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Abstract: Iron-doped TiO2 nanoparticles (Fe-TiO2) were synthesized and photocatalitically
investigated under high and low fluence values of UV radiation. The Fe-TiO2 physical
characterization was performed using X-ray Powder Diffraction (XRD), Brunauer–Emmett–Teller
(BET) surface area analysis, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy
(SEM), Diffuse Reflectance Spectroscopy (DRS), and X-ray Photoelectron Spectroscopy (XPS). The
XPS evidenced that the ferric ion (Fe3+) was in the TiO2 lattice and unintentionally added co-dopants
were also present because of the precursors of the synthetic method. The Fe3+ concentration played
a key role in the photocatalytic generation of hydroxyl radicals (•OH) and estriol (E3) degradation.
Fe-TiO2 accomplished E3 degradation, and it was found that the catalyst with 0.3 at.% content of Fe
(0.3 Fe-TiO2) enhanced the photocatalytic activity under low UV irradiation compared with TiO2

without intentionally added Fe (zero-iron TiO2) and Aeroxide® TiO2 P25. Furthermore, the enhanced
photocatalytic activity of 0.3 Fe-TiO2 under low UV irradiation may have applications when radiation
intensity must be controlled, as in medical applications, or when strong UV absorbing species are
present in water.
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1. Introduction

In recent years, society and the scientific community have concerned of Emerging Contaminants
(ECs, also called Contaminants of Emerging Concern), which are chemicals that threaten the
environment, human health, and water safety and are not currently covered by existing local or
international water quality regulations [1]. ECs include chemical species such as algae toxins, illegal
drugs, industrial compounds, flame retardants, food additives, nanoparticles, pharmaceuticals (human
and veterinary), personal care products, pesticides, biocides, steroids, synthetic and natural hormones,
and surfactants [2].

Natural hormones (e.g., estrone (E1), 17β-estradiol (E2), and estriol (E3)) as ECs are susceptible
of persisting and bioaccumulating in the environment, and could induce endocrine disruption in
humans and wildlife (vertebrates [3–5] and invertebrates [6,7]). Natural attenuation, drinking water
purification, and conventional municipal wastewater treatment processes are either incapable or only
partially capable of removing estrogens from water [8]. As result, water treatment techniques are
being developed to manage, reduce, degrade, and mineralize low-concentrated ECs (including natural
estrogen) in drinking and wastewater [9]. Advanced Oxidation Processes (AOPs) are promising
techniques to treat ECs in aqueous phase, which include well-known processes such as Fenton and
Fenton-like processes, UV/H2O2, ozonation, and photocatalysis using semiconductors, peroxone
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processes (H2O2/O3), and cavitation [10,11]. Although there are many known AOPs, since Coleman’s
work [12], photocatalysis using titanium dioxide (TiO2) has been identified as one of the most effective
methods to degrade estrogens in water [13]. Several reports recognized that TiO2 can degrade estrogens,
which prevents increases in estrogenic activity in water [14,15] and partially or completely mineralizing
estrogens [14,16].

Titanium dioxide is the most commonly used photocatalyst because of its reasonable optical and
electronic properties, good photocatalytic activity, insolubility in water, chemical and photochemical
stability, nontoxicity, low cost, and high efficiency in pollutant mineralization [17–20]. However, the
band gap energy (Eg) of TiO2, frequently reported as 3.2 eV [21], restrains the photocatalytic activation
to energy sources with a portion of spectrum emission below 387.5 nm [22].

In general the photocatalytic mechanism is as shown in Figure 1. According to Density Functional
Theory (DFT) computations, the valence band (VB) and conduction band (CB) of pure TiO2 are mainly
composed of O2p orbitals and Ti3d orbitals, respectively. Hence, the Fermi level (EF) is located in
the middle of the band gap (BG), indicating that VB is full filled while CB is empty [23]. When using
photons with energy higher than 3.2 eV, photoexcitation of the semiconductor promotes electrons from
VB to CB creating a charge vacancy or hole (h+) in the VB. The h+ in the VB can react with hydroxide
ion to form hydroxyl radical (•OH) or can also be filled by donor absorbed organic molecule (OMads).
Photogenerated electrons in the CB can be transferred to acceptor of electrons and bring about •OH.
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Consequently, reducing the photon energy needed for TiO2 photoactivation has been the focus of
the scientific community until now. Doping is one of the techniques that has been tested to control
or modify the surface properties or internal structure of TiO2. Doping introduces a foreign element
into TiO2 to cause an impurity state in the band gap. The most frequently used doping materials are
transition-metal cations (e.g., Cr, V, Fe, and Ni) at Ti sites, and anions (e.g., N, S, and C) at O sites [24].
Among anion- and cation-dopants, the ferric ion (Fe3+) is one of the most often used because the ionic
radius of Fe3+ (0.69 A) is similar to Ti4+ (0.745 A) [25]. Therefore, Fe3+ can be easily incorporated into
the TiO2 crystal lattice.

The main reported effects of iron-doped TiO2 is a rapid increase in photocatalytic activity that
increases with increased Fe doping, which then reaches a maximum value, and finally decreases with
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further increased Fe content [23,26–37]. However, detrimental effects have been also reported because
of high Fe content [38,39] or agglomerated Fe-TiO2 nanoparticles [40,41].

Although several theoretical and experimental Fe-TiO2 studies have been developed, the
trade-off between doping ratio and radiation intensity is scarcely mentioned. Furthermore, Fe-TiO2

photocatalyst has rarely been considered to be a useful technique for the degradation of E3 [42].
In this work, Fe-TiO2 nanoparticles were synthesized to increase the understanding of the

relationship between doping ratio and radiation intensity for hydroxyl radical (•OH) generation
and E3 degradation. Therefore, we investigated the photocatalytic degradation of E3 using Fe-TiO2

under high and low UV irradiation. We highlight the term low UV irradiation to avoid confusion with
the term “photocatalytic processes under visible light” because we did not intentionally use UV cutoff
filters for the experiments.

2. Results and Discussion

2.1. Characterization of Iron-Doped TiO2

Figure 2 shows X-ray Photoelectron Spectroscopy (XPS) general spectra of TiO2 without added
Fe (zero-iron TiO2) and Fe-TiO2 materials (b, c, and d). For the experimental condition used, Fe did
not affect the bonding structure between titanium and oxygen because the main peaks for all samples
were Ti2p and O1s with the proportion 1:2.2, which is in agreement with the atomic formula of TiO2.

Catalysts 2018, 8, x FOR PEER REVIEW  3 of 24 

 

with further increased Fe content [23,26–37]. However, detrimental effects have been also reported 
because of high Fe content [38,39] or agglomerated Fe-TiO2 nanoparticles [40,41]. 

Although several theoretical and experimental Fe-TiO2 studies have been developed, the trade-off 
between doping ratio and radiation intensity is scarcely mentioned. Furthermore, Fe-TiO2 
photocatalyst has rarely been considered to be a useful technique for the degradation of E3 [42]. 

In this work, Fe-TiO2 nanoparticles were synthesized to increase the understanding of the 
relationship between doping ratio and radiation intensity for hydroxyl radical (•OH) generation and 
E3 degradation. Therefore, we investigated the photocatalytic degradation of E3 using Fe-TiO2 
under high and low UV irradiation. We highlight the term low UV irradiation to avoid confusion 
with the term “photocatalytic processes under visible light” because we did not intentionally use UV 
cutoff filters for the experiments. 

2. Results and Discussion 

2.1. Characterization of Iron-Doped TiO2 

Figure 2 shows X-ray Photoelectron Spectroscopy (XPS) general spectra of TiO2 without added 
Fe (zero-iron TiO2) and Fe-TiO2 materials (b, c, and d). For the experimental condition used, Fe did 
not affect the bonding structure between titanium and oxygen because the main peaks for all 
samples were Ti2p and O1s with the proportion 1:2.2, which is in agreement with the atomic formula 
of TiO2. 

 

Figure 2. X-ray Photoelectron Spectroscopy (XPS) general spectra for zero-iron TiO2 (a), 0.3 Fe-TiO2 (b), 
0.6 Fe-TiO2 (c), and 1.0 Fe-TiO2 (d). 

  

Figure 2. X-ray Photoelectron Spectroscopy (XPS) general spectra for zero-iron TiO2 (a), 0.3 Fe-TiO2

(b), 0.6 Fe-TiO2 (c), and 1.0 Fe-TiO2 (d).

XPS detected unintentionally added elements such as carbon, sulfur, and nitrogen (Table 1) as
co-dopants of zero-iron TiO2 and Fe-TiO2, which were introduced into TiO2 via precursors of the
synthesis. Carbon and sulfur could come from sodium dodecyl sulfate (SDS), and nitrogen could come
from iron (III) nitrate (Fe(NO3)3·9H2O) and HNO3, all of them used in the synthesis process.
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Table 1. Surface elemental composition determined by XPS.

Material
Atomic % of Elements (at.%)

Ti2p O1s C1s Fe2p S2p N1s

Zero-iron TiO2 24.4 52.9 21.3 0 1.4 -
0.3 Fe-TiO2 23.8 51.1 22.9 0.3 1.1 0.8
0.6 Fe-TiO2 23.9 53.1 22.5 0.6 - -
1.0 Fe-TiO2 23.5 52.5 20.6 1 1.5 0.9

High-resolution XPS spectra for the iron region (Figure 3) was studied only for 1.0 Fe-TiO2 because
no Fe2p signals were detected for zero-iron TiO2, 0.3 Fe-TiO2, or 0.6 Fe-TiO2. The deconvolution of
high-resolution XPS spectra (Figure 3) was developed for previously reported peaks of Fe2+ and
Fe3+ [43]. Shirley baseline was subtracted before peak fitting. The Gaussian–Lorentzian mix function
was used with a 40% factor. Charge compensation was set by the O1s peak charge with −0.58 eV. As a
result, the correlation between the experimental signal and the theoretic model (Σχ2) was 8.43 × 10−2.

Catalysts 2018, 8, x FOR PEER REVIEW  4 of 24 

 

XPS detected unintentionally added elements such as carbon, sulfur, and nitrogen (Table 1) as 
co-dopants of zero-iron TiO2 and Fe-TiO2, which were introduced into TiO2 via precursors of the 
synthesis. Carbon and sulfur could come from sodium dodecyl sulfate (SDS), and nitrogen could 
come from iron (III) nitrate (Fe(NO3)3·9H2O) and HNO3, all of them used in the synthesis process. 

Table 1. Surface elemental composition determined by XPS. 

Material 
Atomic % of Elements (at.%) 

Ti2p O1s C1s Fe2p S2p N1s 
Zero-iron TiO2 24.4 52.9 21.3 0 1.4 - 

0.3 Fe-TiO2 23.8 51.1 22.9 0.3 1.1 0.8 
0.6 Fe-TiO2 23.9 53.1 22.5 0.6 - - 
1.0 Fe-TiO2 23.5 52.5 20.6 1 1.5 0.9 

High-resolution XPS spectra for the iron region (Figure 3) was studied only for 1.0 Fe-TiO2 
because no Fe2p signals were detected for zero-iron TiO2, 0.3 Fe-TiO2, or 0.6 Fe-TiO2. The 
deconvolution of high-resolution XPS spectra (Figure 3) was developed for previously reported 
peaks of Fe2+ and Fe3+ [43]. Shirley baseline was subtracted before peak fitting. The 
Gaussian–Lorentzian mix function was used with a 40% factor. Charge compensation was set by the 
O1s peak charge with −0.58 eV. As a result, the correlation between the experimental signal and the 
theoretic model (Σχ2) was 8.43 × 10−2. 

 

Figure 3. High-resolution XPS spectra for the iron region for 1.0 Fe-TiO2. 

According to the theoretical model (sum of fitting peaks), both Fe3+ and Fe2+ were present in the 
lattice of 1.0 Fe-TiO2. We suggest that Fe3+ was incorporated into the lattice of TiO2 to form Ti–O–Fe 
bonds, because the ionic radius of Fe3+ (0.69 A) is similar to the ionic radius of Ti4+ (0.745 A) [25].  
The XPS technique detected Fe2+ because Fe3+ underwent reduction to Fe2+ during XPS measurement 
in vacuum [44]. 

The band gap energy (Eg) obtained with the Kubelka–Monk method (Figure 4) for Aeroxide® 
TiO2 P25 was 3.2 eV, which is consistent with the value reported previously [45]. For Aeroxide® TiO2 
P25 Eg, red-shifts were detected as 0.22, 0.24, 0.25, and 0.3 eV for zero-iron TiO2, 0.3 Fe-TiO2, 0.6 
Fe-TiO2, and 1.0 Fe-TiO2, respectively, which is consistent with values reported by Shi et al. of 0.25 
eV [46] and with density functional theory calculations that suggested the hybridized band of Ti3d 
and Fe3d reduces Eg approximately 0.3–0.5 eV [44], or 0.2–0.34 eV [47]. 

Figure 3. High-resolution XPS spectra for the iron region for 1.0 Fe-TiO2.

According to the theoretical model (sum of fitting peaks), both Fe3+ and Fe2+ were present in the
lattice of 1.0 Fe-TiO2. We suggest that Fe3+ was incorporated into the lattice of TiO2 to form Ti–O–Fe
bonds, because the ionic radius of Fe3+ (0.69 A) is similar to the ionic radius of Ti4+ (0.745 A) [25].
The XPS technique detected Fe2+ because Fe3+ underwent reduction to Fe2+ during XPS measurement
in vacuum [44].

The band gap energy (Eg) obtained with the Kubelka–Monk method (Figure 4) for Aeroxide® TiO2

P25 was 3.2 eV, which is consistent with the value reported previously [45]. For Aeroxide® TiO2 P25
Eg, red-shifts were detected as 0.22, 0.24, 0.25, and 0.3 eV for zero-iron TiO2, 0.3 Fe-TiO2, 0.6 Fe-TiO2,
and 1.0 Fe-TiO2, respectively, which is consistent with values reported by Shi et al. of 0.25 eV [46]
and with density functional theory calculations that suggested the hybridized band of Ti3d and Fe3d
reduces Eg approximately 0.3–0.5 eV [44], or 0.2–0.34 eV [47].
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For zero-iron TiO2, Eg for Fe-TiO2 materials (Table 2) decreased as long as the Fe content increased,
so the Fe content generated red-shift. For Aeroxide® TiO2 P25 Eg, the red-shift of Fe-TiO2 agreed with
previously reported values, but it agreed less for zero-iron TiO2. Therefore, red-shift was not only
related to Fe content, but also to the synthesis method and unintentionally co-doped TiO2.

Table 2. Structural and optical properties of zero-iron TiO2, and Fe-TiO2.

Material
Eg Anatase: Rutile Particle Size Surface Area Pore Size High UV Low UV

eV nm % nm m2 g−1 nm % %

Aeroxide®

TiO2 P25
3.2 * 387.5 * 80:20 * 21 * 50 ± 15 * 17.5 * 36.4 0.8

Zero-iron TiO2 2.98 416.1 73.1:26.9 6.6 66.5 8.4 99.26 7.64
0.3 Fe-TiO2 2.96 418.9 77.9:21.1 6.9 77.6 1.2 99.40 8.21
0.6 Fe-TiO2 2.95 420.3 78.8:21.2 7.1 73.0 1.4 99.42 8.77
1.0 Fe-TiO2 2.90 427.6 76.3:23.7 6.9 83.1 9.4 99.43 10.63

* According to the manufacturer.

XRD patterns in Figure 5 revealed zero-iron TiO2 and Fe-TiO2 materials had both anatase and
rutile phases. No XRD Fe2O3 peaks (2θ equal to 33.0◦, 35.4◦, 40.7◦, 43.4◦, and 49.2◦) were observed,
concluding that Fe3+ replaced Ti4+ in the TiO2 crystal framework [48,49]. The synthesis method
allowed uniform distribution of Fe within TiO2. The anatase:rutile phase ratio calculated by Spurr
and Myers’ method showed that zero-iron TiO2 and Fe-TiO2 materials were a mixture of anatase and
rutile phases (Table 2). The amount of anatase was less in Fe-TiO2 materials than in Aeroxide® TiO2

P25. The smaller proportion of anatase could lead to a reduction of photocatalytic activity because the
anatase phase has higher photocatalytic activity than rutile TiO2 [50,51]. However, it is accepted that
the optimal photocatalytic activity of TiO2 is reached with an optimal mixture of anatase and rutile
phases [52]. Moreover, the increased anatase proportion in 0.3 Fe-TiO2 and 0.6 Fe-TiO2 compared
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with zero-iron TiO2 could improve photocatalytic activity. The increased anatase proportion was
attributable to Fe doping disturbing the arrangements of TiO2 phases [53]. This trend has also been
observed when Fe-doped TiO2 was synthesized using sol-gel [54] or co-precipitation methods [32].
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The average particle size of Fe-TiO2 materials obtained by Scherrer’s formula was 6.9 nm, which
is less than the particle size of Aeroxide® TiO2 P25 (Table 2). Fe-TiO2 materials should increase
photocatalytic activity because of their higher surface area and the short migration distance of the
photogenerated charge carriers (electron/hole (e−/h+)) from the bulk material to the surface.

Further BET analysis (Figure 6) confirmed that average surface area of Fe-TiO2 materials was
77.9 m2 g−1, higher than zero-iron TiO2 and Aeroxide® TiO2 P25. BET isotherms followed a type
IV shape according to the Langmuir classification, which is associated with the characteristics of
mesoporous material [55]. The observed hysteresis is probably due to gas cooperative adsorption or
condensation inside the pores of material [56]. BET analysis showed pore sizes (Table 2) were in the
mesoporous range (2–50 nm, according to IUPAC classification) for zero-iron TiO2 and 1.0 Fe-TiO2, and
the microporous range (0.2–2 nm, according to IUPAC classification) for 0.3 Fe-TiO2 and 0.6 Fe-TiO2.
Mesoporous pore size should facilitate the mass transfer of reactants and products in the reaction
system, so photocatalytic improvement based on this property could improve zero-iron TiO2 and
Fe-TiO2 materials with respect to Aeroxide® TiO2 P25 [31].

Patra et al. [49] developed a similar nanoparticle synthesis procedure, which generated surface
area values ranging from 126 to 385 m2 g−1 and mesoporous size distribution values ranging from 3.1
to 3.4 nm. Particles obtained in our work were different, probably because of the application of a mild
thermal treatment and the use of SDS at critical micelle concentration as a template.

Figure 7 shows SEM images of agglomerated and assembled nanoparticles of zero-iron TiO2.
The different amounts of Fe in the TiO2 lattice changed neither the particle size nor the morphology
of the zero-iron TiO2. Although the average pore size allowed an increase of the superficial area,
agglomeration could lead to lower photocatalytic activity.



Catalysts 2018, 8, 625 7 of 24Catalysts 2018, 8, x FOR PEER REVIEW  7 of 24 

 

 

Figure 6. Brunauer–Emmett–Teller (BET) isotherms for zero-iron TiO2 (a), 0.3 Fe-TiO2 (b), 0.6 Fe-TiO2 
(c), and 1.0 Fe-TiO2 (d). 

Patra et al. [49] developed a similar nanoparticle synthesis procedure, which generated surface 
area values ranging from 126 to 385 m2 g−1 and mesoporous size distribution values ranging from 3.1 
to 3.4 nm. Particles obtained in our work were different, probably because of the application of a 
mild thermal treatment and the use of SDS at critical micelle concentration as a template. 

Figure 7 shows SEM images of agglomerated and assembled nanoparticles of zero-iron TiO2. 
The different amounts of Fe in the TiO2 lattice changed neither the particle size nor the morphology 
of the zero-iron TiO2. Although the average pore size allowed an increase of the superficial area, 
agglomeration could lead to lower photocatalytic activity. 

 

Figure 7. SEM image of zero-iron TiO2 after mechanical grinding and sonication. 

Figure 6. Brunauer–Emmett–Teller (BET) isotherms for zero-iron TiO2 (a), 0.3 Fe-TiO2 (b), 0.6 Fe-TiO2

(c), and 1.0 Fe-TiO2 (d).

Catalysts 2018, 8, x FOR PEER REVIEW  7 of 24 

 

 

Figure 6. Brunauer–Emmett–Teller (BET) isotherms for zero-iron TiO2 (a), 0.3 Fe-TiO2 (b), 0.6 Fe-TiO2 
(c), and 1.0 Fe-TiO2 (d). 

Patra et al. [49] developed a similar nanoparticle synthesis procedure, which generated surface 
area values ranging from 126 to 385 m2 g−1 and mesoporous size distribution values ranging from 3.1 
to 3.4 nm. Particles obtained in our work were different, probably because of the application of a 
mild thermal treatment and the use of SDS at critical micelle concentration as a template. 

Figure 7 shows SEM images of agglomerated and assembled nanoparticles of zero-iron TiO2. 
The different amounts of Fe in the TiO2 lattice changed neither the particle size nor the morphology 
of the zero-iron TiO2. Although the average pore size allowed an increase of the superficial area, 
agglomeration could lead to lower photocatalytic activity. 

 

Figure 7. SEM image of zero-iron TiO2 after mechanical grinding and sonication. Figure 7. SEM image of zero-iron TiO2 after mechanical grinding and sonication.

Transmission electron microscopy (TEM) images confirmed nanoparticle clusters and particle
sizes of zero-iron TiO2 (Figure 8b) and 0.3 Fe-TiO2 (Figure 8a) between 5 and 10 nm (between 1.2 and
9.4 nm according to Scherrer’s formula). The lattice fringe spacing was 0.35 nm, as shown in Figure 8b,
which was consistent with the d-spacing (101) of anatase [25]. The lattice fingers of the nanoparticles
showed that Fe-TiO2 materials were highly crystallized.
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Figure 8. Transmission electron microscopy (TEM) image of 0.3 Fe-TiO2 (a) and zero-iron TiO2 (b).

2.2. Characterization of Irradiation Source

Figure 9 shows the emission spectra of irradiation sources used in this study. Using the main
peaks reported for a fluorescent lamp (Figure 9a), the calibration of the spectrometer generated
an R2 value equal to 0.999. The emission spectrum of the GE F15T8 BLB lamp (Figure 9b) was in
the 356–410 nm range. However, the emission spectrum of the GE F15T8 D lamp (Figure 9c) was
continuous broadband between 380 and 750 nm. The light intensity of the GE F15T8 lamp was reported
to be between 3440 µW cm−2 [57] and 4000 µW cm−2 [58], from which 6% was UV radiation [59]. The
intensity of the GE F15T8 lamp was 1500 µW cm−2. This lamp has an internal coating that absorbs
78% of visible light (as specified by the manufacturer) in the spectrum below 400 nm, as shown in
Figure 9b. Therefore, the GE F15T8 BLB and GE F15T8 D lamps were designated as high and low UV
irradiation sources, respectively.
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Because Eg of Aeroxide® TiO2 P25 is 3.2 eV (387.5 nm), see Figure 9, both the GE F15T8 BLB
and GE F15T8 D lamps emitted photons that could photoactivate Aeroxide® TiO2 P25. However, the
proportion of the emission spectrum that Aeroxide® TiO2 P25 could use for photocatalytic activity was
different. An approximation of the amount of radiative intensity used for photocatalytic activity was
obtained with the area under the curve-spectrum below the Eg value. Consequently, Aeroxide® TiO2

P25 could take advantage of 36.4% of the emission spectrum of the GE F15T8 BLB lamp and 0.8% of
the emission spectrum of the GE F15T8 D lamp. Table 2 lists amount of radiative spectrum used by
zero-iron TiO2 and Fe-TiO2 materials according to each Eg.

Based on morphological and crystalline structure analysis, the favorable characteristics to enhance
photocatalytic activity of Fe-TiO2 material are effective insertion of the Fe3+ ion into the TiO2 lattice,
red-shift (2.90–2.96 eV), nanoparticle size (6.9–7.1 nm), specific surface area (73.0–83.1 nm), pore
size (1.2–9.4 nm), and radiation absorbance below the equivalent Eg wavelength (8.21–10.63% of
daylight lamp spectrum). Its main disadvantageous characteristics are expected to be high particle
agglomeration and lower anatase phase compared with zero-iron TiO2. Further, photocatalytic
activity is very sensitive to crystalline array and particle size and shape; differences in the density of
hydroxyl groups on the particle surface and the number of water molecules hydrating the surface; the
surface area and surface charge; differences in the number and nature of trap sites; the dopant
concentration, localization, and chemical state of the dopant ions; radiation intensity; particle
aggregation and superficial charge; and scavenger species in media [39,60]. Consequently, material
characterization alone could not predict photocatalytic activity [28]. Therefore, in this research, we
used the N,N-dimethyl-p-nitrosoaniline (pNDA) probe and E3 to evaluate the photocatalytic activity
by following •OH production, which is one of the most significant reactive oxygen species (ROS), and
E3, which is an EC.

2.3. Hydroxyl Radical Generation under High and Low UV Irradiation

The generation of •OH was measured using pNDA, which is a well-characterized •OH scavenger
as mentioned in Section 3.5. In brief, pNDA undergoes bleaching when reacting with •OH according
to Muff et al. mechanism of the oxidation of pNDA by •OH [61].

In this work, pNDA bleaching followed a pseudo-first-order equation, so the apparent rate
constant was calculated by ln(C/C0) = k1t, where C0 is the initial concentration, C is the reaction
concentration at a given time, and k1 is the pseudo-first-order reaction rate constant. The slope of the
plot after applying a linear fit represents the rate constant, k1.

Because the relationship between pNDA bleaching and •OH production follows a 1:1
stoichiometry [61], the steady-state of •OH generation ([•OH]ss) can be considered equal to the
initial velocity (r0) according to Equation (1) and reported in Table 3:

[pNDA]

dt

∣∣∣∣
t=0

= r0 = [•OH]ss (1)

Fe-TiO2 materials showed a similar anatase:rutile phase ratio, particle size, and specific surface
area, and therefore the variation in r0 values was due to the difference of Fe content inside TiO2. The
generation of •OH radicals (r0) was feasible using zero-iron TiO2, Fe-TiO2 materials, and Aeroxide®

TiO2 P25 under both high (Figure 10a) and low UV irradiation (Figure 10b).
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Table 3. •OH generation rate of zero-iron TiO2 and Fe-TiO2.

Catalyst at.%
Load

High UV Irradiation Low UV Irradiation

k1 R2 r0 k1 R2 r0

mg L−1 min−1 µM•OH min−1 min−1 µM•OH min−1

TiO2 Aeroxide® P25 - 20 0.06 0.988 0.49 0.012 0.989 0.105
Zero-iron TiO2 0 320 0.056 0.993 0.49 0.005 0.973 0.045

0.3 Fe-TiO2 0.3 320 0.067 0.998 0.58 0.004 0.990 0.042
0.6 Fe-TiO2 0.6 320 0.031 0.998 0.28 0.002 0.999 0.025
1.0 Fe-TiO2 1 320 0.004 0.987 0.04 0.00002 0.891 0.0002
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at pH 6 ± 0.1, and 20 ◦C.

When high UV irradiation was used, the maximum r0 was 0.58 µM•OH min−1 for 0.3 Fe-TiO2.
The enhancement in photocatalytic activity of 0.3 at.% Fe-TiO2, compared with zero-iron TiO2 was by
the extended lifetime values of the photogenerated charge carriers (e− and h+) produced by Fe3+ ions,
which played a role as charge carriers trapped at or near the particle surface. The trapping mechanisms
are shown in Equations (2)–(5) [62].

Fe3+ + ecd
− → Fe2+ electron trap (2)

Fe2+ + Ti4+ → Fe3+ + Ti3+ migration (3)

Fe3+ +hvb
+ → Fe4+ hole trap (4)

Fe4+ + OH− → Fe3+ + •OH migration (5)

The mechanism suggested for •OH generation is shown in Figure 11. When TiO2 contains a Fe3+

ion, the Fe3d orbitals split into two bands, one is a hybrid band (A2g) and one is midgap band (T2g),
which induce a new localized BG state [23]. Therefore, when TiO2 absorbs photons with energy less
than 3.2 eV, photoexcitation of the semiconductor promotes an electron from the VB to the midgap band
(T2g), also called a shallow trap, creating an electron-hole pair. The hole in the valence band (VB) can
react with hydroxide ions to form •OH, absorbed organic molecules, or trap Fe3+ following Equations
(4) and (5). Additionally, photogenerated electrons in the midgap band (T2g) can be transferred to Fe3+

following a dark redox reaction at the interface, as suggested by Neubert et al. [63] and consequently
bring about •OH.
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Increasing the Fe3+ doping content of Fe-TiO2 to 0.6 and 1.0 at.%, Fe-TiO2 was unfavorable to the
photocatalytic activity because the additional Fe3+ doping in the TiO2 sample inhibited the extended
lifetime of charge carriers, acted as recombination sites and consequently decreased the photocatalytic
efficiency [29], as proposed in Equations (6)–(9) [39].

Fe2+ + hvb
+ → Fe3+ recombination (6)

Fe4+ + ecd
− → Fe3+ recombination (7)

Fe4+ + Fe2+ → 2Fe3+ recombination (8)

Fe4+ + Ti3+ → Fe3+ + Ti4+ recombination (9)

When low UV irradiation conditions were used, the r0 values for zero-iron TiO2 and Fe-TiO2

materials were lower than the value estimated for Aeroxide® TiO2 P25. Compared with the effects
of high UV irradiation, the reduction in r0 value observed was related both to pNDA adsorption of
UV-visible radiation (lowered the number of photons available to activate the photocatalyst), and the
augmented Fe content, which increased the recombination rate.

2.4. Photocatalytic Degradation of Estriol under High and Low UV Irradiation

E3 photocatalytic degradation curves are shown in Figure 12a,b using both high and low UV
irradiation, respectively. In both cases, E3 photocatalytic degradation followed a pseudo-first-order
model and the rate constant, k1 (Table 4), was obtained by fitting experimental data to ln ([E3]/[E30])
= k1t. Fe content influenced k1 for both high and low UV irradiation.
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Table 4. Kinetic values of E3 degradation using zero-iron TiO2 and Fe-TiO2.

Catalyst
Load

High UV Irradiation Low UV Irradiation

k1 R2 r0,E3 k1 R2 r0,E3

mg L−1 min−1 µME3 min−1 min−1 µME3 min−1

TiO2 Aeroxide® P25 20 0.021 0.996 0.21 0.0029 0.992 0.030
Zero-iron TiO2 320 0.007 0.997 0.069 0.0045 0.991 0.040

0.3 Fe-TiO2 320 0.009 0.994 0.090 0.0050 0.992 0.042
0.6 Fe-TiO2 320 0.011 0.997 0.099 0.0034 0.999 0.030
1.0 Fe-TiO2 320 0.003 0.979 0.027 0.0016 0.987 0.012

Figure 13 shows the pseudo-first-order rate constant (k1) of E3 photocatalytic degradation.
In general, the photocatalytic activity first increased and then decreased as the Fe concentration
increased, which is similar to the behavior found with the •OH probe in Section 2.3 and has been
previously reported using other organic molecules [23,29,64].
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Under high UV irradiation (Figure 13a), 0.6 Fe-TiO2 k1 was higher than for zero-iron TiO2,
0.3 Fe-TiO2, and 1.0 Fe-TiO2. The increase in photocatalytic performance of 0.6 Fe-TiO2 was related
with the increase in the lifetime of electron-hole pairs because Fe created additional energy levels near
the conduction band of TiO2, as the mechanism suggests in Figure 11.
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Under low UV irradiation (Figure 13b), zero-iron TiO2, 0.3 Fe-TiO2, and 0.6 Fe-TiO2 showed more
photocatalytic activity than Aeroxide® TiO2 P25 because those materials had enhanced superficial
properties, such as particle size, and superficial area, as mentioned in Section 2.1. Furthermore,
0.3 Fe-TiO2 enhanced photocatalytic activities with k1 values as high as 0.005 min−1. The high
photocatalytic activity of 0.3 Fe-TiO2 was due to the synergistic effect of unintentionally added
co-dopants, superficial properties, and Fe content that increased the lifetime of photogenerated charge
carriers and the efficiency of electron transfer.

The photocatalytic degradation rate of E3 using Aeroxide® TiO2 P25 was reported to be
0.25 min−1 [65], 0.134 min−1 [66], and 0.12 min−1 [67]. However, the experimental setups and
catalyst loads were different. Besides these few studies, E3 degradation using Fe-TiO2 nanoparticles is
scarcely reported. Only comparing magnitudes of k1, the first-order rates to degrade pharmaceuticals
using Fe-TiO2 nanoparticles were 0.001 min−1 for ibuprofen, 0.0015 min−1 for carbamazepine, and
0.0014 min−1 for sulfamethoxazole [68], which are in the order of magnitude obtained in this work
(see Table 4).

Regarding unintentionally added co-dopants, Fe-TiO2 co-doping demonstrated a synergistic effect
to increase photocatalytic activity under visible light for sulfur [69], nitrogen [44], and FexTi1-xO2-yNy

co-doping [70]. Surface properties of the material, such as a particle size (6.9 nm) and surface area
(77.6 m2 g−1), also facilitated the mass transfer between interface, E3, and sub-products.

The relationship between the •OH radical system and E3 kinetic degradation was determined via
linear fit between •OH initial rate generation (r0,OH) and initial E3 degradation (r0,E3). In general, the
procedure to correlate r0,OH and r0,E3 was first to sort pair values (r0,OH, r0,E3), and then fit the data to
linear regression, as shown Figure 14a,b.
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Under high UV irradiation, the linear fit correlation was r0,E3 = 0.091 r0,OH + 0.040 with R2 = 0.197.
Under low UV irradiation, the linear fit correlation was r0,E3 = 0.066 r0,OH + 0.012 with R2 = 0.975. The
correlation between the pair (r0,OH, r0,E3) under high UV irradiation was too low to be considered a
linear relationship. We suggest the low correlation was because not only •OH caused E3 degradation,
but holes (h+) or other reactive oxygen species also caused E3 degradation.

However, a linear relationship under low UV irradiation was attributable to •OH being the
main reactive oxygen species responsible for photocatalytic activity. Therefore, the contribution of
h+ to photocatalytic activity was lower because oxidation power was lower due to reduced Eg. This
suggestion supports the mechanisms proposed in Figure 11, in which adding Fe into the lattice of TiO2

reduced the Eg with a consistent reduction of redox potential, as mentioned by others [28].
The main mechanism of E3 degradation under low UV irradiation was via electron (e−) transfer

to give rise •OH. Additionally, the enhanced photocatalytic activity of 0.3 Fe-TiO2 under low UV
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irradiation provides evidence that the trapping-recombination mechanism of Fe-TiO2 can be controlled
by irradiation intensity. Therefore, we suggest that there is a trade-off between irradiation intensity,
the trapping-recombination rate, and •OH production that is worthy of further research.

The efficiency resource of the Fe-TiO2/Low UV system was obtained through dimensional analysis
of the slope of the linear fit of data shown in Figure 14b. The units of slope are E3 moles degraded
per •OH mol generated at initial time, so 0.662 E3 molecules underwent degradation when one •OH
was generated for the photocatalytic system independent of Fe doping content in TiO2. A sustainable
process was also achieved, for which 0.3 Fe-TiO2 since absorbed 8.21% of emission spectra of the
lamp below the equivalent Eg wavelength over 0.8% or 7.64% of Aeroxide® TiO2 P25 and zero-iron
TiO2, respectively.

2.5. Relationship between Fe Content and Kinetic Constant

Photonic efficiency has been suggested to increase linearly with the doping ratio due to the
formation of the charge carrier trapping centers, while it concurrently decreases quadratically with
the doping ratio because to the creation of recombination centers [71]. Alternatively, we suggest an
empirical relationship between the E3 degradation pseudo-first-order rate constant (k1) and Fe content
(at.%) in TiO2, as described in Equation (10):

k1(δ) = c
[
e−ke(δ+α) − e−ka(δ+α)

]
(10)

where k1 is the pseudo-first-order constant, ke is the electron trap constant, ka is the electron
recombination constant, δ at.% is the Fe doping amount in TiO2, and c and α are system constants. To
solve the model described in Equation (10), a numerical approximation by root-mean-square error
minimization method was used according to Equation (11):

ε =

√
1
n ∑

i

∣∣∣[k1.i]− [k1.i]
∣∣∣ (11)

where [k1.i] is the theoretical k1 value, [k1.i] is the experimental k1 value, n is the number of data,
and ε is the root-mean-square error. The solution of Equation (10) was performed by simultaneously
solving ke, ka, c, and α using Excel Solver® (Frontline Systems, NV, US). As an example, photocatalytic
degradation of E3 under low UV irradiation was fitted to Equation (10), as shown in Figure 15.

The empirical model solved in Equation (12) shows that electron trap constant (ke) overcome
electron recombination (ka) before optimal catalyst load. This model could lead to experimental work
using iron-doped TiO2 in which the optimal content of Fe gives rise to the maximum E3 degradation.

k1(δ) = −1.99
[
e−2.81(δ+0.197) − e−2.78(δ+0.197)

]
(12)
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3. Materials and Methods

3.1. Reagents

Sigma-Aldrich (St. Louis, MO, USA) supplied estriol (E3, C18H24O3, ≥97%), titanium
isopropoxide (TTIP, Ti[OCH(CH3)2]4, 97%), N,N-Dimethyl-4-nitrosoaniline (pNDA, also called RNO,
C8H10N20, 97%), sodium dodecyl sulfate (SDS), and iron (III) nitrate (Fe(NO3)3·9H2O, >99.99%).
Aeroxide® TiO2 P25 (formerly Degussa P25 with 50 ± 15 m2 g−1 of the specific surface area, 21 nm of
average particle size, 80:20 of anatase:rutile ratio according to the manufacturer) granted by Evonik
Industries (Essen, Germany) was the photocatalytic standard. Fremont (CA, USA) supplied HNO3,
H2SO4, absolute ethanol, HPLC-grade methanol, and HPLC-grade water. All chemicals were used
as received.

3.2. Photoreactor Setup

Figure 16 depicts the photoreactor, which was a cylindrical water-jacketed glass vessel (318 mL)
with 102 mm and 63 mm of interior height and diameter, respectively. The horizontal and vertical
position of the photoreactor was constant for all experiments. Lamps were set horizontally and
centered above the photoreactor. Two 15 W GE F15T8 BLB lamps (also called black-light lamps, Boston,
MA, USA) supplied high UV irradiation, and two 15 W GE F15T8 D lamps (also called daylight
lamps) provided low UV irradiation. The overall system was in a closed box to avoid the effects of
sunlight or any artificial radiation sources. Lamp emission spectra were measured using a lab-made
spectrophotometer using a CMOS webcam with a diffraction grating of 1000 lines mm−1 [72,73].
Emission spectra calibration of the spectrophotometer was developed using a 9 W fluorescent lamp
(Tecnolite, Jalisco, Mexico). The temperature of all experiments was set at 20 ◦C using a thermostatic
bath with recirculation (Polystat, Cole-Palmer, Vernon Hills, IL, USA). An optical filter was not used in
the experiments, so visible light condition was not simulated.
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3.3. Synthesis of Materials

The synthesis method of iron-doped TiO2 (Fe-TiO2) materials followed the hydrothermal sol-gel
synthetic approach proposed by Patra et al. with some differences in precursor and thermal
treatment [49]. Our synthesis method used iron (III) nitrate instead of FeCl3 and absolute ethanol
instead of isopropyl alcohol. The thermal treatment was a programmed cycle of 31 h (increasing
ramp-drying-increasing ramp-calcination-decreasing ramp) instead of direct calcination for 6 h. First,
solution A was prepared by dissolving 1.44 g of SDS in 10 mL of deionized water. Then, four different
solutions B were prepared to dissolve iron (III) nitrate in 2 mL of absolute ethanol (≥99.8 %) and 3 mL of
TTIP was added slowly. The amounts of iron (III) nitrate were 0, 0.4, 4.3, and 42.6 mg of Fe(NO3)3·9H2O
identified as zero-iron TiO2, 0.3 Fe-TiO2, 0.6 Fe-TiO2, and 1.0 Fe-TiO2, respectively. Once ready, solution
A was continuously stirred and solution B was slowly dropped into solution A. The pH of the resulting
mixture was adjusted to 1 using concentrated HNO3 and stirred for 3 h. The mixture was kept at
3 ◦C for 36 h. The precipitated solid was collected by filtration using Whatman Quantitative Filter
Paper Grade 42. The materials were simultaneously dried and calcinated with a programmed thermal
treatment (Isotemp® Programmable Muffle Furnace, Fisher Scientific, Dubuque, IA, USA) following
first the temperature increase from ambient temperature to 353 K, with a temperature ramp of 1 K
min−1 that was held for 720 min. The temperature was then increased from 353 K to 773 K with a
temperature ramp of 1 K min−1 that was held for 360 min. Finally, the temperature was decreased
from 773 K to 353 K with a temperature ramp of −1 K min−1, and then the furnace was turned off.
The materials were washed with 50:50 methanol-water and dried to 377 K overnight.

3.4. Materials Characterization

X-ray photoelectron spectroscopy (XPS) was performed using a Thermo Fisher Scientific K-Alpha
X-ray photoelectron spectrometer (Waltham, MA, USA) with a monochromatized Al Kα X-ray source
(1487 V). The deconvolution of high-resolution XPS spectra was developed using the software XPSpeak
4.1. (Raymund W.M. Kwok, Shatin, Hong Kong).
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UV-visible reflectance spectroscopy was obtained with Video–Barrelino integrating sphere
coupled to Cary 50 spectrophotometer (Varian Inc, Palo Alto, CA, USA). Diffuse reflectance spectra
were transformed using the Kubelka–Munk method to obtain Eg of zero-iron TiO2 and Fe-TiO2

materials. Kubelka–Munk method plots (F(R)hv)1/2 versus hv, draws a tangent at the inflection point
on the curve and estimates Eg with the hv value at the intersection with abscissa. In this case, F(R) is a
reflectance function equal to (1 − R)2/2R, R is the reflectance percentage, h is the Planck’s constant,
and v is frequency.

XRD patterns were recorded in a Siemens D-5000 diffractometer (Munich, Germany) using
Cu Kα radiation (λ = 1.54060 Å) from 10◦ to 85◦. The procedure for phase identification used the
QualX2.0 software with database developed by Altomare et al. [74]. The cards used for identification
were 00-901-5929, 00-900-1681, and 00-900-4140 for anatase, rutile, and brookite, respectively. The
quantification phases followed the method proposed by Spurr and Myers according to Equation (13):

f =
1

1 + 1.26 IR
IA

(13)

where f is the anatase percentage, IA is intensity at a diffraction angle 2θ of 25.36◦, and IR is intensity at
a diffraction angle 2θ of 27.46◦ [75].

The particle size was estimated by Scherrer’s formula described in Equation (14), where β is the
full width at half of the maximum of the diffraction peaks (radians), k is the shape constant, λ is the
wavelength of the incident Cu Kα radiation (λ = 1.54060 Å), θ is the Bragg’s angle (radians), and D is
the particle size (Å).

D =
k λ

β cos θ
(14)

Brunauer–Emmett–Teller (BET) isotherms were obtained in Nova Station A equipment
(Quantachrome Instruments, Boynton Beach, FL, USA). The surface morphology was observed by SEM
in a JEOL ultrahigh resolution field emission electron microscope JSM-7800 F (JEOL, Tokyo, Japan)
with 20 kV accelerating voltage, and 3 mm WD. Transmission electron microscopy (TEM) images were
obtained in a JEM-2100 LaB6 electron microscope (JEOL, Tokyo, Japan).

3.5. Hydroxyl Radical Generation

In this study, pNDA bleaching was selected as an •OH probe because pNDA was useful for
measuring the photocatalytic performance of TiO2 [51,76,77] because of the following advantages: (1)
it is selective of the reaction of pNDA with •OH [78]; (2) its high reaction rate with •OH on the order
of 1010 M−1 s−1 [51,79]; (3) its easy application through observable bleaching at 440 nm following
Beer’s Law, in which pNDA bleaching a yellowish solution to transparent; and (4) its 1:1 stoichiometry,
meaning that one •OH can bleach one pNDA molecule [51,80–82].

The pNDA absorption (Figure 17) measurements were obtained using a UV-visible
spectrophotometer (Hatch DR/4000U, Loveland, CO, USA) at 440 nm following Beer-Lambert law.
The pNDA test solution was 10 µM initial concentration and pH 6.0 ± 0.1 adjusted using NaOH or
HCl when needed. No buffer solutions were used because they can compete for •OH. Final pH was
verified at the end of tests to discharge pH-pNDA bleaching.
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centrifuged at 6000 rpm for 15 min (Biofuge Primo, Sorvall, Hanau, Germany) and measured in the 
UV-visible spectrophotometer. Once the catalyst load was used and after the dark phase, no 
adsorption of pNDA was detected near the detection limit of UV-visible spectrophotometer. 
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Figure 17. Structural formula and absorbance spectrum of N,N-dimethyl-p-nitrosoaniline (pNDA).

The photocatalytic standard was Aeroxide® TiO2 P25, and the load was 20 mg L−1. The choice
of catalyst load was based on our previous work on •OH generation of Aeroxide® TiO2 P25 [16]. For
zero-iron TiO2 and Fe-TiO2 materials, the catalyst load used was 320 mg L−1, which produced a •OH
generation rate under high UV irradiation to set a baseline. Catalyst load differences were attributable
to the aggregation of lab-made TiO2, superficial properties, and optical properties of suspensions, as
shown in Figure 18.
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Figure 18. Suspension transmittance of Fe-TiO2 material and Aeroxide TiO2 P25; where zero-iron TiO2

(a), 0.3 Fe-TiO2 (b), 0.6 Fe-TiO2 (c), and 1.0 Fe-TiO2 (d).

The photocatalytic experiments were conducted as follows. First, a pNDA test solution was set at
20 ◦C, the catalyst was added, and the suspension was mixed for 20 min without radiation. To evaluate
the adsorption of pNDA on TiO2, an aliquot was withdrawn and centrifuged. Then, the system was
fully illuminated, and aliquots were withdrawn after specific periods. Each sample was centrifuged
at 6000 rpm for 15 min (Biofuge Primo, Sorvall, Hanau, Germany) and measured in the UV-visible
spectrophotometer. Once the catalyst load was used and after the dark phase, no adsorption of pNDA
was detected near the detection limit of UV-visible spectrophotometer.
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3.6. Photolysis and Photocatalytic Degradation of E3

The initial E3 concentration was 10 µM because (1) this research was part of a project focused on
the removal of E3 in water using sequentially coupled membrane filtration; (2) the solubility limit of
E3 in water was previously reported to be 11.1 µM [83], and 45.1 µM [8,84], and (3) the sensitivity of
the analytical techniques used in this work. The E3 solution was prepared to dissolve 2.88 mg of E3 in
1 L of deionized water by stirring at room conditions in the dark for six hours. Working solutions were
stored in an amber flask.

Each photocatalytic experiment used 100 mL of E3 working solution. Initial pH was adjusted
to obtain a similar surface charge of TiO2 [85]. Depending on the initial water conditions, the initial
pH value was adjusted to 6.0 ± 0.1 using NaOH or HCl when needed. A dark period (no radiation)
was allowed for 20 min. Then, similar experimental conditions were carried out as described in
Section 3.5. Additionally, the aliquots withdrawn from suspension were filtered using a 0.1 µm
syringe filter (MillexVV, Millipore, Billerica, MA, USA). A blank experiment without irradiation and
TiO2 photocatalyst was conducted for comparison. The blank experiment showed that E3 cannot be
degraded in absences of either TiO2 or UV light. Once the catalyst was loaded and after the dark phase,
no adsorption of E3 was detected near the detection limit of HPLC.

3.7. Analytical Methods

The E3 concentration was monitored using an HPLC system (Waters 1515; Milford, MA, USA)
equipped with a UV detector (Waters 2787) that has an injection volume of 20 µL. The analytical method
was performed in isocratic analytical mode using an Inertsil® ODS-3 column (GL Science, Tokyo,
Japan; 150 mm × 4.6 mm, 5 µm) thermostated at 25 ◦C. The wavelength was at 280 nm according
to E3 maximum absorbance. The mobile phase was methanol (49%) and deionized water (51%) at a
flow rate of 1 mL min−1. The retention time of E3 was 10 min, and the limit of E3 detection was 0.1
µM (0.029 mg L−1). The detection limit was obtained by developing two calibration curves: the first
between 10 and 0.1 and second between 1 and 0.01. Both calibration curves followed area = 2928[E3]
with R2 = 0.9899, but areas below 0.1 were not detected.

4. Conclusions

This study provided an understanding of the relationship between the Fe doping ratio and
radiation intensity for •OH generation and estriol (E3) degradation. The main results were that:

• E3 degradation using 0.3 Fe-TiO2 was feasible and can be improved by controlling irradiation
intensity which was found closely related with light absorption and the catalytic reaction rate;

• the synthesis method and thermal treatment allowed nanoparticles with large superficial areas
and the incorporation of iron ions into the TiO2 lattice.; and

• changes in trapping recombination centers could be controlled with irradiation intensity to
enhance the photocatalytic activity.

Therefore, our findings provide the opportunity to reconsider studies in which iron-doped
TiO2 impaired photocatalytic activity and to improve an application in which irradiation should be
controlled. For example, Fe-TiO2 can potentially be applied to medical uses in which low irradiation
intensity should be used to avoid adverse effects in humans or wildlife, which has also been suggested
by others [86]. In the field of water treatment, we propose that Fe-TiO2 is an efficient material that could
harvest low-energy photons to degrade and mineralize dyes [87], biocides [88], pharmaceuticals [89],
industrial chemicals [90], and estrogens—as shown in this study—to create an energetically green
water treatment process.
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