Reservoir Ice Conditions from Multi-Sensor Remote Sensing and ERA5-Land: The Manicouagan Hydroelectric Reservoir Case Study
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Ice Surface Temperatures from Optical Imagery
4.2. Ice Backscatter and Cover from C-Band Imagery
4.3. Ice Thickness Variation from ERA5-Land and D-InSAR
4.4. Water Levels and Reservoir Ice Evaluation from Altimetry Data
5. Discussion
5.1. Ice Surface Temperatures from Optical Imagery
5.2. Ice Backscatter and Cover from C-Band Imagery
5.3. Ice Thickness Variations from ERA5-Land and D-InSAR
5.4. Water Levels and Reservoir Ice Evaluation from Altimetry Data
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wayne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E.; et al. Historical trends in lake and river ice cover in the northern hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef][Green Version]
- Gebre, S.; Alfredsen, K.; Lia, L.; Stickler, M.; Tesaker, E. Review of ice effects on hydropower systems. J. Cold Reg. Eng. 2013, 27, 196–222. [Google Scholar] [CrossRef]
- Huokuna, M. Ice jams in Pori. In Proceedings of the 14th Workshop on the Hydraulics of Ice Covered Rivers, Quebec, QC, Canada, 19–22 June 2007; CGU-HS Committee on River Ice Processes and the Environment. Available online: http://cripe.ca/docs/proceedings/19/Huokuna-et-al-2017.pdf (accessed on 1 January 2021).
- Tian, B.; Li, Z.; Engram, M.J.; Niu, F.; Tang, P.; Zou, P.; Xu, J. Characterizing C-band backscattering from thermokarst lake ice on the Qinghai–Tibet Plateau. ISPRS J. Photogramm. Remote Sens. 2015, 104, 63–76. [Google Scholar] [CrossRef]
- Beaton, A.; Whaley, R.; Corston, K.; Kenny, F. Identifying historic river ice breakup timing using MODIS and Google Earth Engine in support of operational flood monitoring in Northern Ontario. Remote Sens. Environ. 2019, 224, 352–364. [Google Scholar] [CrossRef]
- Zhang, S.; Pavelsky, T.M. Remote Sensing of Lake Ice Phenology across a Range of Lakes Sizes, ME, USA. Remote Sens. 2019, 11, 1718. [Google Scholar] [CrossRef][Green Version]
- Siles, G.; Leconte, R.; Peters, D. Retrieval of Lake Ice Characteristics from SAR Imagery. Can. J. Remote Sens. 2022, 48, 379–399. [Google Scholar] [CrossRef]
- Leppäranta, M. Modelling the Formation and Decay of Lake Ice. In The Impact of Climate Change on European Lakes; George, G., Ed.; Aquatic Ecology Series; Springer: Dordrecht, The Netherlands, 2010; Volume 4. [Google Scholar] [CrossRef]
- Lofgren, B.M.; Zhu, Y. Surface energy fluxes on the Great Lakes based on satellite-observed surface temperatures 1992 to 1995. J. Great Lakes Res. 2000, 26, 305–314. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sens. Environ. 2007, 106, 492–507. [Google Scholar] [CrossRef]
- Kang, K.K.; Duguay, C.R.; Howell, S.E.L.; Derksen, C.P.; Kelly, R.E.J. Sensitivity of AMSR-E Brightness Temperatures to the Seasonal Evolution of Lake Ice Thickness. IEEE Geosci. Remote Sens Lett. 2010, 7, 751–755. [Google Scholar] [CrossRef]
- Gherboudj, I.; Bernier, M.; Leconte, R. A Backscatter Modeling for River Ice: Analysis and Numerical Results. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1788–1798. [Google Scholar] [CrossRef]
- Pour, H.K.; Duguay, C.R.; Scott, A.; Kang, K.-K. Improvement of lake ice thickness retrieval from MODIS satellite data using a thermodynamic model. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5956–5965. [Google Scholar] [CrossRef]
- Desrochers, N.M.; Peters, D.L.; Siles, G.; Cauvier Charest, E.; Trudel, M.; Leconte, R. A Remote Sensing View of the 2020 Extreme Lake-Expansion Flood Event into the Peace–Athabasca Delta Floodplain—Implications for the Future SWOT Mission. Remote Sens. 2023, 15, 1278. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Semovski, S.; Shimaraev, M.; Mognard, N.; Legresy, B.; Rémy, F. Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sens. Environ. 2007, 108, 240–253. [Google Scholar] [CrossRef]
- Beckers, J.F.; Casey, J.A.; Haas, C. Retrievals of lake ice thickness from great slave lake and great bear lake using CryoSat-2. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3708–3720. [Google Scholar] [CrossRef]
- Mangilli, A.; Thibaut, P.; Duguay, C.R.; Murfitt, J. A New Approach for the Estimation of Lake Ice Thickness From Conventional Radar Altimetry. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4305515. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Motohashi, K.; Maezawa, N. Monitoring lake ice in Northern Alaska with backscattering and interferometric approaches using Sentinel-1 Sar Data. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar] [CrossRef]
- Murfitt, J.; Duguay, C.R. 50 years of lake ice research from active microwave remote sensing: Progress and prospects. Remote Sens. Environ. 2021, 264, 112616. [Google Scholar] [CrossRef]
- Brown, L.C.; Duguay, C.R. Modelling lake ice phenology with an examination of satellite-detected subgrid cell variability. Adv. Meteorol. 2011, 2011, 529064. [Google Scholar] [CrossRef][Green Version]
- Rybushkina, G.; Troitskaya, Y.; Soustova, I. Ice cover determination of the Volga and the Don River reservoirs on the base of Jason-2 sattelite observations. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014; pp. 149–152. [Google Scholar] [CrossRef]
- Grant, L.; Vanderkelen, I.; Gudmundsson, L.; Tan, Z.; Perroud, M.; Stepanenko, V.M.; Debolskiy, A.V.; Droppers, B.; Janssen, A.B.G.; Woolway, R.I.; et al. Attribution of global lake systems change to anthropogenic forcing. Nat. Geosci. 2021, 14, 849–854. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Helfrich, S.R.; McNamara, D.; Ramsay, B.H.; Baldwin, T.; Kasheta, T. Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process. 2007, 21, 1576–1586. [Google Scholar] [CrossRef]
- Guay, C.; Minville, M.; Braun, M. A global portrait of hydrological changes at the 2050 horizon for the province of Québec. Can. Water Resour. J. 2015, 40, 285–302. [Google Scholar] [CrossRef]
- Turcotte, B.; Morse, B.; Pelchat, G. Impact of Climate Change on the Frequency of Dynamic Breakup Events and on the Risk of Ice-Jam Floods in Quebec, Canada. Water 2020, 12, 2891. [Google Scholar] [CrossRef]
- Hydro-Québec. 2023. Available online: http://www.hydroquebec.com (accessed on 20 January 2023).
- Rampino, M.R.; Caldeira, K. Correlation of the largest craters, stratigraphic impact signatures, and extinction events over the past 250 Myr. Geosci. Front. 2017, 8, 1241–1245. [Google Scholar] [CrossRef]
- Tanji, J. Effets des Couverts de Glace sur la Réponse Dynamique des Barrage-Poids. Master’s Thesis, Université de Montréal, Département de Génies Civil, Géologique et des Mines, École Polytechnique de Montréal, Montréal, QC, Canada, 2015. [Google Scholar]
- Haguma, D.; Leconte, R.; Krau, S. Hydropower plant adaptation strategies for climate change impacts on hydrological regime. Can. J. Civ. Eng. 2017, 44, 962–970. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Normandin, C.; Frappart, F.; Diepkilé, A.T.; Marieu, V.; Mougin, E.; Blarel, F.; Lubac, B.; Braquet, N.; Ba, A. Evolution of the Performances of Radar Altimetry Missions from ERS-2 to Sentinel-3A over the Inner Niger Delta. Remote Sens. 2018, 10, 833. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.; Hessen, D.O.; Samset, B.H.; Stordal, F. Evaluating Global and Regional Land Warming Trends in the Past Decades with Both MODIS and ERA5-Land Land Surface Temperature Data. Remote Sens. Environ. 2022, 280, 113181. [Google Scholar] [CrossRef]
- Li, X.; Jing, Y.; Shen, H.; Zhang, L. The recent developments in cloud removal approaches of MODIS snow cover product. Hydrol. Earth Syst. Sci. 2019, 23, 2401–2416. [Google Scholar] [CrossRef][Green Version]
- Duguay, C.R.; Prowse, T.D.; Bonsal, B.R.; Brown, R.D.; Lacroix, M.P.; Menard, P. Recent trends in Canadian lake ice cover. Hydrol. Process. 2006, 20, 781–801. [Google Scholar] [CrossRef]
- Woolway, R.; Kraemer, B.; Lenters, J.; Merchant, C.; O’Reilly, C.; Sharma, S. Global Lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Atwood, D.K.; Gunn, G.E.; Roussi, C.; Wu, J.; Duguay, C.; Sarabandi, K. Microwave Backscatter From Arctic Lake Ice and Polarimetric Implications. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5972–5982. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Beck, R.A.; Frappart, F.; Korhonen, J.; Xu, M.; Yu, B.; Hinkel, K.M.; Huang, Y.; Yu, B. Analysis of Sentinel-3 SAR altimetry waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes. Remote Sens. Environ. 2020, 239, 111643. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Nandan, V.; Howell, S.E.L.; Geldsetzer, T.; Yackel, J. Seasonal evolution of L-band SAR backscatter over landfast Arctic sea ice. Remote Sens. Environ. 2020, 251, 112049. [Google Scholar] [CrossRef]
- Stroeve, J.; Nandan, V.; Willatt, R.; Tonboe, R.; Hendricks, S.; Ricker, R.; Mead, J.; Mallett, R.; Huntemann, M.; Itkin, P.; et al. Surface-based Ku- and Ka-band polarimetric radar for sea ice studies. Cryosphere 2020, 14, 4405–4426. [Google Scholar] [CrossRef]
- Enjolras, V.M.; Rodrıguez, E. An assessment of a Ka-band radar interferometer mission accuracy over Eurasian Rivers. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1752–1765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siles, G.L.; Leconte, R. Reservoir Ice Conditions from Multi-Sensor Remote Sensing and ERA5-Land: The Manicouagan Hydroelectric Reservoir Case Study. Hydrology 2023, 10, 108. https://doi.org/10.3390/hydrology10050108
Siles GL, Leconte R. Reservoir Ice Conditions from Multi-Sensor Remote Sensing and ERA5-Land: The Manicouagan Hydroelectric Reservoir Case Study. Hydrology. 2023; 10(5):108. https://doi.org/10.3390/hydrology10050108
Chicago/Turabian StyleSiles, Gabriela Llanet, and Robert Leconte. 2023. "Reservoir Ice Conditions from Multi-Sensor Remote Sensing and ERA5-Land: The Manicouagan Hydroelectric Reservoir Case Study" Hydrology 10, no. 5: 108. https://doi.org/10.3390/hydrology10050108
APA StyleSiles, G. L., & Leconte, R. (2023). Reservoir Ice Conditions from Multi-Sensor Remote Sensing and ERA5-Land: The Manicouagan Hydroelectric Reservoir Case Study. Hydrology, 10(5), 108. https://doi.org/10.3390/hydrology10050108