rock strata: Theoretical derivation, application and verification. Environ. Earth Sci. 2016, 75, 1180. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, G.; Zha, J.; Chen, T.; Fang, Q.; Yang, X. Surface dynamic subsidence prediction model of solid backfill mining. Environ. Earth Sci. 2016, 75, 1007. [Google Scholar] [CrossRef]
- Chen, X.X.; Zhang, W.T.; Zhu, X.J.; Liu, H.; Zhang, M.; Sun, A.G.; Yang, X.Y. Dynamic evolution law of water accumulation range in coal mining subsidence area with high-level groundwater. Coal Geol. Explor. 2020, 48, 126–133. [Google Scholar] [CrossRef]
- Wang, W.W.; Du, F.H.; Zhu, X.Z.; Zhou, C.; Du, J.Y.; Ding, Y.T.; Xu, R.Y.; Zhang, M.N.; Wang, Z.L. Study on Influencing Factors and Variation Rules of Rainfall Runoff Production in Wudaogou Area of Huaibei Plain. Water Resour. Power 2024, 42, 6–9+18. [Google Scholar] [CrossRef]
- Li, X.; Du, S.; Hu, S.; Dong, D.; Jiang, D.; Cao, C.; Lin, G.; Fu, J. Simulation of surface water–groundwater interaction in coal mining subsidence areas: A case study of the Kuye River Basin in China. J. Hydrol. 2025, 659, 133243. [Google Scholar] [CrossRef]
- Ying, P.; Rui, H.; Yin, Z.; Jin, Z.; Qitao, Y.; Ruonan, L. Scenario Study of Hydrological Process in Coal Mining Subsidence Area Based on Swat-Flus. Environ. Eng. 2022, 40, 272–279. [Google Scholar] [CrossRef]
- Mason, T.; Krogh, M.; Popovic, G.; Glamore, W.; Keith, D. Persistent effects of underground longwall coal mining on freshwater wetland hydrology. Sci. Total Environ. 2021, 772, 144772. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wen, L.; Hao, S.; Zhao, G.; Zhou, M.; Liu, C.; Wang, H.; Wang, Z. A grid-based distributed hydrological model for coal mined-out area. J. Hydrol. 2020, 588, 124990. [Google Scholar] [CrossRef]
- Scherrer, S.; Naef, F.; Faeh, A.O.; Cordery, I. Formation of runoff at the hillslope scale during intense precipitation. Hydrol. Earth Syst. Sci. 2007, 11, 907–922. [Google Scholar] [CrossRef]
- Ferrans, P.; Temprano, J. Modelling-based methodological approach to assess the effect of urbanization on hydrology and runoff water quality: A case of study for tropical and dry regions. Water Sci. Technol. 2023, 87, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, Y.; Xu, Y.; Wu, L.; Wang, Y.; Han, L. Spatial hydrological responses to land use and land cover changes in a typical catchment of the Yangtze River Delta region. CATENA 2018, 170, 305–315. [Google Scholar] [CrossRef]
- Barati, F.; Hosseini, M.; Saremi, A.; Mokhtari, A. Anomaly detection in watershed hydrological behavior due to land use changes in Eskandari Watershed, Iran. Environ. Monit. Assess. 2021, 193, 446. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zhang, Y.; Shi, H.; Hu, Y. Runoff generation, confluence mechanism, and water balance change of coal mining areas with goaf: Establishment of a runoff prediction model. J. Hydrol. 2021, 603, 127023. [Google Scholar] [CrossRef]
- Andaryani, S.; Nourani, V.; Trolle, D.; Dehghani, M.; Asl, A.M. Assessment of land use and climate change effects on land subsidence using a hydrological model and radar technique. J. Hydrol. 2019, 578, 124070. [Google Scholar] [CrossRef]
- Hu, T.; Chang, J.; Liu, X.; Feng, S. Integrated methods for determining restoration priorities of coal mining subsidence areas based on green infrastructure: –A case study in the Xuzhou urban area, of China. Ecol. Indic. 2018, 94, 164–174. [Google Scholar] [CrossRef]
- Xingzhong, Y.; Chaofan, Z.; Guanxiong, Z.; Xin, H. Ecological Restoration Model of Coal Mining Subsidence Area Based on Biodiversity Conservation. Landsc. Archit. 2022, 29, 52–57. [Google Scholar] [CrossRef]
- Xie, K.; Zhang, Y.; Yi, Q.; Yan, J. Optimal resource utilization and ecological restoration of aquatic zones in the coal mining subsidence areas of the Huaibei Plain in Anhui Province, China. Desalination Water Treat. 2013, 51, 4019–4027. [Google Scholar] [CrossRef]
- Li, G.; Hu, Z.; Li, P.; Yuan, D.; Wang, W.; Han, J.; Yang, K. Optimal layout of underground coal mining with ground development or protection: A case study of Jining, China. Resour. Policy 2022, 76, 102639. [Google Scholar] [CrossRef]
- Hui, L.; Xiaojun, Z.; Hua, C.; Lijuan, S.; Liangjun, D.; Liugen, Z.; Shenzhu, F.; Chunlu, J.; Qiong, Z.; Qingye, S.; et al. Key technology of human environment and ecological reconstruction in high submersible level coal mining subsidence area:Acase study from Lüjin Lake, Huaibei. J. China Coal Soc. 2021, 46, 4021–4032. [Google Scholar] [CrossRef]
- Keller, A.A.; Garner, K.; Rao, N.; Knipping, E.; Thomas, J. Hydrological models for climate-based assessments at the watershed scale: A critical review of existing hydrologic and water quality models. Sci. Total Environ. 2022, 867, 161209. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
1992 | 2007 | 2022 | ||||
Land Use Type | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) |
Cultivated land | 87.2 | 85.3 | 89.1 | 87.6 | 91.2 | 88.5 |
Forest land | 92.5 | 90.8 | 93.7 | 91.4 | 94.3 | 92.1 |
Grassland | 83.4 | 81.7 | 85.2 | 83.9 | 88.6 | 86.3 |
Water areas | 95.8 | 96.2 | 96.1 | 96.5 | 97.3 | 97.0 |
Construction Land | 82.1 | 80.5 | 85.6 | 84.2 | 89.8 | 87.4 |
Unused Land | 80.3 | 78.6 | 83.4 | 81.9 | 86.7 | 84.5 |
Overall accuracy (%) | 89.5 | 90.8 | 92.3 | |||
Kappa coefficient | 0.86 | 0.88 | 0.90 |
Data Types | Data Name | Data Description | References and Data Sources |
---|---|---|---|
Natural driving factors | DEM | Raster data, 30 m resolution, combining surface subsidence | The resource and environmental science data platform of the Chinese Academy of Sciences [41]; Huai Bei City’s Ecological Restoration Plan for Territorial Space (2021–2035) [43]. |
Slope | Extracted based on DEM, 30 m resolution | Based on DEM data, it was obtained using GIS 10.3 software [44,45]. | |
Aspect | Extracted based on DEM, 30 m resolution | ||
Soil type | Raster data, 1 km resolution, resample from 1 km resolution to 30 m resolution | Harmonized World Soil Database (HWSD) [46,47]. | |
Distance to river | Euclidean distance, 30 m resolution | The resource and environmental science data platform of the Chinese Academy of Sciences [41,47]. | |
Groundwater level | Kriging interpolation method for water level monitoring station data, 30 m resolution | National Meteorological Science Data Center [48]. | |
Precipitation | Kriging interpolation method for 2022 mean precipitation raster data, 30 m resolution | The resource and environmental science data platform of the Chinese Academy of Sciences [41]. | |
Socioeconomic Driving Factors | Nighttime lights | 2022 Nighttime lights raster data, 30 m resolution | |
GDP | 2022 GDP raster data, 30 m resolution | ||
Population | 2022 Population raster data, 30 m resolution | ||
Distance to town | Euclidean distance, 30 m resolution | The resource and environmental science data platform of the Chinese Academy of Sciences [41,49]. | |
Distance to road | Euclidean distance, 30 m resolution | ||
Distance to railway | Euclidean distance, 30 m resolution | ||
Impervious surface | Remote sensing image extraction, 30 m resolution | Based on remote sensing image data, extraction is carried out in GIS [45,50]. | |
Coal mining subsidence area | Huaibei City Land Spatial Ecological Restoration Plan 2022–2035, 30 m resolution | According to the document [51], process it in GIS [45]. | |
Limiting factors | Ecological protection area | Remote sensing image extraction, 30 m resolution | Based on remote sensing images, extract in GIS [44,45]. |
Cultivated land protection area | Huaibei City Land Spatial Master Plan 2021–2035, 30 m resolution | According to the document [52], process it in GIS [45]. | |
River protection zone | Remote sensing image extraction, 30 m resolution | Based on remote sensing images, extract in GIS [44,45]. |
Baseline Scenario | Maximum Subsidence Scenario | Planning Scenarios | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
d | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
e | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Serial Number | Location | Flood Mark Water Level (m) | Simulated Water Level (m) | Difference (m) |
---|---|---|---|---|
1 | Qiangu Bridge | 2.74 | 2.62 | −0.12 |
2 | Xiaoxin Village | 1.61 | 1.43 | −0.18 |
3 | Xinxing Village | 3.22 | 3.59 | 0.37 |
Land Use Type | 1992 | 2007 | 2022 | |||
---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Cultivated land | 102.85 | 70.58 | 94.09 | 64.56 | 87.38 | 59.96 |
Forest land | 3.92 | 2.69 | 2.07 | 1.42 | 6.72 | 4.61 |
Grassland | 0.31 | 0.22 | 1.45 | 0.99 | 1.35 | 0.93 |
Water areas | 10.53 | 7.23 | 15.90 | 10.91 | 18.39 | 12.62 |
Construction land | 27.84 | 19.10 | 31.94 | 21.92 | 30.69 | 21.06 |
Unused land | 0.27 | 0.18 | 0.29 | 0.20 | 1.21 | 0.83 |
Total | 145.73 | 100 | 145.73 | 100 | 145.73 | 100 |
1992–2007 | CL | FL | GL | WA | Con L | UL | Total | Transfer-Out Volume |
---|---|---|---|---|---|---|---|---|
CL | 83.54 | 0.84 | 1.31 | 5.91 | 11.03 | 0.22 | 102.85 | 19.31 |
FL | 2.57 | 0.17 | 0.01 | 0.30 | 0.88 | 0.00 | 3.92 | 3.76 |
GL | 0.13 | 0.03 | 0.01 | 0.04 | 0.11 | 0.00 | 0.31 | 0.30 |
WA | 0.81 | 0.15 | 0.01 | 7.60 | 1.91 | 0.05 | 10.54 | 2.93 |
Con L | 7.04 | 0.88 | 0.10 | 2.04 | 17.77 | 0.00 | 27.84 | 10.07 |
UL | 0.00 | 0.00 | 0.00 | 0.01 | 0.25 | 0.02 | 0.27 | 0.25 |
Total | 94.09 | 2.07 | 1.45 | 15.90 | 31.94 | 0.29 | 145.73 | 36.62 |
Transfer-in volume | 10.55 | 1.90 | 1.43 | 8.30 | 14.17 | 0.27 | 36.62 | |
2007–2022 | CL | FL | GL | WA | Con L | UL | Total | Transfer-out volume |
CL | 75.67 | 2.71 | 0.76 | 4.83 | 9.71 | 0.40 | 94.09 | 18.42 |
FL | 0.98 | 0.39 | 0.00 | 0.14 | 0.53 | 0.02 | 2.07 | 1.68 |
GL | 0.67 | 0.07 | 0.01 | 0.18 | 0.46 | 0.06 | 1.45 | 1.44 |
WA | 2.35 | 1.69 | 0.25 | 10.17 | 1.29 | 0.15 | 15.90 | 5.74 |
Con L | 7.70 | 1.86 | 0.33 | 3.07 | 18.41 | 0.56 | 31.94 | 13.53 |
UL | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.01 | 0.29 | 0.28 |
Total | 87.38 | 6.72 | 1.35 | 18.39 | 30.69 | 1.21 | 145.73 | 41.07 |
Transfer-in volume | 11.71 | 6.33 | 1.34 | 8.22 | 12.27 | 1.20 | 41.07 | |
1992–2022 | CL | FL | GL | WA | Con L | UL | Total | Transfer-out volume |
CL | 73.70 | 3.12 | 0.72 | 9.39 | 15.18 | 0.73 | 102.85 | 29.15 |
FL | 2.57 | 0.41 | 0.05 | 0.21 | 0.67 | 0.01 | 3.92 | 3.52 |
GL | 0.15 | 0.05 | 0.02 | 0.04 | 0.05 | 0.00 | 0.31 | 0.29 |
WA | 1.59 | 1.15 | 0.07 | 5.51 | 2.08 | 0.12 | 10.54 | 5.02 |
Con L | 9.35 | 1.98 | 0.49 | 3.21 | 12.47 | 0.33 | 27.84 | 15.37 |
UL | 0.00 | 0.00 | 0.00 | 0.02 | 0.23 | 0.01 | 0.27 | 0.25 |
Total | 87.38 | 6.72 | 1.35 | 18.39 | 30.69 | 1.21 | 145.73 | 53.61 |
Transfer-in volume | 13.68 | 6.31 | 1.33 | 12.88 | 18.22 | 1.19 | 53.61 |
Land Use Type | 2022 | 2037 | Land Use Change from 2022 to 2037 | ||||
---|---|---|---|---|---|---|---|
Current Situation (km2) | Base (km2) | Maximum Subsidence (km2) | Planning (km2) | Base (km2) | Maximum Subsidence (km2) | Planning (km2) | |
Cultivated land | 87.37 | 77.05 | 74.52 | 82.20 | −10.31 | −12.85 | −5.17 |
Forest land | 6.74 | 8.78 | 7.70 | 9.48 | 2.04 | 0.97 | 2.74 |
Grassland | 1.36 | 1.41 | 0.92 | 1.77 | 0.05 | −0.44 | 0.41 |
Water areas | 18.39 | 20.84 | 26.29 | 12.47 | 2.45 | 7.90 | −5.91 |
Construction land | 30.72 | 36.13 | 35.19 | 39.66 | 5.41 | 4.47 | 8.94 |
Unused land | 1.22 | 1.58 | 1.17 | 0.21 | 0.36 | −0.05 | −1.01 |
Water Accumulation Intensity Levels | Depth of Accumulated Water (m) |
---|---|
Extremely low | <0.3 |
Low | 0.3–0.5 |
Medium | 0.5–1.0 |
High | >1 |
Scenario Types | Water Accumulation Intensity | Proportion (%) |
---|---|---|
Base scenario | Extremely low | 48.51 |
Low | 7.03 | |
Medium | 13.11 | |
High | 31.35 | |
Maximum subsidence scenario | Extremely low | 54.24 |
Low | 6.59 | |
Medium | 12.27 | |
High | 26.90 | |
Planning scenarios | Extremely low | 68.49 |
Low | 4.24 | |
Medium | 8.17 | |
High | 19.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Chen, H.; Hou, Q.; Liu, H.; Luo, P. Modeling of Hydrological Processes in a Coal Mining Subsidence Area with High Groundwater Levels Based on Scenario Simulations. Hydrology 2025, 12, 193. https://doi.org/10.3390/hydrology12070193
Zhou S, Chen H, Hou Q, Liu H, Luo P. Modeling of Hydrological Processes in a Coal Mining Subsidence Area with High Groundwater Levels Based on Scenario Simulations. Hydrology. 2025; 12(7):193. https://doi.org/10.3390/hydrology12070193
Chicago/Turabian StyleZhou, Shiyuan, Hao Chen, Qinghe Hou, Haodong Liu, and Pingjia Luo. 2025. "Modeling of Hydrological Processes in a Coal Mining Subsidence Area with High Groundwater Levels Based on Scenario Simulations" Hydrology 12, no. 7: 193. https://doi.org/10.3390/hydrology12070193
APA StyleZhou, S., Chen, H., Hou, Q., Liu, H., & Luo, P. (2025). Modeling of Hydrological Processes in a Coal Mining Subsidence Area with High Groundwater Levels Based on Scenario Simulations. Hydrology, 12(7), 193. https://doi.org/10.3390/hydrology12070193