Potential Health Risk of Microplastic Exposures from Skin-Cleansing Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Analytical Investigation
2.3.1. Optical Microscopy
2.3.2. Micro-Fourier Transform Infrared Spectroscopy
2.4. Statistical Analysis
2.5. Assessing Exposure Method to Microplastics
3. Results and Discussion
3.1. Optical Microscopy
3.2. Micro-Fourier Transform Infrared Spectroscopy
3.3. Statistical Analysis
3.4. Assessing Exposure Paths to Microplastics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AT | average exposure time |
ATR | attenuated total reflection |
BW | body mass |
CF | conversion factor |
CI 14720 | carmoisine |
CSF | Cancer slope factor |
DEA | diethanolamine |
DPG | dipropylene glycol |
EC | emerging contaminant |
ECHA | European Chemical Agency |
ED | exposure duration |
EDTA | ethylene-diamine-tetra-acetic acid |
EF | exposure frequency |
ESR | Institute of Environmental Science and Research Limited |
FDA | U.S. Food and Drug Administration |
FTIR | Fourier transform infrared spectroscopy |
HA | hierarchical cluster analysis |
HM | heavy metal |
HPLC | high performance liquid chromatography |
InhR | inhalation rate |
IR | infrared |
IR | ingestion rate |
MP | microplastic |
NOC | natural and organic cosmetics |
OM | optical microscopy |
PAH | polycyclic aromatic hydrocarbon |
PCA | pyrrolidone carboxylic acid |
PCB | polychlorinated biphenyl |
PCCP | personal care and cosmetic product |
PEF | particle emission factor |
PEG | polyethylene glycol |
REACH | Council on the Registration, Evaluation, Authorization, and Restriction of Chemicals |
RfD | daily reference dose |
SA | exposed surface area |
SC | stratum corneum |
SCCS | Scientific Committee on Consumer Safety |
TEA | triethanolamine |
US EPA | U.S. Environmental Protection Agency |
WHO | World Health Organization |
References
- Loprieno, N. Guidelines for safety evaluation of cosmetic products in the EC countries. Food Chem. Toxicol. 1992, 30, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, G.J.; Antignac, E.; Re, T.; Toutain, H. Safety assessment of personal care products/cosmetics and their ingredients. Toxicol. Appl. Pharmacol. 2010, 243, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Marepally, S.K.; Vemula, P.K.; Xu, C. Inorganic Nanoparticles for Transdermal Drug Delivery and Topical Application. In Nanoscience in Dermatology; Hamblin, M.R., Avci, P., Prow, T.W., Eds.; Academic Press: London, UK, 2016; pp. 57–72. [Google Scholar] [CrossRef]
- Henkler, F.; Tralau, T.; Tentschert, J.; Kneuer, C.; Haase, A.; Platzek, T.; Luch, A.; Götz, M.E. Risk assessment of nanomaterials in cosmetics: A European union perspective. Arch. Toxicol. 2012, 86, 1641–1646. [Google Scholar] [CrossRef]
- Alnuqaydan, A.M. The dark side of beauty: An in-depth analysis of the health hazards and toxicological impact of synthetic cosmetics and personal care products. Front. Public Health 2024, 12, 1439027. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, S. Approach to an answer to “How dangerous microplastics are to the human body”: A systematic review of the quantification of MPs and simultaneously exposed chemicals. J. Hazard. Mater. 2023, 460, 132404. [Google Scholar] [CrossRef] [PubMed]
- Banica, A.L.; Radulescu, C.; Dulama, I.D.; Bucurica, I.A.; Stirbescu, R.M.; Stanescu, S.G. Microplastic debris in yogurt: Occurrence, characterization, and implications for human health. J. Sci. Arts 2024, 24, 223–248. [Google Scholar] [CrossRef]
- Banica, A.L.; Radulescu, C.; Dulama, I.D.; Bucurica, I.A.; Stirbescu, R.M.; Stanescu, S.G. Microplastics, polycyclic aromatic hydrocarbons, and heavy metals in milk: Analyses and induced health risk assessment. Foods 2024, 13, 3069. [Google Scholar] [CrossRef]
- Banica, A.L.; Radulescu, C.; Stirbescu, R.M.; Dulama, I.D.; Bucurica, I.A.; Stanescu, S.G.; Stirbescu, N.M. Microplastics contamination of dairy products with high-fat content—Occurrence and associated risks. UPB Sci. Bull. B Chem. Mater. Sci 2024, 86, 85–108. [Google Scholar]
- Aristizabal, M.; Jiménez-Orrego, K.V.; Caicedo-León, M.D.; Páez-Cárdenas, L.S.; Castellanos-García, I.; Villalba-Moreno, D.L.; Ramírez-Zuluaga, L.V.; Hsu, J.T.S.; Jaller, J.; Gold, M. Microplastics in dermatology: Potential effects on skin homeostasis. J. Cosmet. Dermatol. 2024, 23, 766–772. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 14, 4501. [Google Scholar] [CrossRef]
- Caputo, F.; Vogel, R.; Savage, J.; Vella, G.; Law, A.; Della Camera, G.; Hannon, G.; Peacock, B.; Mehn, D.; Ponti, J.; et al. Measuring particle size distribution and mass concentration of nanoplastics and microplastics: Addressing some analytical challenges in the sub-micron size range. J. Colloid Interface Sci. 2021, 588, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ. Toxicol. Pharmacol. 2019, 68, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P. A review on the impacts of microplastic beads used in cosmetics. Acta Biomed. Sci. 2016, 3, 47–52. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A detailed review study on potential effects of Microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef]
- Yee, M.S.; Hii, L.W.; Looi, C.K.; Lim, W.M.; Wong, S.F.; Kok, Y.Y.; Tan, B.K.; Wong, C.Y.; Leong, C.O. Impact of microplastics and nanoplastics on human health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef]
- Ali, M.; Xu, D.; Yang, X.; Hu, J. Microplastics and PAHs mixed contamination: An in-depth review on the sources, co-occurrence, and fate in marine ecosystems. Water. Res. 2024, 257, 121622. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Bonanomi, M.; Salmistraro, N.; Porro, D.; Pinsino, A.; Colangelo, A.M.; Gaglio, D. Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: A risk factor for human health. Chemosphere 2022, 303, 134947. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, Y.; Long, J.; Yang, X.; Bao, L.; Yang, Z.; Wu, B.; Si, R.; Zhao, W.; Peng, C. Polystyrene microplastic exposure induces insulin resistance in mice via dysbacteriosis and pro-inflammation. Sci. Total. Environ. 2022, 838, 155937. [Google Scholar] [CrossRef]
- Luo, T.; Wang, C.; Pan, Z.; Jin, C.; Fu, Z.; Jin, Y. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring. Environ. Sci. Technol. 2019, 53, 10978–10992. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Amereh, F.; Amjadi, N.; Mohseni-Bandpei, A.; Isazadeh, S.; Mehrabi, Y.; Eslami, A.; Naeiji, Z.; Rafiee, M. Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. Environ. Poll. 2022, 314, 120174. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.A.; Liu, R.; Nihart, A.; El Hayek, E.; Castillo, E.; Barrozo, E.R.; Suter, M.A.; Bleske, B.; Scott, J.; Forsythe, K.; et al. Quantitation and identification of microplastics accumulation in human placental specimens using pyrolysis gas chromatography mass spectrometry. Toxicol. Sci. 2024, 199, 81–88. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Nor, N.H.M.; de Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk assessment of microplastic particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- Banica, A.L.; Bucur (Popa), R.M.; Dulama, I.D.; Stirbescu, R.M.; Bucurica, I.A.; Radulescu, C. Assessment of microplastics in personal care products by microscopic methods and vibrational spectroscopy. Sci. Stud. Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2023, 24, 155–171. Available online: https://pubs.ub.ro/dwnl.php?id=CSCC6202302V02S01A0006 (accessed on 16 February 2025).
- Kadac-Czapska, K.; Ośko, J.; Knez, E.; Grembeck, M. Microplastics and Oxidative Stress—Current Problems and Prospects. Antioxidants 2024, 13, 579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xu, J.; Wang, X.; Jabeen, K.; Li, D. Microplastic contamination of fish gills and the assessment of both quality assurance and quality control during laboratory analyses. Mar. Poll. Bull. 2021, 173, 113051. [Google Scholar] [CrossRef]
- Radulescu, C.; Dulama, I.D.; Banica, A.L.; Bucurica, I.A.; Stirbescu, R.M.; Gorghiu, L.M. Fast Method of Isolating Microplasticsfrom Milk, Yoghurt, Sour Cream and. Butter. Patent Application no. RO137927A3 and no. PCT/RO2024/000010, 2023. Available online: https://worldwide.espacenet.com/patent/search?q=pn%3DRO137927A0 (accessed on 16 February 2025).
- Aralu, C.C.; Okoye, P.A.C.; Abugu, H.O.; Egbueri, J.C.; Eze, V.C. Impacts of unregulated dumpsites: A study on toxic soil contamination, associated risks, and call for sustainable environmental protection in Nnewi, Nigeria. J. Hazard. Mater. Adv. 2024, 15, 100442. [Google Scholar] [CrossRef]
- Kyowe, H.A.; Awotoye, O.O.; Oyekunle, J.A.O.; Olusola, J.A. Index of heavy metal pollution and health risk assessment with respect to artisanal gold mining operations in Ibodi-Ijesa, Southwest Nigeria. J. Trace Elem. Miner. 2024, 9, 100160. [Google Scholar] [CrossRef]
- Bucurica, I.A.; Dulama, I.D.; Radulescu, C.; Banica, A.L.; Stanescu, S.G. Heavy metals and associated risks of wild edible mushrooms consumption: Transfer factor, carcinogenic risk, and health risk index. J. Fungi 2024, 10, 844. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.B.; Schmitz, T.J. Physical Rehabilitation, 5th ed.; F.A. Davis Company: Philadelphia, PA, USA, 2007; Available online: https://tnaiota.org/documents/elibrary/physical_rehabilitation.pdf (accessed on 3 March 2025).
- Zarafu, I.; Matei, L.; Bleotu, C.; Ionita, P.; Tatibouët, A.; Paun, A.; Nicolau, I.; Hanganu, A.; Limban, C.; Nuta, D.C.; et al. Synthesis, characterization, and biologic activity of new acyl hydrazides and 1,3,4-oxadiazole derivatives. Molecules 2020, 25, 3308. [Google Scholar] [CrossRef]
- Bredacs, M.; Barretta, C.; Castillon, L.F.; Frank, A.; Oreski, G.; Pinter, G.; Gergely, S. Prediction of polyethylene density from FTIR and Raman spectroscopy using multivariate data analysis. Polym. Test. 2021, 104, 107406. [Google Scholar] [CrossRef]
- Adhikari, S.; Kelkar, V.; Kumar, R.; Halden, R.U. Methods and Challenges in the detection of microplastics and nanoplastics: A mini-review. Polym. Int. 2022, 71, 543–551. [Google Scholar] [CrossRef]
- Caldwell, J.; Taladriz-Blanco, P.; Lehner, R.; Lubskyy, A.; Ortuso, R.D.; Rothen-Rutishauser, B.; Petri-Fink, A. The micro- submicro, and nanoplastic hunt: A review of detection methods for plastic particles. Chemosphere 2022, 293, 133514. [Google Scholar] [CrossRef]
- Roscher, L.; Halbach, M.; Nguyen, M.T.; Hebeler, M.; Luschtinez, F.; Scholz-Bottcher, B.M.; Primpke, S.; Gerdts, G. Microplastics in two German wastewater treatment plants: Year-long effluent analysis with FTIR and Py-GC/MS. Sci. Total. Environ. 2022, 817, 152619. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.J.; et al. Validation of ATR FTIR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Poll. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Verleye, G.A.; Roeges, N.P.; De Moor, M.O. Easy Identification of Plastics and Rubbers; iSmithers Rapra Technology Limited: Shropshire, UK, 2001. [Google Scholar]
- Council Directive 76/768/EEC of 27 July 1976 on the Approximation of the Laws of the Member States Relating to Cosmetic Products. Off. J. Eur. Union 1976, L 262, 169–200. Available online: https://eur-lex.europa.eu/eli/dir/1976/768/oj/eng (accessed on 18 January 2025).
- Scientific Committee on Consumer Safety. SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation (SCCS/1647/22), 12th ed.; 2023; Available online: https://health.ec.europa.eu/document/download/32a999f7-d820-496a-b659-d8c296cc99c1_en?filename=sccs_o_273_final.pdf (accessed on 18 January 2025).
- van Wering, D. Plastic—The Hidden Beauty Ingredient—An Analysis of the Use of Microplastics in Personal Care Products and the Upcoming Legislation Covering Intentionally Added Microplastics. Available online: https://www.beatthemicrobead.org/wp-content/uploads/2022/06/Plastic-TheHiddenBeautyIngredients.pdf (accessed on 31 March 2025).
- Commission Regulation (EU) 2023/2055 of 25 September 2023 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council. Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Synthetic Polymer Microparticles. Off. J. Eur. Union 2006, L 238, 67–88. Available online: https://eur-lex.europa.eu/eli/reg/2023/2055/oj/eng (accessed on 26 January 2025).
- Kozlowska, J.; Prus, W.; Stachowiak, N. Microparticles based on natural and synthetic polymers for cosmetic applications. Int. J. Biol. Macromol. 2019, 129, 952–956. [Google Scholar] [CrossRef]
- Anagnosti, L.; Varvaresou, A.; Pavlou, P.; Protopapa, E.; Carayanni, V. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Mar. Poll. Bull. 2021, 162, 111883. [Google Scholar] [CrossRef]
- Aprea, A.; Mariani, D.; Trimigno, E.; Marcucci, C.; Cortella, R. Microplastics detection in some cosmetic samples by accelerated solvent extraction and micro-FTIR. Talanta 2025, 283, 127190. [Google Scholar] [CrossRef]
- Winiarska, E.; Jutel, M.; Zemelka-Wiacek, M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environ. Res. 2024, 251, 118535. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; Dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater 2021, 416, 126124. [Google Scholar] [CrossRef]
- Persoons, R.; Richard, J.; Herve, C.; Montlevier, S.; Marques, M.; Maitre, A. Biomonitoring of styrene occupational exposures: Biomarkers and determinants. Toxicol. Lett. 2018, 298, 99–105. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Yousefi, N.; Tufenkji, N. Are there nanoplastics in your personal care products? Environ. Sci. Technol. Lett. 2017, 4, 280–285. [Google Scholar] [CrossRef]
- Campbell, C.S.; Contreras-Rojas, L.R.; Delgado-Charro, M.B.; Guy, R.H. Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. J. Contr. Release 2012, 162, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Döge, N.; Hadam, S.; Volz, P.; Wolf, A.; Schönborn, K.H.; Blume-Peytavi, U.; Alexiev, U.; Vogt, A. Identification of polystyrene nanoparticle penetration across intact skin barrier as rare event at sites of focal particle aggregations. J. Biophot. 2018, 11, e201700169. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Damin Jeong, D.; Choi, J.W.; Jeong, S.; Kim, H.; Song, B.W.; Lim, S.; Kim, I.K.; Lee, S.; Kim, S.W. Microplastic exposure linked to accelerated aging and impaired adipogenesis in fat cells. Sci. Rep. 2024, 14, 23920. [Google Scholar] [CrossRef]
- Stanescu, S.G.; Banica, A.L.; Dulama, I.D.; Stirbescu, R.M.; Coman, D.M.; Radulescu, C. Assessment of drinking water quality and associated health risk: A statistical approach based on physicochemical parameters and heavy metals content. J. Sci. Arts 2024, 24, 705–724. [Google Scholar] [CrossRef]
Sample Code | Color and Number of Microparticles | Total [n·L−1] | ||||||
---|---|---|---|---|---|---|---|---|
Black | Blue | Red | Green | Grey | Purple | Turquoise | ||
LS1 | 2000 | 2000 | nd* | nd* | nd* | nd* | 1000 | 5000 |
LS2 | 2000 | 1000 | nd* | nd* | 2000 | nd* | nd* | 5000 |
LS3 | 5000 | 3000 | 1000 | nd* | nd* | nd* | nd* | 9000 |
LS4 | 1000 | 1000 | nd* | nd* | nd* | nd* | nd* | 2000 |
LS5 | 3000 | 6000 | nd* | nd* | nd* | 1000 | nd* | 10,000 |
LS6 | 2000 | 4000 | nd* | 1000 | 1000 | nd* | nd* | 8000 |
LS7 | 4000 | 3000 | 2000 | nd* | 1000 | nd* | nd* | 10,000 |
LS8 | 1000 | 1000 | nd* | nd* | nd* | nd* | nd* | 2000 |
LS9 | 2000 | nd* | nd* | nd* | nd* | nd* | nd* | 2000 |
LS10 | 2000 | 6000 | nd* | nd* | nd* | nd* | nd* | 8000 |
Total | 24,000 | 27,000 | 3000 | 1000 | 4000 | 1000 | 1000 | 61,000 |
Sample Code | Color and Number of Microparticles | Total [n·L−1] | ||||||
---|---|---|---|---|---|---|---|---|
Black | Blue | Red | Grey | Purple | Turquoise | Brown | ||
MW1 | 24,000 | 2000 | 4000 | nd* | nd* | 1000 | 2000 | 33,000 |
MW2 | 2000 | 1000 | nd* | nd* | nd* | nd* | nd* | 3000 |
MW3 | 2000 | 2000 | nd* | 1000 | nd* | nd* | nd* | 5000 |
MW4 | 3000 | 6000 | nd* | 1000 | 1000 | nd* | nd* | 11,000 |
MW5 | 3000 | 2000 | nd* | nd* | nd* | nd* | nd* | 5000 |
MW6 | 3000 | 1000 | nd* | nd* | nd* | nd* | nd* | 4000 |
Total | 37,000 | 14,000 | 4000 | 2000 | 1000 | 1000 | 2000 | 61,000 |
Sample Code | Color and Number of Microparticles | Total [n·L−1] | ||||
---|---|---|---|---|---|---|
Black | Blue | Red | Grey | Purple | ||
MCO1 | 3000 | 6000 | 1000 | nd* | nd* | 10,000 |
MCO2 | 5000 | 1000 | nd* | nd* | nd* | 6000 |
MCO3 | 2000 | 1000 | nd* | nd* | nd* | 3000 |
MCO4 | 4000 | 1000 | 1000 | 1000 | 1000 | 8000 |
MCO5 | 3000 | nd* | nd* | nd* | nd* | 3000 |
MCO6 | 3000 | 2000 | nd* | nd* | nd* | 5000 |
Total | 20,000 | 11,000 | 2000 | 1000 | 1000 | 35,000 |
Sample | <50 [µm] | 50–100 [µm] | 100–500 [µm] | 500–1000 [µm] | >1000 [µm] | Shape of MPs | |
---|---|---|---|---|---|---|---|
Fiber | Fragment | ||||||
Liquid soap | 2 | 5 | 57 | 37 | 7 | 78 | 30 |
Micellar water | 6 | 5 | 41 | 26 | 8 | 44 | 44 |
Micellar cleansing oil | 1 | 3 | 45 | 36 | 14 | 61 | 39 |
Samples | Cotton | Cellulose | Flax | Wool | Poly(methyl methacrylate) | Polyamide (Nylon) | Polyester | Polyethylene | Polyurethane | Other polymers |
---|---|---|---|---|---|---|---|---|---|---|
Liquid soap | 52 | 52 | 8 | 0 | 12 | 8 | 2 | 1 | 0 | 5 |
Micellar water | 56 | 17 | 5 | 4 | 4 | 3 | 0 | 2 | 0 | 7 |
Micellar cleansing oil | 66 | 18 | 15 | 1 | 30 | 3 | 3 | 1 | 2 | 14 |
Total | 174 | 87 | 28 | 5 | 46 | 14 | 5 | 4 | 2 | 26 |
Categories of Samples | Micellar Water | Liquid Soap | Micellar Cleansing Oil | ||||
---|---|---|---|---|---|---|---|
Coefficients | Fiber Type | Occurrence Source | Fiber Type | Occurrence Source | Fiber Type | Occurrence Source | |
Fiber type | Pearson Correlation | 1 | 0.659 ** | 1 | 0.808 ** | 1 | 0.770 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | ||||
N | 88 | 88 | 108 | 108 | 100 | 100 | |
Occurrence source | Pearson Correlation | 0.659 ** | 1 | 0.808 ** | 1 | 0.770 ** | 1 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | ||||
N | 88 | 88 | 108 | 108 | 100 | 100 |
Sample | R | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics | ||||
---|---|---|---|---|---|---|---|---|---|
R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
Liquid soap | 0.808 a | 0.653 | 0.649 | 4.040 | 0.653 | 199.041 | 1 | 106 | 0.000 |
Micellar water | 0.659 a | 0.434 | 0.427 | 6.048 | 0.434 | 65.950 | 1 | 86 | 0.000 |
Micellar cleansing oil | 0.770 a | 0.593 | 0.589 | 4.259 | 0.593 | 142.897 | 1 | 98 | 0.000 |
Product Category | Sample Code | Dder | Ding | Dinh | DTOTAL |
---|---|---|---|---|---|
[n·L−1·day−1] | [n·L−1·day−1] | [n·L−1·day−1] | [n·L−1·day−1] | ||
Liquid soap | LS1 | 1.25 × 10−1 | 7.14 × 10−4 | 1.05 × 10−7 | 1.26 × 10−1 |
LS2 | 1.25 × 10−1 | 7.14 × 10−4 | 1.05 × 10−7 | 1.26 × 10−1 | |
LS3 | 2.25 × 10−1 | 1.29 × 10−3 | 1.89 × 10−7 | 2.26 × 10−1 | |
LS4 | 5.00 × 10−2 | 2.86 × 10−4 | 4.20 × 10−8 | 5.03 × 10−2 | |
LS5 | 2.50 × 10−1 | 1.43 × 10−3 | 2.10 × 10−7 | 2.51 × 10−1 | |
LS6 | 2.00 × 10−1 | 1.14 × 10−3 | 1.68 × 10−7 | 2.01 × 10−1 | |
LS7 | 2.50 × 10−1 | 1.43 × 10−3 | 2.10 × 10−7 | 2.51 × 10−1 | |
LS8 | 5.00 × 10−2 | 2.86 × 10−4 | 4.20 × 10−8 | 5.03 × 10−2 | |
LS9 | 5.00 × 10−2 | 2.86 × 10−4 | 4.20 × 10−8 | 5.03 × 10−2 | |
LS10 | 2.00 × 10−1 | 1.14 × 10−3 | 1.68 × 10−7 | 2.01 × 10−1 | |
Micellar water | MW1 | 1.86 × 10−2 | 2.36 × 10−3 | 3.47 × 10−7 | 2.09 × 10−2 |
MW2 | 1.69 × 10−3 | 2.14 × 10−4 | 3.15 × 10−8 | 1.90 × 10−3 | |
MW3 | 2.81 × 10−3 | 3.57 × 10−4 | 5.25 × 10−8 | 3.17 × 10−3 | |
MW4 | 6.19 × 10−3 | 7.86 × 10−4 | 1.16 × 10−7 | 6.97 × 10−3 | |
MW5 | 2.81 × 10−3 | 3.57 × 10−4 | 5.25 × 10−8 | 3.17 × 10−3 | |
MW6 | 2.25 × 10−3 | 2.86 × 10−4 | 4.20 × 10−8 | 2.54 × 10−3 | |
Micellar cleansing oil | MCO1 | 1.25 | 7.14 × 10−3 | 1.05 × 10−6 | 1.26 |
MCO2 | 7.50 × 10−1 | 4.29 × 10−3 | 6.30 × 10−7 | 7.54 × 10−1 | |
MCO3 | 3.75 × 10−1 | 2.14 × 10−3 | 3.15 × 10−7 | 3.77 × 10−1 | |
MCO4 | 1.00 | 5.71 × 10−3 | 8.40 × 10−7 | 1.01 | |
MCO5 | 3.75 × 10−1 | 2.14 × 10−3 | 3.15 × 10−7 | 3.77 × 10−1 | |
MCO6 | 6.25 × 10−1 | 3.57 × 10−3 | 5.25 × 10−7 | 6.29 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucur, R.M.; Radulescu, C.; Dulama, I.D.; Stirbescu, R.M.; Bucurica, I.A.; Banica, A.L.; Stanescu, S.G. Potential Health Risk of Microplastic Exposures from Skin-Cleansing Products. Toxics 2025, 13, 354. https://doi.org/10.3390/toxics13050354
Bucur RM, Radulescu C, Dulama ID, Stirbescu RM, Bucurica IA, Banica AL, Stanescu SG. Potential Health Risk of Microplastic Exposures from Skin-Cleansing Products. Toxics. 2025; 13(5):354. https://doi.org/10.3390/toxics13050354
Chicago/Turabian StyleBucur (Popa), Raluca Maria, Cristiana Radulescu, Ioana Daniela Dulama, Raluca Maria Stirbescu, Ioan Alin Bucurica, Andreea Laura Banica, and Sorina Geanina Stanescu. 2025. "Potential Health Risk of Microplastic Exposures from Skin-Cleansing Products" Toxics 13, no. 5: 354. https://doi.org/10.3390/toxics13050354
APA StyleBucur, R. M., Radulescu, C., Dulama, I. D., Stirbescu, R. M., Bucurica, I. A., Banica, A. L., & Stanescu, S. G. (2025). Potential Health Risk of Microplastic Exposures from Skin-Cleansing Products. Toxics, 13(5), 354. https://doi.org/10.3390/toxics13050354