Influence of Pyrolysis Temperature on Biochar Produced from Lignin–Rich Biorefinery Residue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Reactor
2.2. LRR and Char Characterization Procedures
3. Results
3.1. LRR Characterization
3.2. Pyrolysis Tests
3.2.1. Product Yields and Gas Release
3.2.2. Char Characteristics
4. Conclusions
- LRR shows a different thermal evolution compared to alkali lignin. Contrary to alkali lignin, LRR is subject to a prompt weight loss in the range of 280–340 °C due to the presence of holecellulose residue.
- Regarding the products’ distribution and composition, differently from alkali lignin, the effect of temperature was mostly evident between 300–400 °C. A great reduction in the char yields is observed up to 400 °C, where significant reduction in H/C and O/C ratios as well as of volatile content in the chars were observed. At temperatures higher than 500 °C a significant reduction in H/C ratio and volatile compounds was observed consistently to the CH4 and H2 release observed above 500 °C. The presence of holocellulose in LRR was also responsible for the increased production of liquid-products along with a reduction in char yield above 400°C. On the contrary, alkali lignin produced comparable amounts of liquid and char even at the highest temperature. Gas production increased up to 500 °C and does not vary significantly at higher temperatures, in terms of both yield and composition.
- The temperature significantly impacted the porosity of the resulting char. The char structure developed with the temperature, starting from a compact structure at low process temperature and reaching the maximum BET value at about 600 °C. On the contrary, the char produced from alkali lignin features a compact structure even at high temperature. The differences could be ascribed to the high content of volatiles in the LRR. The SEM micrographs confirmed this differences showing a compact structure of LRR char with evident cellulose fibers, preserved after the thermal treatment, with respect to the alkali lignin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission, “2030 Climate & Energy Framework”. Available online: https://ec.europa.eu/clima/policies/strategies/2030_en#tab-0- (accessed on 24 July 2022).
- Star-ColiBri Project. Joint European Biorefinery Vision for 2030. 2011. Available online: Https://Bei.Jcu.Cz/Bioeconomy%20folders/Documents/Biofuels/Biorefineries/Joint-European-Biorefinery-Vision-for-2030 (accessed on 13 September 2022).
- Zheng, Q.; Zhang, D.; Fu, P.; Wang, A.; Sun, Y.; Li, Z.; Fan, Q. Insight into the fast pyrolysis of lignin: Unraveling the role of volatile evolving and char structural evolution. Chem. Eng. J. 2022, 437, 135316. [Google Scholar] [CrossRef]
- Kleinert, M.; Barth, T. Towards a lignincellulosic biorefinery: Direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuels 2008, 22, 1371–1379. [Google Scholar] [CrossRef]
- Bai, X.; Kim, K.H. Biofuels and chemicals from lignin based on pyrolysis. In Production of Biofuels and Chemicals from Lignin; Springer: Berlin/Heidelberg, Germany, 2016; pp. 263–287. [Google Scholar]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sust. Energ. Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Leng, E.; Guo, Y.; Chen, J.; Liu, S.; Jiaqiang, E.; Xue, Y. A comprehensive review on lignin pyrolysis: Mechanism, modeling and the effects of inherent metals in biomass. Fuel 2022, 309, 122102. [Google Scholar] [CrossRef]
- Seo, M.W.; Lee, S.H.; Nam, H.; Lee, D.; Tokmurzin, D.; Wang, S.; Park, Y.K. Recent advances of thermochemical conversion processes for biorefinery. Bioresour. Technol. 2022, 343, 126109. [Google Scholar] [CrossRef] [PubMed]
- Lange, H.; Decina, S.; Crestini, C. Oxidative upgrade of lignin–Recent routes reviewed. Eur. Poly. J. 2013, 49, 1151–1173. [Google Scholar] [CrossRef] [Green Version]
- Ghysels, S.; Ronsse, F.; Dickinson, D.; Prins, W. Production and characterization of slow pyrolysis biochar from lignin-rich digested stillage from lignocellulosic ethanol production. Biomass Bioenergy 2019, 122, 349–360. [Google Scholar] [CrossRef]
- Yang, H.; Dong, Z.; Liu, B.; Chen, Y.; Gong, M.; Li, S.; Chen, H. A new insight of lignin pyrolysis mechanism based on functional group evolutions of solid char. Fuel 2021, 288, 119719. [Google Scholar] [CrossRef]
- Sethupathy, S.; Morales, G.M.; Gao, L.; Wang, H.; Yang, B.; Jiang, J.; Zhu, D. Lignin valorization: Status, challenges and opportunities. Bioresour. Technol. 2022, 347, 126696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shao, Y.; Zhang, L.; Zhang, S.; Westerhof, R.J.; Liu, Q.; Hu, X. Impacts of temperature on evolution of char structure during pyrolysis of lignin. Sci. Total Environ. 2020, 699, 134381. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, D.J.; Bridgwater, A.V.; Elliott, D.C.; Meier, D.; de Wild, P. Lignin fast pyrolysis: Results from an international collaboration. J. Anal. Appl. Pyrolysis 2010, 88, 53–72. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro, A.I.; Giudicianni, P.; Grottola, C.M.; Rabaçal, M.; Costa, M.; Ragucci, R. Unresolved issues on the kinetic modeling of pyrolysis of woody and nonwoody biomass fuels. Energy Fuels 2017, 31, 4035–4044. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels 2006, 20, 388–393. [Google Scholar] [CrossRef]
- Giudicianni, P.; Cardone, G.; Sorrentino, G.; Ragucci, R. Hemicellulose, cellulose and lignin interactions on Arundo donax steam assisted pyrolysis. J. Anal. Appl. Pyrolysis 2014, 110, 138–146. [Google Scholar] [CrossRef]
- Giudicianni, P.; Cardone, G.; Cavaliere, A.; Ragucci, R. Effect of feedstock demineralization on physi-co-chemical characteristics of Arundo donax derived biochar. Chem. Eng. Trans. 2014, 37, 85–90. [Google Scholar] [CrossRef]
- Giudicianni, P.; Cardone, G.; Ragucci, R. Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures. J. Anal. Appl. Pyrolysis 2013, 100, 213–222. [Google Scholar] [CrossRef]
- Di Blasi, C. Combustion and gasification rates of lignocellulosic chars. Prog. Energy Comb. Sci. 2009, 35, 121–140. [Google Scholar] [CrossRef]
- Grottola, C.M.; Giudicianni, P.; Pindozzi, S.; Stanzione, F.; Faugno, S.; Fagnano, M.; Ragucci, R. Steam assisted slow pyrolysis of contaminated biomasses: Effect of plant parts and process temperature on heavy metals fate. Waste Manag. 2019, 85, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Couhert, C.; Commandre, J.M.; Salvador, S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel 2009, 88, 408–417. [Google Scholar] [CrossRef]
C | H | N | O | Volatiles | Fixed Carbon | Ash | Extractives | |
---|---|---|---|---|---|---|---|---|
Wt. % db | Wt. % db | |||||||
LRR | 47.3 (0.1) | 5.9 (0.2) | 0.7 (2.3) | 38.2 (0.2) | 69.6 (0.3) | 22.4 (0.5) | 8.0 (0.1) | 31.8 (2.3) |
Alkali lignin | 65 | 6 | - | 29 | 61.7 | 35.8 | 2.5 | - |
AD | 43 | 6.1 | - | 45.8 | 75.4 | 23.6 | 1 | 6.5 |
K | Na | Mg | P | Ca | Fe | pH | |
---|---|---|---|---|---|---|---|
mg/kg | |||||||
LRR | 6875 (0.2) | 142 (1.2) | 302 (0.8) | 803 (0.5) | 1791 (0.3) | 448 (0.8) | 5.9 (0.3) |
Alkali lignin | 657 | 5864 | 118 | 6 | 82 | 38 | - |
AD | 6378 | 24 | 223 | 364 | 614 | 33 | - |
T | °C | 300 | 400 | 500 | 600 | 700 |
---|---|---|---|---|---|---|
CH4 | wt.% | 0.0 | 2.0 | 5.0 | 6.6 | 5.9 |
CO | 31.1 | 29.2 | 30.2 | 31.7 | 31.5 | |
CO2 | 68.9 | 68.8 | 63.2 | 59.2 | 58.9 | |
C2H4 | 0.0 | 0.0 | 0.3 | 0.3 | 0.3 | |
C2H6 | 0.0 | 0.0 | 1.1 | 1.1 | 0.7 | |
H2 | 0.0 | 0.0 | 0.2 | 1.1 | 2.7 | |
HHV | MJ/kg | 3.1 | 4.0 | 6.9 | 9.2 | 10.7 |
Temperature | °C | 300 | 400 | 500 | 600 | 700 |
---|---|---|---|---|---|---|
H/C | 0.940 (0.3) | 0.604 (0.3) | 0.415 (0.7) | 0.292 (0.5) | 0.151 (0.6) | |
O/C | 0.300 (0.2) | 0.178 (0.4) | 0.070 (0.7) | 0.064 (0.3) | 0.047 (0.6) | |
Volatiles | wt. % db | 48.6 (0.5) | 28.1 (0.4) | 18.0 (0.3) | 14.1 (0.2) | 11.0 (0.1) |
Fixed Carbon | 38.7 (0.6) | 54.1 (0.4) | 60.7 (0.4) | 63.7 (0.2) | 66.5 (0.2) | |
Ash | 12.8 (0.1) | 17.7 (0.1) | 21.3 (0.3) | 22.2 (0.3) | 22.6 (0.2) | |
Na | mg/Kg | 257 (1.2) | 350 (1.0) | 400 (0.9) | 460 (1.0) | 494 (0.8) |
K | 11710 (0.2) | 17000 (0.2) | 17500 (0.2) | 18980 (0.1) | 20390 (0.2) | |
Ca | 2921 (0.4) | 4500 (0.3) | 4700 (0.2) | 4911 (0.2) | 5344 (0.2) | |
Mg | 457 (0.8) | 650 (0.7) | 750 (0.6) | 760 (0.6) | 808 (0.6) | |
P | 1349 (0.5) | 2000 (0.4) | 2200 (0.3) | 2441 (0.3) | 2673 (0.3) | |
pH | 7.8 (0.3) | 9.9 (0.1) | 9.9 (0.1) | 10.0 (0.1) | 10.1 (0.1) | |
BET | m2/gr | 2 (2.8) | 5.5 (2.5) | 126.7 (1.2) | 289.6 (0.3) | 124.3 (0.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grottola, C.M.; Giudicianni, P.; Stanzione, F.; Ragucci, R. Influence of Pyrolysis Temperature on Biochar Produced from Lignin–Rich Biorefinery Residue. ChemEngineering 2022, 6, 76. https://doi.org/10.3390/chemengineering6050076
Grottola CM, Giudicianni P, Stanzione F, Ragucci R. Influence of Pyrolysis Temperature on Biochar Produced from Lignin–Rich Biorefinery Residue. ChemEngineering. 2022; 6(5):76. https://doi.org/10.3390/chemengineering6050076
Chicago/Turabian StyleGrottola, Corinna Maria, Paola Giudicianni, Fernando Stanzione, and Raffaele Ragucci. 2022. "Influence of Pyrolysis Temperature on Biochar Produced from Lignin–Rich Biorefinery Residue" ChemEngineering 6, no. 5: 76. https://doi.org/10.3390/chemengineering6050076
APA StyleGrottola, C. M., Giudicianni, P., Stanzione, F., & Ragucci, R. (2022). Influence of Pyrolysis Temperature on Biochar Produced from Lignin–Rich Biorefinery Residue. ChemEngineering, 6(5), 76. https://doi.org/10.3390/chemengineering6050076