Enhancing Flood Risk Management: A Review on Numerical Modelling of Past Flood Events
Abstract
1. Introduction
2. Numerical Modelling of Flood Events
3. Methodology
4. Numerical Analysis of Past Flood Events
5. Conclusions
- This study provides a comprehensive review of scientific literature focused on the numerical analysis of past flood events, which is a key component in enhancing flood risk management strategies.
- Numerical modelling emerges as an invaluable tool for reconstructing and evaluating past flood events, particularly in improving the understanding of extreme and/or (very) rare events in which data are scarce. These events may become more frequent in the future due to the implications of climate change, making their analysis increasingly relevant.
- Several types of past flood events and some characteristics of the numerical models applied to reproduce them can be found in this review. In most cases, numerical reproduction is the only feasible approach to extracting information from these historical events, as the available data are often extremely limited.
- The available information on past events is often restricted to brief descriptions in ancient texts, ecclesiastical records, or similar sources. The initial input data required for the numerical reproduction of such events is also subject to the same limitations. For instance, land use conditions at the time of the event are often uncertain, and current digital elevation models (DEMs) are unlikely to accurately represent the topography of the event period, given that landscape modifications over time are almost inevitable.
- Numerical simulation tools allow us to overcome these challenges by accounting for possible variations in these key variables, thereby generating a range of potential outcomes. This enables a more detailed understanding of the event under study. Based on this information, appropriate measures can be implemented to mitigate the adverse effects of such events.
- Furthermore, numerical simulation methodologies can significantly enhance the conventional methods used to estimate return periods associated with these events. Traditional approaches rely on discharge data obtained from control station records, where discharge values are derived from rating curves that establish a relationship between water surface elevation and discharge using an equation typically developed under mean river conditions. Consequently, these estimations often lack reliability under extreme flow conditions.
- Additionally, in many cases, numerical models contributed to resolving the uncertainties that existed in the development of historical floods by simulating various possible scenarios of occurrence and detecting the most plausible, thereby contributing to gaining knowledge and improving adaptation to mitigate flood events.
- The review highlights two key findings. On the one hand, it reveals a wide temporal coverage in the literature, ranging from glacial-era events to the mid-20th century. On the other hand, it also highlights a significant spatial imbalance: most studies are concentrated in Europe, with limited representation in North America. More strikingly, few relevant studies have been identified in Asia, South America, or Oceania.
- Significant data gaps were also detected across various regions of the world, particularly in developing and least-developed areas. Limited access to the necessary tools and resources often makes it economically unfeasible to conduct studies such as the one presented in this work. One potential strategy to overcome this limitation is the use of tools like the 2D hydrodynamic model Iber, which is freely accessible and available for download at no cost, in combination with global Digital Elevation Models (DEMs), which are also freely available. The adoption of such tools represents a viable pathway to reducing disparities in data and resource availability, thereby enabling the implementation of similar studies in underrepresented regions. This would help close research gaps and support local flood mitigation efforts.
- This gap presents a promising research line in these geographic regions, where efforts should be directed towards identifying and reconstructing ancient flood events. Thus, future research should prioritise the reconstruction of historical floods in underrepresented regions. Doing so will not only improve our understanding of flood mechanisms but also contribute to the global knowledge of climate change impacts.
- Therefore, this work, along with the first part of the paper focusing on Flood Early Warning Systems (FEWSs), provides a very useful literature review to scientists and engineers involved in flood analysis to improve and develop support tools to help improve mitigation measures to reduce flood damage both for people and property.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef]
- Fowler, H.J.; Lenderink, G.; Prein, A.F.; Westra, S.; Allan, R.P.; Ban, N.; Zhang, X. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2021, 2, 107–122. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Aalbers, E.E.; Larsen, J.R.; Trancoso, R.; Woods, R.A. Recent changes in extreme floods across multiple continents. Environ. Res. Lett. 2017, 12, 114035. [Google Scholar] [CrossRef]
- Magnusson, L.; Simmons, A.; Harrigan, S.; Pappenberger, F. Extreme Rain in Germany and Belgium in July 2021. 2021. Available online: https://www.ecmwf.int/en/newsletter/169/news/extreme-rain-germany-and-belgium-july-2021#:~:text=On%2014%20July%2C%20parts%20of,fatalities%20in%20Germany%20and%20Belgium (accessed on 4 April 2025).
- Manay, R.; Montes, I.; Sulca, J.; Castillón, F.; y Segura, B. Afloramiento costero peruano en presencia del ciclón Yaku durante marzo de 2023. Boletín Científico El Niño Inst. Geofísico Del Perú 2023, 10, 12–15. [Google Scholar]
- Soria, J.M.; Muñoz, R.; Campillo-Tamarit, N.; Molner, J.V. Flash-Flood-Induced Changes in the Hydrochemistry of the Albufera of Valencia Coastal Lagoon. Diversity 2025, 17, 119. [Google Scholar] [CrossRef]
- Galvez-Hernandez, P.; Dai, Y.; Muntaner, C. The DANA disaster: Unraveling the political and economic determinants for Valencia’s floods devastation. Int. J. Equity Health 2025, 24, 64. [Google Scholar] [CrossRef]
- Jongman, B. Effective adaptation to rising flood risk. Nat. Commun. 2018, 9, 1986. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, A.P.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Gomis, M.; et al. (Eds.) IPCC 2021: Climate Change 2021: The Physical Science Basis Contribution of Working Group Ito the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Blöschl, G. Understanding flood regime changes in Europe: A state-of-the-art assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef]
- Fernández-Nóvoa, D.; González-Cao, J.; García-Feal, O. Enhancing Flood Risk Management: A Comprehensive Review on Flood Early Warning Systems with Emphasis on Numerical Modelling. Water 2024, 16, 1408. [Google Scholar] [CrossRef]
- Wang, S.; Luo, P.; Xu, C.; Zhu, W.; Cao, Z.; Ly, S. Reconstruction of historical land use and urban flood simulation in Xi’an, Shannxi, China. Remote Sens. 2022, 14, 6067. [Google Scholar] [CrossRef]
- González-Cao, J.; Fernández-Nóvoa, D.; García-Feal, O.; Figueira, J.R.; Vaquero, J.M.; Trigo, R.M.; Gómez-Gesteira, M. Numerical reconstruction of historical extreme floods: The Guadiana event of 1876. J. Hydrol. 2021, 599, 126292. [Google Scholar] [CrossRef]
- González-Cao, J.; Fernández-Nóvoa, D.; García-Feal, O.; Figueira, J.R.; Vaquero, J.M.; Trigo, R.M.; Gómez-Gesteira, M. The Rivillas flood of 5–6 November 1997 (Badajoz, Spain) revisited: An approach based on Iber+ modelling. J. Hydrol. 2022, 610, 127883. [Google Scholar] [CrossRef]
- Fernández-Nóvoa, D.; González-Cao, J.; Figueira, J.R.; Catita, C.; García-Fela, O.; Gómez-Gesteira, M.; Trigo, R.M. Numerical simulation of the deadliest flood event of Portugal: Unravelling the causes of the disaster. Sci. Total Environ. 2023, 896, 165092. [Google Scholar] [CrossRef]
- Zhong, Y.; Ballesteros-Cánovas, J.A.; Favillier, A.; Corona, C.; Zenhäusern, G.; Manchado, A.M.T.; Guillet, S.; Giacona, F.; Eckert, N.; Qie, J.; et al. Historical flood reconstruction in a torrential alpine catchment and its implication for flood hazard assessments. J. Hydrol. 2024, 629, 130547. [Google Scholar] [CrossRef]
- Horritt, M.S.; Bates, P.D. Evaluation of 1D and 2D numerical models for predicting riverflood inundation. J. Hydrol. 2002, 268, 87–99. [Google Scholar] [CrossRef]
- Vacondio, R.; Dal Palù, A.; Ferrari, A.; Mignosa, P.; Aureli, F.; Dazzi, S. A non-uniform efficient grid type for GPU-parallel Shallow Water Equations models. Environ. Model. Softw. 2017, 88, 119–137. [Google Scholar] [CrossRef]
- García-Feal, O.; González-Cao, J.; Gómez-Gesteira, M.; Cea, L.; Domínguez, J.M. Formella. An accelerated tool for flood modelling based on Iber. Water 2018, 10, 1459. [Google Scholar] [CrossRef]
- González-Cao, J.; García-Feal, O.; Fernández-Nóvoa, D.; Domínguez-Alonso, J.M.; Gómez-Gesteira, M. Towards an automatic early warning system of flood hazards based on precipitation forecast: The case of the Miño River (NW Spain). Nat. Hazards Earth Syst. Sci. 2019, 19, 2583–2595. [Google Scholar] [CrossRef]
- Fernández-Nóvoa, D.; García-Feal, O.; González-Cao, J.; de Gonzalo, C.; Rodríguez-Suárez, J.A.; Ruiz del Portal, C.; Gómez-Gesteira, M. MIDAS: A New Integrated Flood Early Warning System for the Miño River. Water 2020, 12, 2319. [Google Scholar] [CrossRef]
- Caviedes-Voullieme, D.; Morales-Hernandez, M.; Norman, M.R.; Ozgen-Xian, I. SERGHEI (SERGHEI-SWE) v1.0: A performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics. Geosci. Model Dev. 2023, 16, 977–1008. [Google Scholar] [CrossRef]
- Dong, B.; Huang, B.; Tan, C.; Xia, J.; Lin, K.; Gao, S.; Hu, Y. Multi-GPU parallelization of shallow water modelling on unstructured meshes. J. Hydrol. 2025, 657, 133105. [Google Scholar] [CrossRef]
- Brirhet, H.; Benaabidate, L. Comparison of Two Hydrological Models (Lumped and Distributed) over a Pilot Area of the Issen Watershed in the Souss Basin, Morocco. Eur. Sci. J. 2016, 12, 348–358. [Google Scholar] [CrossRef]
- Feldman, A.D. Hydrologic Modelling System HEC-HMS: Technical Reference Manual; US Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2000. [Google Scholar]
- Scharffenberg, B.; Bartles, M.; Brauer, T.; Fleming, M.; Karlovits, G. Hydrologic Modelling System (HEC-HMS). User’s Manual, Version 4.3; U.S. Army Corps of Engineers: Davis, CA, USA, 2018. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Bergström, S.; Carlsson, B.; Gardelin, M.; Lindström, G.; Pettersson, A.; Rummukainen, M. Climate change impacts on runoff in Sweden assessments by global climate models, dynamical downscaling and hydrological modelling. Clim. Res. 2001, 16, 101–112. [Google Scholar] [CrossRef]
- Brunner, G.W. HEC-RAS River Analysis System: Hydraulic Reference Manual, Version 5.0; US Army Corps of Engineers–Hydrologic Engineering Center: Davis, CA, USA, 2016; Volume 547. [Google Scholar]
- Lacasta, A.; Morales-Hernández, M.; Murillo, J.; García-Navarro, P. An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes. Adv. Eng. Softw. 2014, 78, 1–15. [Google Scholar] [CrossRef]
- Shu, L.; Chen, H.; Meng, X.; Chang, Y.; Hu, L.; Wang, W.; Shu, L.; Yu, X.; Duffy, C.; Yao, Y.; et al. A review of integrated surface-subsurface numerical hydrological models. Sci. China Earth Sci. 2024, 67, 1459–1479. [Google Scholar] [CrossRef]
- Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; Dolz, J.; Coll, A. Iber-River modelling simulation tool [Iber: Herramienta de simulación numérica del flujo en ríos]. Rev. Int. De Métodos Numéricos Para Calc. Y Diseño En Ing. 2014, 30, 1–10. [Google Scholar] [CrossRef]
- García-Feal, O.; Cea, L.; González-Cao, J.; Domínguez, J.M.; Gómez-Gesteira, M. IberWQ: A GPU Accelerated Tool for 2D Water Quality Modelling in Rivers and Estuaries. Water 2020, 12, 413. [Google Scholar] [CrossRef]
- Bradbrook, K. JFLOW: A multiscale two-dimensional dynamic flood model. Water Environ. J. 2006, 20, 79–86. [Google Scholar] [CrossRef]
- DHI. M MIKE 21 Flow Model, Hydrodynamic Module; Scientific Documentation: Hørsholm, Denmark, 2017. [Google Scholar]
- Sharifian, M.K.; Kesserwani, G.; Chowdhury, A.A.; Neal, J.; Bates, P. LISFLOOD-FP 8.1: New GPU-accelerated solvers for faster fluvial/pluvial flood simulations. Geosci. Model Dev. 2023, 16, 2391–2413. [Google Scholar] [CrossRef]
- EXCIMAP: Handbook on Good Practices for Flood Mapping in Europe, European Commission, 57 p. 2007. Available online: https://ec.europa.eu/environment/water/flood_risk/flood_atlas/pdf/handbook_goodpractice.pdf (accessed on 24 November 2021).
- England, J.F., Jr.; Cohn, T.A.; Faber, B.A.; Stedinger, J.R.; Thomas, W.O., Jr.; Veilleux, A.G.; Kiang, J.E.; Mason, R.R., Jr. Guidelines for Determining Flood Flow Frequency—Bulletin 17C; Report 4-B5, 168; U.S. Geological Survey: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Matos-Llavona, P.I.; Ely, L.L.; MacInnes, B.; Dura, T.; Cisternas, M.A.; Bourgeois, J.; Bruce, D.; DePaolis, J.; Dolcimascolo, A.; Horton, B.P.; et al. The giant 1960 tsunami in the context of a 6000-year record of paleotsunamis and coastal evolution in south-central Chile. Earth Surf. Process. Landf. 2022, 47, 2062–2078. [Google Scholar] [CrossRef]
- Wronna, M.; Baptista, M.A.; Götz, J. On the construction and use of a Paleo-DEM to reproduce tsunami inundation in a historical urban environment–the case of the 1755 Lisbon tsunami in Cascais. Geomat. Nat. Hazards Risk 2017, 8, 841–862. [Google Scholar] [CrossRef]
- Jongman, B.; Ward, P.J.; Aerts, J.C.J.H. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Chang. 2012, 22, 823–835. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Donmez, K.; Donmez, B.; Diren-Ustun, D.H.; Unal, Y. Boundary-dependent urban impacts on timing, pattern, and magnitude of heavy rainfall in Istanbul. Atmos. Res. 2023, 286, 106681. [Google Scholar] [CrossRef]
- Morelli, A.B.; Cunha, A.L. Measuring urban road network vulnerability to extreme events: An application for urban floods. Transp. Res. Part D Transp. Environ. 2021, 93, 102770. [Google Scholar] [CrossRef]
- de Bruijn, J.A.; de Moel, H.; Jongman, B.; de Ruiter, M.C.; Wagemaker, J.; Aerts, J.C.J.H. A global database of historic and real-time flood events based on social media. Sci. Data 2019, 6, 311. [Google Scholar] [CrossRef]
- Qie, J.-Z.; Zhang, Y.; Trappmann, D.; Zhong, Y.-H.; Ballesteros-Cánovas, J.A.; Favillier, A.; Stoffel, M. Long-term reconstruction of flash floods in the Qilian Mountains, China, based on dendrogeomorphic methods. J. Mt. Sci. 2022, 19, 3163–3177. [Google Scholar] [CrossRef]
- Brázdil, R.; Kundzewicz, Z.W.; Benito, G.; Demarée, G.; Macdonald, N.; Roald, L.A. Historical floods in Europe in the past millennium. In Changes in Flood Risk in Europe; Kundzewicz, Z.W., Ed.; IAHS Special Publication 10; IAHS Press and CRC Press/Balkema: Wallingford, UK, 2012; pp. 121–166. [Google Scholar]
- Camuffo, D.; Enzi, S. The analysis of two bi-millennial series: Tiver and Po river floods. In Climatic Variations and Forcing Mechanisms of the Last 2000 Years; Jones, P.D., Bradley, R.S., Jouzel, J., Eds.; Springer: Berlin, Germany, 1996; pp. 433–450. [Google Scholar]
- Glaser, R.; Riemann, D.; Schönbein, J.; Barriendos, M.; Brázdil, R.; Bertolin, C.; Camuffo, D.; Deutsch, M.; Dobrovolný, P.; van Engelen, A.; et al. The variability of European floods since AD 1500. Clim. Chang. 2010, 101, 235–256. [Google Scholar] [CrossRef]
- Benito, G.; Castillo, O.; Ballesteros-Cánovas, J.A.; MacHado, M.; Barriendos, M. Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain). Hydrol. Earth Syst. Sci. 2021, 25, 6107–6132. [Google Scholar] [CrossRef]
- Puig y Larraz, G. Descripción Física y Geológica de la Provincia de Zamora; Comisión del Mapa Geológico de España, Imprenta y Fundición de Manuel Tello: Madrid, Spain, 1883; p. 488. [Google Scholar]
- Gómez-Moreno, M. Catálogo Monumental de España, Provincia de Zamora; Ministerio de Instrucción Pública y Bellas Artes: Madrid, Spain, 1927. [Google Scholar]
- Zataraín-Fernández, M. Apuntes y Noticias Curiosas para Formalizar la Historia Eclesiástica de Zamora y su Diócesis; San José, Z., Ed.; Establiecimiento Grafico de San Jose: Zamora, Spain, 1898; p. 355. Available online: https://bibliotecadigital.jcyl.es/es/consulta/registro.cmd?id=3769 (accessed on 28 April 2025).
- Wetter, O.; Pfister, C.; Weingartner, R.; Luterbacher, J.; Reist, T.; Trösch, J. The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence [Les plus grandes crues du bassin du Haut-Rhin depuis 1268 évaluées à partir de données documentaries et de mesures instrumentales]. Hydrol. Sci. J. 2011, 56, 733–758. [Google Scholar] [CrossRef]
- Ngo, H.; Bomers, A.; Augustijn, D.C.M.; Ranasinghe, R.; Filatova, T.; van der Meulen, B.; Herget, J.; Hulscher, S.J.M.H. Reconstruction of the 1374 Rhine river flood event around Cologne region using 1D-2D coupled hydraulic modelling approach. J. Hydrol. 2023, 617, 129039. [Google Scholar] [CrossRef]
- Bomers, A.; Schielen, R.M.; Hulscher, S.J. The severe 1374 Rhine river flood event in present times. In Proceedings of the IAHR World Congress, Panama City, Panama, 1–6 September 2019; pp. 1764–1773. [Google Scholar]
- Calenda, G.; Mancini, C.P.; Volpi, E. Distribution of the extreme peak floods of the Tiber River from the XV century. Adv. Water Resour. 2005, 28, 615–625. [Google Scholar] [CrossRef]
- Gumbel, E.J. Multivariate extreme distributions. Bull. Int. Stat. Inst. 1960, 39, 471–475. [Google Scholar]
- Yue, S.; Ouarda, T.B.M.J.; Bobée, B.; Legendre, P.; Bruneau, P. The Gumbel mixed model for flood frequency analysis. J. Hydrol. 1999, 226, 88–100. [Google Scholar] [CrossRef]
- Elleder, L.; Herget, J.; Roggenkamp, T.; Nießen, A. Historic floods in the city of Prague—A reconstruction of peak discharges for 1481-1825 based on documentary sources. Hydrol. Res. 2013, 44, 202–214. [Google Scholar] [CrossRef]
- Balasch, J.C.; Pino, D.; Ruiz-Bellet, J.L.; Tuset, J.; Barriendos, M.; Castelltort, X.; Peña, J.C. The extreme floods in the Ebro River basin since 1600 CE. Sci. Total Environ. 2019, 646, 645–660. [Google Scholar] [CrossRef]
- Izquierdo, T.; Rivera, A.-L.; Galeano, Á.; Gallardo, D.; Salas, V.; Aparicio, O.; Buylaert, J.-P.; Ruiz, F.; Abad, M. Historical catastrophic floods at the southern edge of the Atacama Desert: A multi-archive reconstruction of the Copiapó river extreme events. Glob. Planet. Chang. 2024, 236, 104411. [Google Scholar] [CrossRef]
- Mancini, C.P.; Lollai, S.; Calenda, G.; Volpi, E.; Fiori, A. Guidance in the calibration of two-dimensional models of historical floods in urban areas: A case study. Hydrol. Sci. J. 2022, 67, 358–368. [Google Scholar] [CrossRef]
- Elleder, L.; Krejčí, J.; Racko, S.; Daňhelka, J.; Šírová, J.; Kašpárek, L. Reliability check of flash-flood in Central Bohemia on May 25, 1872. Glob. Planet. Change 2020, 187, 103094. [Google Scholar] [CrossRef]
- Ruiz-Bellet, J.L.; Balasch, J.C.; Tuset, J.; Barriendos, M.; Mazon, J.; Pino, D. Historical, hydraulic, hydrological and meteorological reconstruction of 1874 Santa Tecla flash floods in Catalonia (NE Iberian Peninsula). J. Hydrol. 2015, 524, 279–295. [Google Scholar] [CrossRef]
- Ruiz-Bellet, J.L.; Castelltort, X.; Balasch, J.C.; Tuset, J. Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula). J. Hydrol. 2017, 545, 339–354. [Google Scholar] [CrossRef]
- Tessitore, S.; Di Martire, D.; Martino, R.; Calcaterra, D. Comparison of 2D models for the simulation of the October 1954 debris flow and flood event at Maiori Campania Region, Italy. In Proceedings of the International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, Padua, Italy, 14–17 June 2011; pp. 513–522. [Google Scholar] [CrossRef]
- Ballesteros Cánovas, J.A.; Bodoque, J.M.; Díez-Herrero, A.; Sanchez-Silva, M.; Stoffel, M. Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. J. Hydrol. 2011, 403, 103–115. [Google Scholar] [CrossRef]
- Ballesteros Cánovas, J.A.; Eguibar, M.; Bodoque, J.M.; Díez-Herrero, A.; Stoffel, M.; Gutiérrez-Pérez, I. Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators. Hydrol. Process. 2011, 25, 970–979. [Google Scholar] [CrossRef]
- Denlinger, R.P.; O’Connell, D.R.H.; House, P.K. Robust determination of stage and discharge: An example from an extreme flood on the Verde River, Arizona. In Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology; House, P.K., Webb, R.H., Baker, V.R., Levish, D.R., Eds.; Water Science and Application Series; CABI: Wallingford, UK, 2001; Volume 5, pp. 127–146. [Google Scholar]
- Ruiz-Villanueva, V.; Díez-Herrero, A.; Bodoque, J.M.; Ballesteros Cánovas, J.A.; Stoffel, M. Characterisation of flash floods in small ungauged mountain basins of Central Spain using an integrated approach. Catena 2013, 110, 32–43. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Bodoque, J.M.; Díez-Herrero, A.; Bladé, E. Large wood transport as significant influence on flood risk in a mountain village. Nat. Hazards 2014, 74, 967–987. [Google Scholar] [CrossRef]
- Garrote, J.; Díez-Herrero, A.; Génova, M.; Bodoque, J.M.; Perucha, M.A.; Mayer, P.L. Improving flood maps in ungauged fluvial basins with dendrogeomorphological data. An example from the caldera de Taburiente national park (Canary Islands, Spain). Geosciences 2018, 8, 300. [Google Scholar] [CrossRef]
- Ruman, S.; Tichavský, R.; Šilhán, K.; Grillakis, M.G. Palaeoflood discharge estimation using dendrogeomorphic methods, rainfall-runoff and hydraulic modelling—A case study from southern Crete. Nat. Hazards 2021, 105, 1721–1742. [Google Scholar] [CrossRef]
- Kumar, N.; Lal, D.; Sherring, A.; Issac, R.K. Applicability of HEC-RAS & GFMS tool for 1D water surface elevation/flood modeling of the river: A Case Study of River Yamuna at Allahabad (Sangam), India. Model. Earth Syst. Environ. 2017, 3, 1463–1475. [Google Scholar]
- Bennani, O.; Tramblay, Y.; Simon, G.; Frédéric, L.; Saidi, M.E. Flood hazard mapping using two digital elevation models: Application in a semi-arid environment of Morocco. Eur. Sci. J. 2019, 15, 338–359. [Google Scholar]
- Anh Tu, N.; Stephane, G.; Doi, N.; Vi, N.T.T. Impact Assessment of Land Use and Land Cover Change on the Runoff Changes on the Historical Flood Events in the Laigiang River Basin of the South Central Coast Vietnam. Int. J. Geoinformatics 2023, 19, 51–63. [Google Scholar]
- Dahal, D.; Kojima, T. Evaluating the Performance of Hydrological Models for Flood Discharge Simulation in the Wangchu River Basin, Bhutan. Hydrology 2025, 12, 51. [Google Scholar] [CrossRef]
- Bellos, V.; Kourtis, I.; Raptaki, E.; Handrinos, S.; Kalogiros, J.; Sibetheros, I.A.; Tsihrintzis, V.A. Identifying Modelling Issues through the Use of an Open Real-World Flood Dataset. Hydrology 2022, 9, 194. [Google Scholar] [CrossRef]
- Rozos, E.; Bellos, V.; Kalogiros, J.; Mazi, K. Efficient Flood Early Warning System for Data-Scarce, Karstic, Mountainous Environments: A Case Study. Hydrology 2023, 10, 203. [Google Scholar] [CrossRef]
- Sánchez-García, C.; Corvacho-Ganahín, Ó.; Santasusagna Riu, A.; Francos, M. Nature-Based Solutions (NbSs) to Improve Flood Preparedness in Barcelona Metropolitan Area (Northeastern Spain). Hydrology 2024, 11, 213. [Google Scholar] [CrossRef]
- Tegos, A.; Ziogas, A.; Bellos, V.; Tzimas, A. Forensic Hydrology: A Complete Reconstruction of an Extreme Flood Event in Data-Scarce Area. Hydrology 2022, 9, 93. [Google Scholar] [CrossRef]
- Li, W.; Li, D.; Fang, Z.N. Intercomparison of Automated Near-Real-Time Flood Mapping Algorithms Using Satellite Data and DEM-Based Methods: A Case Study of 2022 Madagascar Flood. Hydrology 2023, 10, 17. [Google Scholar] [CrossRef]
- Miyamoto, H.; Itoh, K.; Komatsu, G.; Baker, V.R.; Dohm, J.M.; Tosaka, H.; Sasaki, S. Numerical simulations of large-scale cataclysmic floodwater: A simple depth-averaged model and an illustrative application. Geomorphology 2006, 76, 179–192. [Google Scholar] [CrossRef]
- O’Connor, J.E.; Baker, V.R. Magnitudes and implications of peak discharges from glacial Lake Missoula. Geol. Soc. Am. Bull. 1992, 104, 267–279. [Google Scholar] [CrossRef]
- Norris, S.L.; Garcia-Castellanos, D.; Jansen, J.D.; Carling, P.A.; Margold, M.; Woywitka, R.J.; Froese, D.G. Catastrophic Drainage from the Northwestern Outlet of Glacial Lake Agassiz During the Younger Dryas. Geophys. Res. Lett. 2021, 48, e2021GL093919. [Google Scholar] [CrossRef]
- Guo, Y.; Ge, Y.; Mao, P.; Liu, T.; Fu, X.; Wu, S. Geomorphologic evidences and hydrologic reconstruction of Holocene catastrophic flood events in the Yarlung Tsangpo Grand Canyon. East. Himalaya J. Hydrol. 2023, 626, 130146. [Google Scholar] [CrossRef]
- Kidson, R.L.; Richards, K.S.; Carling, P.A. Hydraulic model calibration for extreme floods in bedrock-confined channels: Case study from northern Thailand. Hydrol. Process. 2006, 20, 329–344. [Google Scholar] [CrossRef]
- Lam, D.; Thompson, C.; Croke, J.; Sharma, A.; Macklin, M. Reducing uncertainty with flood frequency analysis: The contribution of paleoflood and historical flood information. Water Resour. Res. 2017, 53, 2312–2327. [Google Scholar] [CrossRef]
Id. Number | Reference | Location | Country | Continent | Hydraulic Model |
---|---|---|---|---|---|
1 | [67] | Xerta | Spain | Europe | HEC-RAS, Iber |
2 | [16] | Quintas-Lisbon | Portugal | Europe | Iber |
3 | [66] | Santa Tecla | Spain | Europe | HEC-RAS |
4 | [65] | Central Bohemian | Czech Republic | Europe | Aqualog |
5 | [75] | Crete | Greece | Europe | HEC-RAS, Iber |
6 | [62] | Ebro river | Spain | Europe | HEC-RAS, HEC-GeoRAS, Iber |
7 | [56] | Cologne | Germany | Europe | HEC-RAS |
8 | [57] | Cologne | Germany | Europe | HEC-RAS |
9 | [51] | Zamora | Spain | Europe | Iber |
10 | [55] | Cologne | Germany | Europe | FLUX/FLORIS2000 |
11 | [58] | Rome | Italy | Europe | SMS |
12 | [61] | Prague | Czech Republic | Europe | Manning Eq. |
13 | [72] | Arenas de San Pedro | Spain | Europe | --- |
14 | [68] | Campania region | Italy | Europe | DAN-W, FLO-2D |
15 | [74] | Canary island | Spain | Europe | Iber |
16 | [64] | Rome | Italy | Europe | HEC-RAS |
17 | [69] | Spanish Central System | Spain | Europe | MIKE 21 |
18 | [70] | Navaluenga | Spain | Europe | MIKE FLOOD |
19 | [73] | Arenas de San Pedro | Spain | Europe | Iber |
20 | [15] | Badajoz | Spain | Europe | Iber |
21 | [14] | Badajoz | Spain | Europe | Iber, HEC-HMS |
22 | [80] | Athens | Greece | Europe | HEC-HMS |
23 | [81] | Mandra | Greece | Europe | HYMOD, GR4H, LRHM, HEC-RAS |
24 | [82] | Llobregat River | Spain | Europe | HEC-RAS |
25 | [83] | Karditsa | Greece | Europe | HEC-RAS HEC-HMS |
26 | [71] | Arizona | USA | North America | TRIMR-2D |
27 | [85] | Missoula | USA | North America | Developed by authors |
28 | [86] | Missoula | USA | North America | HEC-2 |
29 | [87] | Lake Agassiz | Canada | North America | HEC-RAS |
30 | [63] | Copiapó River | Chile | South America | HEC-RAS |
31 | [88] | Tibetan Plateau | China | Asia | HEC-RAS |
32 | [89] | Chiang Mai | Thailand | Asia | HEC-RAS |
33 | [76] | Allahabad | India | Asia | HEC-RAS |
34 | [78] | Laigiang River basin | Vietnam | Asia | HEC-HMS |
35 | [79] | Wangchu River Basin | Buthan | Asia | HEC-HMS |
36 | [77] | Ourika Valley | Morocco | Africa | HEC-RAS |
37 | [84] | Antananarivo | Madagascar | Africa | HYDRAFloods |
38 | [90] | Southeast Queensland | Australia | Oceania | HEC-RAS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Cao, J.; Barreiro-Fonta, H.; Fernández-Nóvoa, D.; García-Feal, O. Enhancing Flood Risk Management: A Review on Numerical Modelling of Past Flood Events. Hydrology 2025, 12, 133. https://doi.org/10.3390/hydrology12060133
González-Cao J, Barreiro-Fonta H, Fernández-Nóvoa D, García-Feal O. Enhancing Flood Risk Management: A Review on Numerical Modelling of Past Flood Events. Hydrology. 2025; 12(6):133. https://doi.org/10.3390/hydrology12060133
Chicago/Turabian StyleGonzález-Cao, José, Helena Barreiro-Fonta, Diego Fernández-Nóvoa, and Orlando García-Feal. 2025. "Enhancing Flood Risk Management: A Review on Numerical Modelling of Past Flood Events" Hydrology 12, no. 6: 133. https://doi.org/10.3390/hydrology12060133
APA StyleGonzález-Cao, J., Barreiro-Fonta, H., Fernández-Nóvoa, D., & García-Feal, O. (2025). Enhancing Flood Risk Management: A Review on Numerical Modelling of Past Flood Events. Hydrology, 12(6), 133. https://doi.org/10.3390/hydrology12060133