Enhanced 3D Turbulence Models Sensitivity Assessment Under Real Extreme Conditions: Case Study, Santa Catarina River, Mexico
Abstract
1. Introduction
2. Methodology
3. Case Study
4. Computational Framework
4.1. Numerical Domain and Mesh Configuration
4.2. Boundary Conditions
4.3. Governing Equations
4.4. Turbulence Models
- and so on.
4.5. Spatial and Temporal Discretization Strategy
4.6. Mesh Independence and Validation Against Observed Flow Patterns
5. Results and Discussion
5.1. Mean Velocity
5.2. Turbulent Viscosity
5.3. Strain Rate
5.4. Swirl Intensity
5.5. Shear Stress
5.6. Shear Velocity
5.7. Q Criterion
- SST is the model that predicts the most intense vortices and the development of structures from the bottom toward the surface, making it the most prone to simulating internal waves and flow breaking due to vorticity accumulation.
- GEKO is the most stable and configurable, useful when seeking to control the shape and persistence of structures without saturating the solution.
- BSL–EARSM offers more realistic structures in terms of orientation and shape, making it ideal for physical flow analysis, especially in complex channels.
- RNG produces broad deformation zones with distinct but somewhat more dispersed or irregular vortices, useful under transient flow conditions and hydraulic jumps.
6. Conclusions
- BSL–EARSM exhibits outstanding capabilities in physically describing coherent and three-dimensional flow structures. Its representation of the Q-criterion, the helical organization of streamlines, and the distribution of turbulent dissipation more realistically reflect bed-surface interactions, the development of lateral vortices, and recirculation zones. Its swirling intensity and shear velocity are physically consistent with flows dominated by separation, mixing, and secondary pulsation. This model proves to be the most suitable and optimal for representing fluvial flows with complex and anisotropy structures making it the most physically accurate closure for simulating complex flow structures in natural rivers, more realistic predictions of turbulent viscosity and strain-rate distributions, and with no higher computational cost.
- GEKO closely follows BLS–EARSM in performance, proving to be a flexible alternative delivering robust predictions even without site-specific calibration and offering promise for applications where empirical data for tuning are unavailable. However, it tends to be slightly more conservative regarding extreme values of shear velocity and swirling intensity, and it provides high spatial coherence in regions of strong flow deformation. It is particularly useful when a balance between accuracy and computational robustness is required and in scenarios involving smooth transitions between laminar and turbulent regimes or controlled flow conditions.
- The SST model is balanced in terms of accuracy and is computationally efficiency, effectively resolving key features like shear layers and separation zones, but exhibited a tendency to overestimate turbulent viscosity in certain high-shear regions. It produces intense but more diffuse structures in its predictions. It is ideal for identifying separation and reattachment zones, although it may overestimate turbulent kinetic energy in certain cases.
- RNG produces less-organized structures with greater spatial dispersion, which may be useful for representing highly fluctuating turbulence but is less suitable for structured flow analyses. Nevertheless, it showed limitations in representing low-velocity and recirculation zones and tended to diffuse key turbulent structures, which are essential aspects for riverine modeling.
- RLZ serves as a minimal reference; its low complexity ensures fast computations but renders it insufficient for capturing the complex details of riverine flows.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
buoyancy-induced turbulence production. | |
Boussinesq approximation turbulence kinetic energy production term. | |
empirical constant. | dimensionless |
. empirical constant. | dimensionless |
empirical constant. | dimensionless |
empirical constant. | dimensionless |
and turbulent Prandtl numbers. | dimensionless |
and are the reciprocals of the effective turbulent Prandtl numbers. | dimensionless |
buoyancy-induced turbulence generation. | |
. compressibility effects | |
curvature/rotation term. | |
specific dissipation rate. | |
and source terms. | |
magnitude of the mean rate-of-strain tensor. | ] |
Eddy viscosity coefficient. | dimensionless |
thermal expansion coefficient. | ] |
gravity component. | |
turbulent Prandtl number. | dimensionless |
and Specific effective diffusivities. | |
and turbulent Prandtl numbers. | dimensionless |
and source terms. | |
and turbulent dissipation contributions. | |
cross-diffusion interaction. | |
empirical constant. | dimensionless |
empirical constant. | dimensionless |
empirical constant. | dimensionless |
empirical constant. | dimensionless |
empirical constant. | dimensionless |
mixing function. | dimensionless |
,, calibration functions tunable coefficients. | dimensionless |
cross-diffusion term. | |
turbulent kinetic energy production. | |
production of turbulence frequency of kinetic energy. | |
, cross-diffusion term. | |
is a blending function. | dimensionless |
References
- Rowiński, P. Experimental and Computational Solutions of Hydraulic Problems; Springer Nature: Cham, Switzerland, 2013; Volume 11. [Google Scholar] [CrossRef]
- Leupi, C.; Miglio, E.; Altinakar, M.; Quarteroni, A.; Deville, M.O. A 3D finite element model for free-surface flows. Comput. Fluids 2009, 38, 1903–1916. [Google Scholar] [CrossRef]
- Dey, S.; Saksena, S.; Winter, D.; Merwade, V.; McMillan, S. Incorporating Network Scale River Bathymetry to Improve Characterization of Fluvial Processes in Flood Modeling. Water Resour. Res. 2022, 58, e2020WR029521. [Google Scholar] [CrossRef]
- Munoz, D.H.; Constantinescu, G. Application of a 3-D CFD model to investigate flood-related engineering problems. E3S Web Conf. 2018, 40, 06004. [Google Scholar] [CrossRef]
- Saleem, M.W.; Rashid, M.; Haider, S.; Khalid, M.; Elfeki, A. Simulation of urban flooding using 3D computational fluid dynamics with turbulence model. Results Eng. 2025, 25, 103609. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Ma, Q.; Zhang, J.; Hu, Q.; Zhan, Y. Dam-Break Hazard Assessment with CFD Computational Fluid Dynamics Modeling: The Tianchi Dam Case Study. Water 2025, 17, 108. [Google Scholar] [CrossRef]
- Beg, M.N.A.; Rubinato, M.; Carvalho, R.F.; Shucksmith, J.D. CFD modelling of the transport of soluble pollutants from sewer networks to surface flows during urban flood events. Water 2020, 12, 2514. [Google Scholar] [CrossRef]
- Williams, R.D.; Brasington, J.; Hicks, D.M. Numerical Modelling of Braided River Morphodynamics: Review and Future Challenges. Geogr. Compass 2016, 10, 102–127. [Google Scholar] [CrossRef]
- Jaafar, Q.N.; Sayl, K.N.; Kamel, A.H. Numerical Modelling of River Training Work: A Review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1222, 012010. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, H.; Zhou, H.; Lv, Q. A Review of Numerical Modelling of Morphodynamics in Braided Rivers: Mechanisms, Insights and Challenges. Water 2023, 15, 595. [Google Scholar] [CrossRef]
- Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; Dolz, J.; Coll, A. Iber: Herramienta de simulación numérica del flujo en ríos. Rev. Int. Metod. Numer. Para Calc. Y Disen. En Ing. 2014, 30, 1–10. [Google Scholar] [CrossRef]
- U. U.S. Army Corps of Engineers; Davis, C.A. Hydrologic Engineering Center HEC-RAS, River Analysis System. 2025. Available online: https://www.hec.usace.army.mil/confluence/rasdocs/rasum/latest (accessed on 25 September 2024).
- Dumont, G.B.; Petry, A.P. Anisotropic turbulence modeling of the atmospheric surface layer: Validation of novel model settings and comparison with traditional two-equation models in flows over complex terrain. J. Wind Eng. Ind. Aerodyn. 2024, 247, 105696. [Google Scholar] [CrossRef]
- Mulder, T.; Alexander, J. Abrupt change in slope causes variation in the deposit thickness of concentrated particle-driven density currents. Mar. Geol. 2001, 175, 221–235. [Google Scholar] [CrossRef]
- Cheng, Z.; Koken, M.; Constantinescu, G. Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and applications to pier scour. Adv. Water Resour. 2018, 120, 65–82. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X. Theoretical, experimental, and numerical studies of flow field characteristics and incipient scouring erosion for slope with rigid vegetations. J. Hydrol. 2023, 622, 129638. [Google Scholar] [CrossRef]
- Paudel, S.; Singh, U.; Crosato, A.; Franca, M.J. Effects of initial and boundary conditions on gravel-bed river morphology. Adv. Water Resour. 2022, 166, 104256. [Google Scholar] [CrossRef]
- Lague, D.; Feldmann, B. Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis. In Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–54. [Google Scholar] [CrossRef]
- Christodoulou, G.C., Stamou, A.I., Eds.; Environmental Hydraulics, Two Volume Set. In Proceedings of the 6th International Symposium on Environmental Hydraulics, Athens, Greece, 23–25 June 2010; CRC Press: London, UK, 2010. [Google Scholar] [CrossRef]
- Kang, S.; Lightbody, A.; Hill, C.; Sotiropoulos, F. High-resolution numerical simulation of turbulence in natural waterways. Adv. Water Resour. 2011, 34, 98–113. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Wen, X.; Wang, J.; Liu, C.; Wan, D. CFD simulation of multiphase flow at different scales. In Proceedings of the 3rd International Symposium of Cavitation and Multiphase Flow, Shanghai, China, 19–22 April 2019; pp. 19–22. [Google Scholar]
- Liang, X.; Tiegang, L. Ghost-Fluid-Based Sharp Interface Methods for Multi-Material Dynamics: A Review. Commun. Comput. Phys. 2023, 34, 563–612. [Google Scholar] [CrossRef]
- Chatzimarkou, E.; Michailides, C.; Onoufriou, T. Performance of a coupled level-set and volume-of-fluid method combined with free surface turbulence damping boundary condition for simulating wave breaking in OpenFOAM. Ocean Eng. 2022, 265, 112572. [Google Scholar] [CrossRef]
- Castillo, L.G.; García, J.T.; Carrillo, J.M.; Vigueras-Rodríguez, A. Comparison of PIV measurements and CFD simulations of the velocity field over bottom racks. In Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress, Liege, Belgium, 27–29 July 2016; Taylor & Francis: London, UK; pp. 145–150. Available online: https://www.upct.es/hidrom/publicaciones/congresos/CI9.pdf (accessed on 31 August 2025).
- Moramarco, T.; Dingman, S.L. On the theoretical velocity distribution and flow resistance in natural channels. J. Hydrol. 2017, 555, 777–785. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yang, H.C.; Liao, Y.J.; Chen, Y.T. Modelling and Numerical Simulation Approaches to the Stage–Discharge Relationships of the Lansheng Bridge. Water 2023, 15, 2179. [Google Scholar] [CrossRef]
- Conway, P.; O’Sullivan, J.J.; Lambert, M.F. Stage-discharge prediction in straight compound channels using 3D numerical models. Proc. Inst. Civ. Eng. Water Manag. 2013, 166, 3–15. [Google Scholar] [CrossRef]
- Mailhot, A.; Talbot, G.; Bolduc, S.; Fortier, C. Assessment of uncertainties on stage-discharge rating curves: A large scale application to Québec hydrometric network. EGUsphere 2024, 2024, 3615–3627. [Google Scholar] [CrossRef]
- Kurdistani, S.M.; Perrone, G.C. Diffusion of a Surface Marine Sewage Effluent. CFD Lett. 2023, 15, 135–153. [Google Scholar] [CrossRef]
- Unsworth, C.A.; Nicholas, A.P.; Ashworth, P.J.; Best, J.L.; Lane, S.N.; Parsons, D.R.; Sambrook Smith, G.H.; Simpson, C.J.; Strick, R.J.P. Influence of Dunes on Channel-Scale Flow and Sediment Transport in a Sand Bed Braided River. J. Geophys. Res. Earth Surf. 2020, 125, e2020JF005571. [Google Scholar] [CrossRef]
- Jongbloed, H.; Vermeulen, B.; Hoitink, A.J.F. Physics-Informed Estimation of Tidal and Subtidal Flow Fields From ADCP Repeat Transect Data. Water Resour. Res. 2025, 61, e2023WR036038. [Google Scholar] [CrossRef]
- Banjavcic, S.D.; Schmidt, A.R. Spatial Uncertainty in Depth Averaged Velocity Determined from Stationary, Transect, and Longitudinal ADCP Measurements. J. Hydraul. Eng. 2018, 144, 04018070. [Google Scholar] [CrossRef]
- Keylock, C.J.; Hardy, R.J.; Parsons, D.R.; Ferguson, R.I.; Lane, S.N.; Richards, K.S. The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth Sci. Rev. 2005, 71, 271–304. [Google Scholar] [CrossRef]
- Kim, J.S.; Seo, I.W.; Baek, D.; Kang, P.K. Recirculating flow-induced anomalous transport in meandering open-channel flows. Adv. Water Resour. 2020, 141, 103603. [Google Scholar] [CrossRef]
- Ma, L.; Ashworth, P.J.; Best, J.L.; Elliott, L.; Ingham, D.B.; Whitcombe, L.J. Computational fluid dynamics and the physical modelling of an upland urban river. Geomorphology 2002, 44, 375–391. [Google Scholar] [CrossRef]
- Seminara, G.; Lanzoni, S.; Tambroni, N. Theoretical Morphodynamics: River Meandering; Firenze University Press: Florence, Italy, 2023. [Google Scholar] [CrossRef]
- Han, X.; Sagaut, P.; Lucor, D. On sensitivity of RANS simulations to uncertain turbulent inflow conditions. Comput. Fluids 2012, 61, 2–5. [Google Scholar] [CrossRef]
- Ishihara, T.; Chen, X. Unsteady Reynolds-Averaged Navier-Stokes simulation of turbulent flow fields around a line of trees and a steep hill using a new turbulent inflow generation method. Int. J. Heat Fluid Flow 2025, 112, 109705. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteorol. Soc. Japan 2009, 87, 895–912. [Google Scholar] [CrossRef]
- Valero, D.; Bung, D.B.; Erpicum, S.; Peltier, Y.; Dewals, B. Unsteady shallow meandering flows in rectangular reservoirs: A modal analysis of URANS modelling. J. Hydro-Environ. Res. 2022, 42, 12–20. [Google Scholar] [CrossRef]
- Rey, L.F.C.; Hinz, D.F.; Abkar, M. Reynolds stress perturbation for epistemic uncertainty quantification of RANS models implemented in OpenFOAM. Fluids 2019, 4, 113. [Google Scholar] [CrossRef]
- Lenci, G.; Feng, J.; Baglietto, E. A generally APPLICABLE hybrid unsteady Reynolds-averaged Navier-Stokes closure scaled by turbulent structures. Phys. Fluids 2021, 33, 105117. [Google Scholar] [CrossRef]
- Miori, S.; Hardy, R.J.; Lane, S.N. Topographic forcing of flow partition and flow structures at river bifurcations. Earth Surf. Process. Landf. 2012, 37, 666–679. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple spatially-distributed models for predicting flood inundation: A Review. Geomorphology 2007, 90, 208–225. [Google Scholar] [CrossRef]
- Torres, C.T. Numerical Modelling of Hydraulic Free Surface Flows and Scale Effects Associated with Physical Modelling; The University of Leeds: Leeds, UK, 2018. [Google Scholar]
- Magdalena, I.; Jonathan, G. Water waves resonance and its interaction with submerged breakwater. Results Eng. 2022, 13, 100343. [Google Scholar] [CrossRef]
- Qi, M.; Li, J.; Chen, Q.; Zhang, Q. Roughness effects on near-wall turbulence modelling for open-channel flows. J. Hydraul. Res. 2018, 56, 648–661. [Google Scholar] [CrossRef]
- Transport, S.; Taylor, P. Fluvial hydrodynamics: Hydrodynamic and sediment transport phenomena. J. Hydraul. Res. 2014, 52, 870–871. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Menter, F.; Lechner, R.; Matyushenko, A.A.; Petersburg, S. Best Practice: Generalized k-⍵ Two-Equation Turbulence Modeling in Ansys CFD (GEKO).; Technical Paper; Ansys: Canonsburg, PA, USA, 2021; pp. 1–32. [Google Scholar]
- Menter, F.R.; Garbaruk, A.V.; Egorov, Y. Explicit algebraic reynolds stress models for anisotropic wall-bounded flows. Progress in Flight Physics. 2012, 3, 89–104. [Google Scholar] [CrossRef]
- Hellsten, A. New Two-Equations Turbulence Model for Aerodynimic Flows. Ph.D. Thesis, Helsinki University of Technology, Laboratory of Aerodynamics, Series A, Espoo, Finland, 2004. [Google Scholar]
- Wallin, S. Engineering Turbulence Modelling for CFD with a Focus on Explicit Algebraic Reynolds Stress Models. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2000; p. 244. [Google Scholar]
- Pham, H.; Nguyen, T.D. The Explicit Algebraic Reynolds Stress Models for Turbulent Flows. Mech. Eng. Res. 2012, 2, 95. [Google Scholar] [CrossRef]
- Rhoads, B.L. River Dynamics: Geomorphology to Support Management; Cambridge University Press: Chicago, IL, USA, 2020. [Google Scholar] [CrossRef]
- Resilience, D.; Growth, G. River Dynamics and Flood Hazards Studies on Risk and Mitigation; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- ANSYS Fluent. ANSYS, Inc. Release 2024 R1 Southpointe, 275 Technol. Drive; ANSYS, Inc.: Canonsburg, PA, USA, 2024. [Google Scholar]
- OpenFOAM Foundation. OpenFOAM Open Source CFD Toolbox, Version 11; OpenFOAM Foundation: London, UK, 2024.
- COMSOL AB. COMSOL Multiphysics® User’s Guide, Version 6.2; COMSOL AB: Stockholm, Sweden, 2024.
- Martínez-Aranda, S.; Murillo, J.; García-Navarro, P. A 1D numerical model for the simulation of unsteady and highly erosive flows in rivers. Comput. Fluids 2019, 181, 8–34. [Google Scholar] [CrossRef]
- Bharadwaj, M.R.; Gupta, L.K.; Pandey, M. Reduction of local scour around a circular bridge pier using the collars and sacrificial piles in non-uniform sediment. Geomorphology 2024, 465, 109378. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Franza, A.; Liu, H. Numerical evaluation of scour effects on lateral behavior of pile groups in clay. Comput. Geotech. 2022, 150, 104913. [Google Scholar] [CrossRef]
- Shaheed, R.; Mohammadian, A.; Yan, X. Numerical Simulation of Turbulent Flow in Bends and Confluences Considering Free Surface Changes Using the Volume of Fluid Method. Water 2022, 14, 1307. [Google Scholar] [CrossRef]
- Li, C.W.; Zhang, M.L. 3D modelling of hydrodynamics and mixing in a vegetation field under waves. Comput. Fluids 2010, 39, 604–614. [Google Scholar] [CrossRef]
- De la Cruz-Ávila, M.; Castillo-Guerrero, F.J.; Barrios-Pina, H.; Bonasia, R. Numerical three-dimensional forecasting of a river section under abnormal discharge conditions due to a tropical storm: A case study on Santa Catarina River, México. Results Eng. 2025, 26, 105067. [Google Scholar] [CrossRef]
- Benoumessad, K.; Fourar, F.Z.; Fourar, A.; Massouh, F. Modeling Turbulent Flow Velocity Profiles in Irregularly shaped Open Channels: A 3D Approach. Eng. Technol. Appl. Sci. Res. 2025, 15, 22203–22208. [Google Scholar] [CrossRef]
- Aghamolaei, Z.; Hessami Kermani, M.R. Re-constructing the river bed using the streamline-generation method. MethodsX 2024, 12, 102539. [Google Scholar] [CrossRef] [PubMed]
- Ziliani, L.; Surian, N.; Botter, G.; Mao, L. Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model. Hydrol. Earth Syst. Sci. 2020, 24, 3229–3250. [Google Scholar] [CrossRef]
- Cassan, L.; Pujol, L.; Lonca, P.; Guibert, R.; Roux, H.; Mercier, O.; Courret, D.; Richard, S.; Horgue, P. ANDROMEDE—A software platform for optical surface velocity measurements. Environ. Model. Softw. 2024, 171, 105883. [Google Scholar] [CrossRef]
- Asif, M.; Ghani, U.; Pasha, G.A. Numerical Modelling of Flow Characteristics in an Asymmetric Trapezoidal Compound Channel with Vegetation Patches. KSCE J. Civ. Eng. 2020, 24, 3659–3673. [Google Scholar] [CrossRef]
- Prerna, R.; Pandey, D.K.; Mahender, K. Longitudinal profiling and elevation-relief analysis of the Indus. Arab. J. Geosci. 2018, 11, 343. [Google Scholar] [CrossRef]
- Sapkale, J.B.; Kadam, Y.U.; Jadhav, I.A.; Kamble, S.S. River in Planform and Variation in Sinuosity Index: A Study of Dhamni River, Kolhapur (Maharashtra), India. Int. J. Sci. Eng. Res. 2016, 7, 863–867. [Google Scholar]
- Datt Tiwari, N.; Panday, A. A Hydrogeomorphic Analysis of Sinuosity Index of River Amran in the Vindhyan Region, India. Webology 2021, 18, 1316–1325. [Google Scholar]
- Seveno, E. Towards an adaptive advancing front method. In Proceedings of the 6th International Meshing Roundtable, Park City, UT, USA, 13–15 October 1997; pp. 349–362. [Google Scholar]
- Freiziger, J.H.; Períc, M.; Street, R. Computational Methods for Fluid Flow, 4th ed.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- COMISIÓN NACIONAL DEL AGUA (Mexico). Banco Nacional De Datos De Aguas Superficiales; Sistema de Información Hidrológica (SIH): Mexico City, Mexico, 2024. [Google Scholar]
- Chow, V.T.; Vijay, S. Chow’ s Handbook of Applied Hydrology, 2nd ed.; Mc Graw Hill Education: New York, NY, USA, 1964. [Google Scholar]
- Speziale, C.G.; Abid, R.; Durbin, P.A. On the realizability of reynolds stress turbulence closures. J. Sci. Comput. 1994, 9, 369–403. [Google Scholar] [CrossRef]
- Van Leer, B. Towards the ultimate conservative difference scheme. J. Comput. Phys. 1997, 135, 229–248. [Google Scholar] [CrossRef]
- Muzaferija, S.; Peric, M.; Sames, P.; Schellin, T. A two-fluid Navier-Stokes solver to simulate water entry. In Proceedings of the 22nd Symposium on Naval Hydrodynamics, Washington, DC, USA, 9–14 August 1998; The National Academies Press: Washington, DC, USA, 1998; pp. 638–651. [Google Scholar]
- Waclawczyk, T.; Koronowicz, T. Comparison of cicsam and hric high-resolution schemes for interface capturing. J. Theor. Appl. Mech. 2008, 46, 325–345. [Google Scholar]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: New York, NY, USA, 1980. [Google Scholar] [CrossRef]
- Li, S.; Qiao, H. Development of a fast fluid dynamics model based on piso algorithm for simulating indoor airflow. In Heat Transf Summer Conference; The American Society of Mechanical Engineers: New York, NY, USA, 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Xie, B.; Xiao, F. Accurate and robust PISO algorithm on hybrid unstructured grids using the multimoment finite volume method. Numer. Heat Transf. Part B Fundam. 2017, 71, 146–172. [Google Scholar] [CrossRef]
- Gopala, V.R.; van Wachem, B.G.M. Volume of fluid methods for immiscible-fluid and free-surface flows. Chem. Eng. J. 2008, 141, 204–221. [Google Scholar] [CrossRef]
- Matsuda, K.; Komori, S.; Takagaki, N.; Onishi, R. Effects of surface tension reduction on wind-wave growth and air-water scalar transfer. J. Fluid Mech. 2023, 960, A22. [Google Scholar] [CrossRef]
- Nakayama, A.; Ikenaga, K. URANS calculation of open-channel flow with unsteady hydraulic jump. J. Appl. Mech. 2008, 11, 859–867. [Google Scholar] [CrossRef]
- Azteca-Noticias, Azteca Noticias. Lluvias Que Trajo La Tormenta Tropical “Alberto” Llenan El Río Santa Catarina. Available online: https://www.youtube.com/watch?v=M6KVGsicDYM&ab_channel=AztecaNoticias (accessed on 25 September 2024).
- NMas. Río Santa Catarina De Monterrey, Al 70% De Su Capacidad Por Lluvias De “Alberto”—Las Noticias. Available online: https://www.youtube.com/watch?v=FheTDVCmpzQ&ab_channel=NMás (accessed on 25 September 2024).
- NMas. ¿Dónde Desemboca Toda El AGUA Del Río SANTA Catarina De Monterrey?—Las Noticias. Available online: https://www.youtube.com/watch?v=hFlSMWgiToY&ab_channel=NMás (accessed on 25 September 2024).
- Ramírez-Serrato, N.L.; Nieto-Butrón, J.J.; Barco-Coyote, S.; Yépez-Rincon, F.D.; Paz, M.P.J. Understanding the Influence of Vegetation on Urban Open-Channel Flow: A Numerical Modeling Approach in Monterrey, Mexico. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2024, 48, 453–458. [Google Scholar] [CrossRef]
- Loeven, G.J.A.; Biji, H. Probabilistic collocation used in a Two-Step approach for efficient uncertainty quantification in computational fluid dynamics. C-Comput. Model. Eng. Sci. 2008, 36, 193–212. [Google Scholar] [CrossRef]
- Chu, M. Uncertainty Quantification in Computational Fluid Dynamics: Physics and Machine Learning Based. arXiv 2023, arXiv:2312.14684. [Google Scholar]
- Loeven, G.J.A.; Witteveen, J.A.S.; Bijl, H. Efficient uncertainty quantification in computational fluid-structure interactions. In Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, USA, 1–4 May 2006; Volume 1, pp. 379–396. [Google Scholar] [CrossRef]
- Bijl, H.; Lucor, D.; Mishra, S. Uncertainty Quantifi cation in Computational Fluid Dynamics, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Adolph, R. Computational Fluid Dynamics 2008; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Imad Rajaa, A.; Ammar Hatem, K. Comparison among the Turbulence Models to Simulate Flow Pattern over ogee Spillway Case Study (Mandali dam in Iraq). Iraqi J. Civ. Eng. 2022, 14, 7–15. [Google Scholar] [CrossRef]
- Shaheed, R.; Mohammadian, A.; Shaheed, A.M. Numerical Simulation of Turbulent Flow in River Bends and Confluences Using the k-ω SST Turbulence Model and Comparison with Standard and Realizable k-ε Models. Hydrology 2025, 12, 145. [Google Scholar] [CrossRef]
- De la Cruz-Ávila, M.; Martínez-Espinosa, E.; Polupan, G.; Vicente, W. Numerical study of the effect of jet velocity on methane-oxygen confined inverse diffusion flame in a 4 Lug-Bolt array. Energy 2017, 141, 1629–1649. [Google Scholar] [CrossRef]
- De León-Ruiz, J.E.; Carvajal-Mariscal, I.; De la Cruz-Ávila, M.; Guzman, J.E.V. Image convolution-based Experimental Technique for Height Estimation of Flame Front: A Case Study on Laminar-to-Transition Jet Diffusion Flames. Appl. Sci. 2022, 33, 075406. [Google Scholar] [CrossRef]
- De la Cruz-Ávila, M.; De León-Ruiz, J.E.; Carvajal-Mariscal, I.; Klapp, J. CFD Turbulence Models Assessment for the Cavitation Phenomenon in a Rectangular Profile Venturi Tube. Fluids 2024, 9, 71. [Google Scholar] [CrossRef]
- Peña-polo, F.; Carvajal-mariscal, I.; Vargas, C.A.; Sigalotti, L.D.G. Statistical analysis of observed Faraday wave patterns. AIP Adv. 2023, 13, 065311. [Google Scholar] [CrossRef]
Models | ||
---|---|---|
RNG [49] | ||
SST [51] | ||
GEKO [52] | ||
BLS-EARSM [53,54,55,56] |
Model | Eddy Viscosity | Turbulence Production and Source Terms |
---|---|---|
RNG | [50,80] | |
SST | [51] | |
GEKO | [52] | |
BLS-EARSM | [53,54,55,56] |
Mesh No. | Polyhedral Cells | Average Computing Time | [m/s] | [m/s] | % Error | % Error | Overall % Error |
---|---|---|---|---|---|---|---|
1 | 188,947 | 2.5 h | 10.26 | 4.92 | 18.44 | 11.06 | 17.40 |
2 | 352,008 | 7 h | 9.54 | 4.66 | 10.18 | 5.2 | 10.16 |
3 | 591,379 | 12 h | 8.7 | 4.39 | 0.46 | 0.9 | 2.11 |
4 | 982,617 | 28 h | 8.6 | 4.23 | 0.69 | 4.51 | 0.82 |
5 | 2,500,743 | 47 h | 8.6 | 3.81 | 0.69 | 10.99 | 5.25 |
6 | 4,228,458 | 90 h | 8.95 | 3.8 | 3.55 | 14.47 | 3.34 |
Observation | -- | -- | ≈8.66 | ≈4.43 | -- | -- | -- |
Turbulence Model | Mean Calculation Time * |
---|---|
k–ε RNG | 12.5 h |
k–ω SST | 12 h |
k–ω GEKO | 11.5 h |
k–ω BSL–EARSM | 16 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Cruz-Ávila, M.; Bonasia, R. Enhanced 3D Turbulence Models Sensitivity Assessment Under Real Extreme Conditions: Case Study, Santa Catarina River, Mexico. Hydrology 2025, 12, 260. https://doi.org/10.3390/hydrology12100260
De la Cruz-Ávila M, Bonasia R. Enhanced 3D Turbulence Models Sensitivity Assessment Under Real Extreme Conditions: Case Study, Santa Catarina River, Mexico. Hydrology. 2025; 12(10):260. https://doi.org/10.3390/hydrology12100260
Chicago/Turabian StyleDe la Cruz-Ávila, Mauricio, and Rosanna Bonasia. 2025. "Enhanced 3D Turbulence Models Sensitivity Assessment Under Real Extreme Conditions: Case Study, Santa Catarina River, Mexico" Hydrology 12, no. 10: 260. https://doi.org/10.3390/hydrology12100260
APA StyleDe la Cruz-Ávila, M., & Bonasia, R. (2025). Enhanced 3D Turbulence Models Sensitivity Assessment Under Real Extreme Conditions: Case Study, Santa Catarina River, Mexico. Hydrology, 12(10), 260. https://doi.org/10.3390/hydrology12100260