Combined Repeated-Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test of Calcium Nitrate Tetrahydrate in Sprague Dawley Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Substance and Vehicle
2.2. Animals and Husbandry
2.3. Study Design
2.4. Dose Level Selection
2.5. Observations and Measurements
- Observations: During the administration and observation periods, animal mortality was monitored, and observations were recorded twice daily. Clinical signs were observed at least once daily. Detailed observations were conducted before the start of dosing and then weekly. Functional observation tests were conducted on five males and five females per group selected from the main group, and on all animals in the recovery group before necropsy. The functional observational battery comprised evaluations of stimulus reactivity (auditory response, righting reflex, nociceptive response, pinna reflex, and threat reflex), neuromuscular performance (grip strength), and locomotor activity outside the home cage, including ambulatory distance, ambulatory count, and vertical count.
- Body Weight: Body weight for all F0 males was measured on day 1, then weekly, and on the day of necropsy. For F0 females, body weight was measured on day 1 and weekly before mating. For confirmed mated females, measurements were conducted on GD 0, 7, 14, and 20; PPD 0, 4, 8, and 13; and on the day of necropsy.
- Food Consumption: Food consumption for main group F0 males and recovery group males and females was recorded on day 1 and weekly thereafter, excluding the cohabitation period. For F0 females, food consumption was measured on day 1 and weekly until the day of cohabitation, and for confirmed mated females on GD 0, 7, 14, and 20 and PPD 0, 4, 8, and 12.
- Reproductive Parameters: To identify the estrous cycle, vaginal smears were performed daily on the main group females from day 1 until mating confirmation. The regularity and duration of the estrous cycle were calculated up to two weeks before the start of cohabitation. Additionally, vaginal smears were collected on the morning of necropsy to determine the stage of the estrous cycle.
- F1 Observation: The number of live and dead newborns was recorded within 24 h of delivery. The sex of live F1 animals was determined to calculate the sex ratio, weights were recorded, and any physical abnormalities were observed. On PND 4, the anogenital distance (AGD) was measured using a caliper, and the anogenital index (AGI) was calculated. On PND 12, the number of nipples/areolas was checked in male offspring. Body weight was measured on PND 0, 4, 8, and 13.
- Clinical Pathology: Hematological and blood biochemical tests were conducted on five males and five females per group from the main group and on all animals in the recovery group. Approximately 1 mL of blood was collected and analyzed by an automated hematology analyzer (ADVIA 2120i, SIEMENS, Munich, Germany) using K2EDTA as an anticoagulant. For coagulation time, plasma was obtained by centrifuging 1.8 mL of blood mixed with 3.2% sodium citrate at a 1:9 ratio (3000 rpm, 800 RCF, Microcentrifuges 5415R, Hamburg, Germany) for 10 min, and the coagulation time was measured using a blood coagulation analyzer (ACL 7000, Instrumentation Laboratory, Bedford, MA, USA). Approximately 2 mL of blood was collected in tubes with a clot activator and left to clot for 15–20 min at room temperature. The samples were then centrifuged for 10 min (3000 rpm, 1902 RCF, Combi-514R, Hanil, Republic of Korea) to obtain serum, which was analyzed using a blood biochemistry analyzer (DxC 700 AU, BECKMAN COULTER, Brea, CA, USA).
- For F1 pups, blood was collected and pooled by litter for PND 4 pups, and by sex within the litter for PND 13 pups. Blood samples were taken from the heart for PND 4 and from the inferior vena cava for PND 13. Approximately 1.2 mL of blood was taken from all F0 animals, and approximately 1 mL from the PND 4 and PND 13 pups. Blood samples were placed in 5 mL Vacutainer tubes with a clot activator, allowed to clot for approximately 30 min at room temperature, and then centrifuged at 3000× g (4 °C) for 10 min to obtain serum. Serum samples were stored in a deep freezer (≤−50 °C) to avoid repeated freezing and thawing. Serum analysis, including thyroxine (T4) concentration, was conducted within eight weeks of storage using an ELISA kit (Catalog No. CSB-E05082r, Cusabio, Houston, TX, USA). T4 analysis was performed on the PND 13 F1 generation and all males and females. Since no effects were observed in the PND 13 F1 generation, the test was not performed on PND 4 newborns.
- Necropsy: At necropsy, the weights of the testis, epididymides, prostate gland, and seminal vesicle with coagulating gland of all male animals were measured using an electronic balance (Secura224-1S, Sartorius AG, Göttingen, Germany). The relative weight of each organ to the fasted body weight at necropsy was then calculated. Histopathological examination was performed on tissue slides prepared from fixed organs of five males and five females selected from the vehicle control and high-dose groups, deceased animals, and organs showing visible abnormalities. The examination focused specifically on spermatogenesis and the structure of the testicular interstitial cells. For the histopathological examination, a single transverse section was prepared from the central portion of the ventral lobe of the prostate gland. Lesions were graded using a five-tier severity scale: minimal (the least detectable lesion or very slight change), slight (mild change), moderate (intermediate change), severe (marked change), and massive (very marked change). Histopathological data were processed using the Provantis® program, and diagnostic terminology was based on the Provantis Glossary of INSTEM and INHAND [29,30].
- Data collection and evaluations were performed in a blinded manner to prevent observer bias.
2.6. Statistical Analysis
3. Results
3.1. Effects on the F0 Main Group and Recovery Group
3.2. Body Weight and Food Consumption
3.3. Clinical Pathology
3.4. Organ Weights and Histopathology
3.5. Endocrine and Reproductive Parameters
3.6. Effect on F1 Pups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oakes, C.S.; Felmy, A.R.; Sterner, S.M. Thermodynamic properties of aqueous calcium nitrate {Ca(NO3)2} to the temperature 373 K including new enthalpy of dilution data. J. Chem. Thermodyn. 2000, 32, 29–54. [Google Scholar] [CrossRef]
- Chartrand, P.; Pelton, A.D. A thermodynamic model for molten salt-water solutions—Application to a thermodynamic optimization of the Ca(NO3)2-KNO3-H2O system. J. Chem. Thermodyn. 2019, 128, 225–243. [Google Scholar] [CrossRef]
- Rusu, M.M.; Vulpoi, A.; Vilau, C.; Dudescu, C.M.; Pascuta, P.; Ardelean, I. Analyzing the Effects of Calcium Nitrate over White Portland Cement: A Multi-Scale Approach. Materials 2023, 16, 371. [Google Scholar] [CrossRef]
- YARA International ASA; Wolfram, F. Process to Produce a Durable Concrete at Hot Ambient Conditions. European Patent EP2900619B1, 11 November 2020. [Google Scholar]
- Al-Amoudi, O.S.B.; Maslehuddin, M.; Lashari, A.N.; Almusallam, A.A. Effectiveness of corrosion inhibitors in contaminated concrete. Cem. Concr. Compos. 2003, 25, 439–449. [Google Scholar] [CrossRef]
- Hassan, M.M.; Milla, J.; Rupnow, T.; Al-Ansari, M.; Daly, W.H. Microencapsulation of Calcium Nitrate for Concrete Applications. Transp. Res. Rec. 2016, 2577, 8–16. [Google Scholar] [CrossRef]
- Dafader, N.C.; Jolly, Y.N.; Haque, M.E.; Akhtar, F.; Ahmad, M.U. The role of coagulants on the preparation of dipped film from radiation vulcanized natural rubber latex. Polym.-Plast. Technol. 1999, 38, 267–274. [Google Scholar] [CrossRef]
- WIT Solution. Double Salts and Mixtures of Calcium Nitrate an Imports by Country in 2023. Available online: https://wits.worldbank.org/trade/comtrade/en/country/ALL/year/2023/tradeflow/Imports/partner/WLD/product/310260 (accessed on 20 February 2023).
- WIT Solution. Double Salts and Mixtures of Calcium Nitrate an Exports by Country in 2023. Available online: https://wits.worldbank.org/trade/comtrade/en/country/ALL/year/2023/tradeflow/Exports/partner/WLD/product/310260 (accessed on 20 February 2023).
- SPIN (Substances in Products in the Nordic Countries). Calcium Nitrate Total Use. Available online: http://spin2000.net/spinmy-graphics/?Report=SPINuseTotal&Casnr=13477344&command=Render#numberChart (accessed on 20 February 2023).
- Piqué, F.; Dei, L.; Ferroni, E. Physicochemical aspects of the deliquescence of calcium nitrate and its implications for wall painting conservation. Stud. Conserv. 1992, 37, 217–227. [Google Scholar] [CrossRef]
- Milla, J.; Hassan, M.M.; Rupnow, T. Evaluation of Self-Healing Concrete with Microencapsulated Calcium Nitrate. J. Mater. Civil. Eng. 2017, 29. [Google Scholar] [CrossRef]
- Shaheed, H.S. Histopathological Study of Kidney and Liver of Rats after Induction of Poisoning by Nitrate. SAR J. Anat. Physiol. 2024, 5, 15–19. [Google Scholar] [CrossRef]
- Manassaram, D.M.; Backer, L.C.; Moll, D.M. A review of nitrates in drinking water: Maternal exposure and adverse reproductive and developmental outcomes. Environ. Health Persp. 2006, 114, 320–327. [Google Scholar] [CrossRef]
- Coffman, V.R.; Jensen, A.S.; Trabjerg, B.B.; Pedersen, C.B.; Hansen, B.; Sigsgaard, T.; Olsen, J.; Schaumburg, I.; Schullehner, J.; Pedersen, M.; et al. Prenatal exposure to nitrate from drinking water and the risk of preterm birth. Environ. Epidemiol. 2022, 6, e223. [Google Scholar] [CrossRef] [PubMed]
- Sherris, A.R.; Baiocchi, M.; Fendorf, S.; Luby, S.P.; Yang, W.; Shaw, G.M. Nitrate in Drinking Water during Pregnancy and Spontaneous Preterm Birth: A Retrospective Within-Mother Analysis in California. Environ. Health Perspect. 2021, 129, 57001. [Google Scholar] [CrossRef]
- Lin, L.L.; Clair, S.S.; Gamble, G.D.; Crowther, C.A.; Dixon, L.; Bloomfield, F.H.; Harding, J.E. Nitrate contamination in drinking water and adverse reproductive and birth outcomes: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 563. [Google Scholar] [CrossRef] [PubMed]
- ATSDR (Agency for Toxic Substances and Disease Registry). Nitrate and Nitrite Toxicity: What is Nitrate/Nitrite Toxicity? In Case Studies in Environmental Medicine (CSEM). U.S. Department of Health and Human Services, Public Health Service; 2013. Available online: https://archive.cdc.gov/www_atsdr_cdc_gov/csem/nitrate_2013/docs/nitrite.pdf (accessed on 24 September 2025).
- Khan, A.; Kruse, J.A. Methemoglobinemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK592476 (accessed on 24 September 2025).
- Ward, M.H.; Jones, R.R.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; van Breda, S.G. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef]
- Forth, B.v.W.; Henschler, D.; Rummel, W. Allgemeine und Spezielle Pharmakologie und Toxikologie, 11th ed.; Urban & Fischer: Munich, Germany, 2013. [Google Scholar]
- Wirth, W.; Hecht, G.; Gloxhuber, C. Toxikologie-Fibel, 2nd ed.; Georg Thieme: Stuttgart, Germany, 1971. [Google Scholar]
- Casarett & Doull’s Toxicology: The Basic Science of Poisons, 9th ed.; Klaassen, C.D., Ed.; McGraw Hill Professional: Columbus, OH, USA, 2023. [Google Scholar]
- Fülgraff, D.P.G. Pharmakotherapie/Klinische Pharmakologie, 4th ed.; Fischer-Verlag: Frankfurt am Main, Germany, 1982. [Google Scholar]
- Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 13th ed.; Brunton, L.L., Hilal-Dandan, R., Knollmann, B.C., Eds.; McGraw Hill Medical: Columbus, OH, USA, 2018. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Test No. 422: Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test; OECD: Paris, France, 2025. [Google Scholar] [CrossRef]
- Standards and Regulations for Chemical Testing Laboratories. Notification No. 2022–9; Ministry of Environment: Sejong, Republic of Korea, 2022.
- ENV/MC/CHEM(98)17; OECD Principles of Good Laboratory Practice. OECD Publishing: Paris, France, 1997.
- Society of Toxicologic Pathology (STP). INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice); Society of Toxicologic Pathology: Reston, VA, USA. Available online: https://www.toxpath.org/inhand.asp (accessed on 1 September 2025).
- Keenan, C.M.; Baker, J.; Bradley, A.; Goodman, D.G.; Harada, T.; Herbert, R.; Kaufmann, W.; Kellner, R.; Mahler, B.; Meseck, E.; et al. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Progress to Date and Future Plans. Toxicol. Pathol. 2015, 43, 730–732. [Google Scholar] [CrossRef]
- Samia, A.; Fadila, K.; Sarra, S.; Sakina, C.; Abdelhak, G. Calcium Nitrate Toxicity on Rat Liver and Kidney Functions: A Biochemical and Histopathological Evaluation. Jordan J. Biol. Sci. 2023, 16, 123–131. [Google Scholar] [CrossRef]
- NCBI. PubChem Compound Summary for CID 24963, Calcium Nitrate. In PubChem; 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2496 (accessed on 24 September 2025).
- Sigma-Aldrich. Certificate of Analysis for Calcium Nitrate Tetrahydrate; Sigma-Aldrich: San Diego, CA, USA, 2023. [Google Scholar]
- Corestemchemon Inc. Reference Data on Sprague-Dawley Rats (NTacSam:SD) in Corestemchemon Inc.; (2013–2022); Corestemchemon Inc.: Seongnam-si, Republic of Korea, 2023. [Google Scholar]
- Mecklenburg, L.; Kusewitt, D.; Kolly, C.; Treumann, S.; Adams, E.T.; Diegel, K.; Yamate, J.; Kaufmann, W.; Müller, S.; Danilenko, D.; et al. Proliferative and non-proliferative lesions of the rat and mouse integument. J. Toxicol. Pathol. 2013, 26, 27S–57S. [Google Scholar] [CrossRef]
- Creasy, D.; Bube, A.; de Rijk, E.; Kandori, H.; Kuwahara, M.; Masson, R.; Nolte, T.; Reams, R.; Regan, K.; Rehm, S.; et al. Proliferative and nonproliferative lesions of the rat and mouse male reproductive system. Toxicol. Pathol. 2012, 40, 40S–121S. [Google Scholar] [CrossRef]
- Kale, V.P.; Bebenek, I.; Ghantous, H.; Kapeghian, J.; Singh, B.P.; Thomas, L.J. Practical Considerations in Determining Adversity and the No-Observed-Adverse-Effect-Level (NOAEL) in Nonclinical Safety Studies: Challenges, Perspectives and Case Studies. Int. J. Toxicol. 2022, 41, 143–162. [Google Scholar] [CrossRef]
- National Toxicology Program. Nonneoplastic Lesion Atlas: Prostate, Acinus—Atrophy. In National Institute of Environmental Health Sciences. Available online: https://ntp.niehs.nih.gov/atlas/nnl/reproductive-system-male/prostate/Acinus-Atrophy (accessed on 24 September 2025).
- Choi, J.-S.; Shin, H.-S.; Ha, Y.-M.; Kim, K.Y.; Ku, S.K.; Choi, I.S.; Kim, J.W. A 2-week repeated-dose oral toxicity test of Polycalcium, a mixed composition of Polycan and calcium lactate-gluconate 1:9 (g/g). Toxicol. Environ. Health Sci. 2014, 6, 176–191. [Google Scholar] [CrossRef]
- Sung, J.H.; Park, S.J.; Jeong, M.S.; Song, K.S.; Ahn, K.S.; Ryu, H.R.; Lee, H.; Song, M.R.; Cho, M.H.; Kim, J.S. Physicochemical analysis and repeated-dose 90-days oral toxicity study of nanocalcium carbonate in Sprague-Dawley rats. Nanotoxicology 2015, 9, 603–612. [Google Scholar] [CrossRef]
- Bronner, F. Mechanisms of intestinal calcium absorption. J. Cell. Biochem. 2003, 88, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010, 5 (Suppl. 1), S23–S30. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (IOM). Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- InChem. Nitrates (Addendum). WHO Food Additives Series 35. International Programme on Chemical Safety. 1996. Available online: https://www.inchem.org/documents/jecfa/jecmono/v35je02.htm (accessed on 24 September 2025).
- Christiansen, S.; Hass, U.; OECD Expert Group. Feasibility Study for Minor Enhancements of TG 421/422: Reproduction/Developmental Toxicity Screening Test/Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test with Endocrine Disrupter-Relevant Endpoints; OECD Environment, Health and Safety Publications, Series on Testing and Assessment No. 217. ENV/JM/MONO(2015)24; OECD Publishing: Paris, France, 2015; Available online: https://orbit.dtu.dk/en/publications/93bb6ab3-1b5a-4911-9753-e9cb6d8b15f6 (accessed on 24 September 2025).
- U.S. Environmental Protection Agency (EPA). OPPTS 870.7800 Immunotoxicity Testing. EPA 712-C-98-351.; 1998. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100IRS7.PDF?Dockey=P100IRS7.PDF (accessed on 24 September 2025).
- OECD. Test No. 443: Extended One-Generation Reproductive Toxicity Study; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- Dos Santos, N.R.; Bah, H.A.F.; Gomes-Júnior, E.A.; Martinez, V.O.; Costa, D.O.; Pires, E.M.; Menezes-Filho, J.A. Pre and postnatal exposure to glyphosate-based herbicides and potential neurodevelopmental outcomes: A systematic review of animal and epidemiological studies. Toxicol. Res. 2025, 41, 417–436. [Google Scholar] [CrossRef] [PubMed]
Group | Sex | Number of Animals | Administration Volume (mL/kg/Day) | Dosage of Calcium Nitrate Tetrahydrate (mg/kg/Day) |
---|---|---|---|---|
G1 | M/F | 17/17 | 5 | 0 |
G2 | M/F | 12/12 | 5 | 100 |
G3 | M/F | 12/12 | 5 | 300 |
G4 | M/F | 17/17 | 5 | 1000 |
Males in Main Group | Females in Main Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
Group | G1 0 mg/kg/Day | G2 100 mg/kg/Day | G3 300 mg/kg/Day | G4 1000 mg/kg/Day | Group | G1 0 mg/kg/Day | G2 100 mg/kg/Day | G3 300 mg/kg/Day | G4 1000 mg/kg/Day |
Terminal BW (g) | 479.50 ± 28.64 | 472.34 ± 27.12 | 471.29 ± 34.22 | 473.48 ± 40.87 | Terminal BW (g) | 311.31 ± 6.75 | 306.61 ± 12.89 | 304.67 ± 14.74 | 305.68 ± 11.17 |
Adrenal gland_L wt. (g) | 0.0309 ± 0.0031 | 0.0286 ± 0.0038 | 0.0265 ± 0.0021 | 0.0259 ± 0.0034 | Adrenal gland_L wt. (g) | 0.0408 ± 0.0030 | 0.0404 ± 0.0083 | 0.0388 ± 0.0034 | 0.0418 ± 0.0049 |
Adrenal gland_L (%) | 0.0064 ± 0.0006 | 0.0060 ± 0.0004 | 0.0054 ± 0.0005 | 0.0056 ± 0.0008 | Adrenal gland_L (%) | 0.0131 ± 0.0007 | 0.0131 ± 0.0024 | 0.0128 ± 0.0015 | 0.0136 ± 0.0013 |
Adrenal gland_R wt. (g) | 0.0291 ± 0.0030 | 0.0278 ± 0.0043 | 0.0265 ± 0.0031 | 0.0252 ± 0.0037 | Adrenal gland_R wt. (g) | 0.0409 ± 0.0033 | 0.0382 ± 0.0071 | 0.0366 ± 0.0049 | 0.0398 ± 0.0022 |
Adrenal gland_R (%) | 0.0061 ± 0.0006 | 0.0058 ± 0.0006 | 0.0054 ± 0.0007 | 0.0054 ± 0.0008 | Adrenal gland_R (%) | 0.0131 ± 0.0009 | 0.0124 ± 0.0021 | 0.0120 ± 0.0013 | 0.0130 ± 0.0008 |
Pituitary gland wt. (g) | 0.0128 ± 0.0013 | 0.0144 ± 0.0015 | 0.0142 ± 0.0015 | 0.0144 ± 0.0021 | Pituitary gland wt. (g) | 0.0144 ± 0.0018 | 0.0148 ± 0.0019 | 0.0144 ± 0.0014 | 0.0153 ± 0.0019 |
Pituitary gland (%) | 0.0027 ± 0.0002 | 0.0030 ± 0.0004 | 0.0029 ± 0.0003 | 0.0031 ± 0.0007 | Pituitary gland (%) | 0.0046 ± 0.0005 | 0.0048 ± 0.0006 | 0.0047 ± 0.0004 | 0.0050 ± 0.0006 |
Thymus wt. (g) | 0.4438 ± 0.0987 | 0.3411 ± 0.0492 | 0.3297 ± 0.0738 * | 0.3014 ± 0.0274 * | Thymus wt. (g) | 0.2698 ± 0.0443 | 0.2496 ± 0.0608 | 0.2487 ± 0.0543 | 0.2410 ± 0.0226 |
Thymus (%) | 0.0927 ± 0.0218 | 0.0713 ± 0.0092 | 0.0671 ± 0.0125 * | 0.0651 ± 0.0082 * | Thymus (%) | 0.0868 ± 0.0152 | 0.0812 ± 0.0184 | 0.0818 ± 0.0187 | 0.0788 ± 0.0057 |
PG + SVCG wt. (g) | 3.6141 ± 0.5058 | 3.5827 ± 0.6173 | 3.1934 ± 0.05024 | 3.2280 ± 0.4602 | Uterus and cervix wt. (g) | 0.5025 ± 0.1166 | 0.4476 ± 0.0651 | 0.5442 ± 0.1145 | 0.4844 ± 0.1817 |
PG + SVCG (%) | 0.7549 ± 0.1030 | 0.7581 ± 0.1199 | 0.6795 ± 0.1060 | 0.6873 ± 0.1223 | Uterus and cervix (%) | 0.1616 ± 0.0385 | 0.1464 ± 0.0245 | 0.1797 ± 0.0439 | 0.1592 ± 0.0624 |
Testis_L wt. (g) | 2.0383 ± 0.1333 | 2.0922 ± 0.1762 | 2.0316 ± 0.1960 | 2.0961 ± 0.1399 | Ovary_L wt. (g) | 0.0433 ± 0.0081 | 0.0468 ± 0.0037 | 0.0439 ± 0.0045 | 0.0432 ± 0.0076 |
Testis_L (%) | 0.4265 ± 0.0374 | 0.4440 ± 0.0428 | 0.4322 ± 0.0413 | 0.4448 ± 0.0377 | Ovary_L (%) | 0.0139 ± 0.0024 | 0.0152 ± 0.0008 | 0.0145 ± 0.0021 | 0.0141 ± 0.0023 |
Testis_R wt. (g) | 2.0340 ± 0.1386 | 1.9737 ± 0.3152 | 1.9949 ± 0.1807 | 2.0810 ± 0.1263 | Ovary_R wt. (g) | 0.0450 ± 0.0074 | 0.0478 ± 0.0084 | 0.0502 ± 0.0109 | 0.0529 ± 0.0072 |
Testis_R (%) | 0.4260 ± 0.0432 | 0.4182 ± 0.0657 | 0.4245 ± 0.0391 | 0.4416 ± 0.0358 | Ovary_R (%) | 0.0144 ± 0.0021 | 0.0157 ± 0.0031 | 0.0165 ± 0.0036 | 0.0173 ± 0.0025 |
Epididymis_L wt. (g) | 0.7432 ± 0.0516 | 0.7565 ± 0.0721 | 0.7165 ± 0.0612 | 0.7195 ± 0.0438 | - | - | - | - | - |
Epididymis_L (%) | 0.1555 ± 0.0136 | 0.1604 ± 0.0155 | 0.1523 ± 0.0115 | 0.1529 ± 0.0157 | - | - | - | - | - |
Epididymis_R wt. (g) | 0.7524 ± 0.0415 | 0.7152 ± 0.1444 | 0.7112 ± 0.0640 | 0.7319 ± 0.0391 | - | - | - | - | - |
Epididymis_R (%) | 0.1574 ± 0.0129 | 0.1514 ± 0.0303 | 0.1511 ± 0.0113 | 0.1554 ± 0.0122 | - | - | - | - | - |
Spleen wt. (g) | 0.8820 ± 0.0663 | 0.8966 ± 0.1007 | 0.8894 ± 0.1387 | 0.7461 ± 0.0712 | Spleen wt. (g) | 0.7496 ± 0.1134 | 0.6913 ± 0.0455 | 0.7541 ± 0.0870 | 0.7110 ± 0.1614 |
Spleen (%) | 0.1838 ± 0.0142 | 0.1874 ± 0.0176 | 0.1810 ± 0.0283 | 0.1605 ± 0.0109 | Spleen (%) | 0.2407 ± 0.0353 | 0.2255 ± 0.0109 | 0.2478 ± 0.0302 | 0.2318 ± 0.0460 |
Kidney_L wt. (g) | 1.4103 ± 0.1681 | 1.4932 ± 0.1427 | 1.5616 ± 0.1391 | 1.5227 ± 0.1413 | Kidney_L wt. (g) | 0.9829 ± 0.0957 | 0.9819 ± 0.0813 | 0.9767 ± 0.0660 | 1.0059 ± 0.0437 |
Kidney_L (%) | 0.2932 ± 0.0277 | 0.3125 ± 0.0286 | 0.3179 ± 0.0303 | 0.3273 ± 0.0188 | Kidney_L (%) | 0.3159 ± 0.0321 | 0.3204 ± 0.0265 | 0.3205 ± 0.0134 | 0.3290 ± 0.0055 |
Kidney_R wt. (g) | 1.5224 ± 0.1069 | 1.5561 ± 0.1655 | 1.5476 ± 0.1395 | 1.5680 ± 0.1836 | Kidney_R wt. (g) | 1.0197 ± 0.0899 | 0.9784 ± 0.0756 | 0.9968 ± 0.0489 | 1.0174 ± 0.0494 |
Kidney_R (%) | 0.3172 ± 0.0234 | 0.3255 ± 0.0309 | 0.3151 ± 0.0309 | 0.3365 ± 0.0235 | Kidney_R (%) | 0.3279 ± 0.0327 | 0.3192 ± 0.0243 | 0.3275 ± 0.0175 | 0.3328 ± 0.0088 |
Heart wt. (g) | 1.5379 ± 0.1105 | 1.5517 ± 0.0977 | 1.5254 ± 0.0209 | 1.5639 ± 0.1571 | Heart wt. (g) | 1.1606 ± 0.0708 | 1.1644 ± 0.0602 | 1.1905 ± 0.0692 | 1.1210 ± 0.0383 |
Heart (%) | 0.3201 ± 0.0163 | 0.3250 ± 0.0219 | 0.3104 ± 0.0050 | 0.3371 ± 0.0348 | Heart (%) | 0.3727 ± 0.0192 | 0.3805 ± 0.0283 | 0.3911 ± 0.0226 | 0.3669 ± 0.0104 |
Lung wt. (g) | 1.8082 ± 0.1166 | 1.7926 ± 0.1733 | 1.7605 ± 0.0836 | 1.7693 ± 0.1365 | Lung wt. (g) | 1.4380 ± 0.1226 | 1.4259 ± 0.0886 | 1.4075 ± 0.0765 | 1.5231 ± 0.0845 |
Lung (%) | 0.3767 ± 0.0221 | 0.3745 ± 0.0226 | 0.3583 ± 0.0180 | 0.3805 ± 0.0157 | Lung (%) | 0.4616 ± 0.0325 | 0.4650 ± 0.0185 | 0.4626 ± 0.0290 | 0.4988 ± 0.0323 |
Brain wt. (g) | 2.1803 ± 0.0803 | 2.1608 ± 0.1182 | 2.1550 ± 0.0947 | 2.1885 ± 0.0601 | Brain wt. (g) | 2.0150 ± 0.0787 | 1.9885 ± 0.0753 | 1.9805 ± 0.0129 | 1.9990 ± 0.0399 |
Brain (%) | 0.4549 ± 0.0301 | 0.4531 ± 0.0366 | 0.4386 ± 0.0216 | 0.4725 ± 0.0357 | Brain (%) | 0.6475 ± 0.0287 | 0.6494 ± 0.0350 | 0.6512 ± 0.0308 | 0.6547 ± 0.0298 |
Liver wt. (g) | 12.9097 ± 1.1258 | 13.5829 ± 0.8437 | 14.2595 ± 0.9945 | 12.1752 ± 1.5089 | Liver wt. (g) | 11.3336 ± 0.7904 | 11.3366 ± 1.3191 | 11.0026 ± 0.9619 | 11.2929 ± 0.7646 |
Liver (%) | 2.6854 ± 0.1568 | 2.8427 ± 0.1476 | 2.9005 ± 0.1783 | 2.6129 ± 0.1943 | Liver (%) | 3.6405 ± 0.2398 | 3.6932 ± 0.3474 | 3.6066 ± 0.1532 | 3.6926 ± 0.1706 |
Thyroid gland + PTG_L (g) | 0.0120 ± 0.0016 | 0.0138 ± 0.0025 | 0.0132 ± 0.0036 | 0.0121 ± 0.0020 | Thyroid gland + PTG_L (g) | 0.0096 ± 0.0019 | 0.0085 ± 0.0016 | 0.0089 ± 0.0017 | 0.0099 ± 0.0011 |
Thyroid gland + PTG_L (%) | 0.0025 ± 0.0004 | 0.0029 ± 0.0004 | 0.0027 ± 0.0027 | 0.0026 ± 0.0004 | Thyroid gland + PTG_L (%) | 0.0031 ± 0.0005 | 0.0028 ± 0.0005 | 0.0029 ± 0.0007 | 0.0032 ± 0.0004 |
Thyroid gland + PTG_R (g) | 0.0120 ± 0.0019 | 0.0130 ± 0.0017 | 0.0134 ± 0.0016 | 0.0114 ± 0.0017 | Thyroid gland + PTG_R (g) | 0.0096 ± 0.0022 | 0.0085 ± 0.0014 | 0.0088 ± 0.0015 | 0.0105 ± 0.0011 |
Thyroid gland + PTG_R (%) | 0.0025 ± 0.0004 | 0.0027 ± 0.0003 | 0.0027 ± 0.0003 | 0.0025 ± 0.0005 | Thyroid gland + PTG_R (%) | 0.0031 ± 0.0006 | 0.0028 ± 0.0004 | 0.0029 ± 0.0005 | 0.0034 ± 0.0004 |
Males in Recovery Group | Females in Recovery Group | ||||
---|---|---|---|---|---|
Group | G1 0 mg/kg/Day | G4 1000 mg/kg/Day | Group | G1 0 mg/kg/Day | G4 1000 mg/kg/Day |
Terminal BW (g) | 498.70 ± 30.89 | 506.56 ± 37.24 | Terminal BW (g) | 289.93 ± 32.80 | 283.09 ± 29.16 |
Adrenal gland_L wt. (g) | 0.0232 ± 0.0013 | 0.0269 ± 0.0040 | Adrenal gland_L wt. (g) | 0.0354 ± 0.0028 | 0.0373 ± 0.0018 |
Adrenal gland_L (%) | 0.0047 ± 0.0003 | 0.0054 ± 0.0010 | Adrenal gland_L (%) | 0.0124 ± 0.0021 | 0.0133 ± 0.0015 |
Adrenal gland_R wt. (g) | 0.0236 ± 0.0020 | 0.0256 ± 0.0049 | Adrenal gland_R wt. (g) | 0.0339 ± 0.0043 | 0.0350 ± 0.0017 |
Adrenal gland_R (%) | 0.0047 ± 0.0003 | 0.0051 ± 0.0011 | Adrenal gland_R (%) | 0.0119 ± 0.0024 | 0.0125 ± 0.0018 |
Pituitary gland wt. (g) | 0.0117 ± 0.0010 | 0.0133 ± 0.0005 ** | Pituitary gland wt. (g) | 0.0165 ± 0.0010 | 0.0159 ± 0.0014 |
Pituitary gland (%) | 0.0023 ± 0.0002 | 0.0026 ± 0.0002 | Pituitary gland (%) | 0.0058 ± 0.0008 | 0.0057 ± 0.0008 |
Thymus wt. (g) | 0.4143 ± 0.1163 | 0.3252 ± 0.0417 | Thymus wt. (g) | 0.2308 ± 0.0348 | 0.3188 ± 0.0384 ** |
Thymus (%) | 0.0827 ± 0.0212 | 0.0641 ± 0.0057 | Thymus (%) | 0.0807 ± 0.0157 | 0.1131 ± 0.0127 ** |
PG + SVCG wt. (g) | 2.3470 ± 0.2951 | 3.6049 ± 0.3585 *** | Uterus and cervix wt. (g) | 0.9778 ± 0.4308 | 0.7905 ± 0.2977 |
PG + SVCG (%) | 0.4730 ± 0.0711 | 0.7170 ± 0.1125 ** | Uterus and cervix (%) | 0.3524 ± 0.1831 | 0.2832 ± 0.1093 |
Testis_L wt. (g) | 2.0015 ± 0.1004 | 2.0155 ± 0.0739 | Ovary_L wt. (g) | 0.0461 ± 0.0058 | 0.0468 ± 0.0062 |
Testis_L (%) | 0.4019 ± 0.0187 | 0.3993 ± 0.0279 | Ovary_L (%) | 0.0162 ± 0.0034 | 0.0166 ± 0.0025 |
Testis_R wt. (g) | 1.9811 ± 0.1104 | 2.0479 ± 0.0567 | Ovary_R wt. (g) | 0.0442 ± 0.0034 | 0.0473 ± 0.0071 |
Testis_R (%) | 0.3978 ± 0.0218 | 0.4060 ± 0.0311 | Ovary_R (%) | 0.0153 ± 0.0009 | 0.0170 ± 0.0039 |
Epididymis_L wt. (g) | 0.6883 ± 0.0270 | 0.7806 ± 0.0708 * | - | ||
Epididymis_L (%) | 0.1384 ± 0.0097 | 0.1548 ± 0.0184 | - | ||
Epididymis_R wt. (g) | 0.6942 ± 0.0539 | 0.7704 ± 0.0589 | - | ||
Epididymis_R (%) | 0.1397 ± 0.0146 | 0.1530 ± 0.0186 | - | ||
Spleen wt. (g) | 0.8844 ± 0.0898 | 0.9037 ± 0.1329 | Spleen wt. (g) | 0.7271 ± 0.2173 | 0.6643 ± 0.0444 |
Spleen (%) | 0.1772 ± 0.0111 | 0.1778 ± 0.0137 | Spleen (%) | 0.2486 ± 0.0581 | 0.2360 ± 0.0195 |
Kidney_L wt. (g) | 1.4099 ± 0.0697 | 1.5381 ± 0.1131 | Kidney_L wt. (g) | 0.9120 ± 0.0357 | 0.9410 ± 0.0530 5 |
Kidney_L (%) | 0.2830 ± 0.0096 | 0.3038 ± 0.0105 * | Kidney_L (%) | 0.3167 ± 0.0239 | 0.3343 ± 0.0269 |
Kidney_R wt. (g) | 1.4710 ± 0.0817 | 1.5768 ± 0.1810 | Kidney_R wt. (g) | 0.8997 ± 0.0448 | 0.9451 ± 0.0401 |
Kidney_R (%) | 0.2954 ± 0.0152 | 0.3108 ± 0.0180 | Kidney_R (%) | 0.3126 ± 0.0268 | 0.3364 ± 0.0332 |
Heart wt. (g) | 1.5544 ± 0.1630 | 1.5011 ± 0.1254 | Heart wt. (g) | 1.0002 ± 0.0741 | 1.0127 ± 0.0580 |
Heart (%) | 0.3115 ± 0.0239 | 0.2971 ± 0.0267 | Heart (%) | 0.3466 ± 0.0224 | 0.3602 ± 0.0346 |
Lung wt. (g) | 1.8120 ± 0.0843 | 1.7842 ± 0.0962 | Lung wt. (g) | 1.3826 ± 0.0844 | 1.3869 ± 0.0920 |
Lung (%) | 0.3642 ± 0.0231 | 0.3527 ± 0.0113 | Lung (%) | 0.4811 ± 0.0535 | 0.4925 ± 0.0380 |
Brain wt. (g) | 2.1296 ± 0.0220 | 2.1865 ± 0.0851 | Brain wt. (g) | 1.9620 ± 0.0890 | 2.0313 ± 0.1085 |
Brain (%) | 0.4283 ± 0.0266 | 0.4331 ± 0.0297 | Brain (%) | 0.6815 ± 0.0565 | 0.7227 ± 0.0698 |
Liver wt. (g) | 13.7798 ± 1.9023 | 13.5937 ± 2.2010 | Liver wt. (g) | 7.4464 ± 0.9400 | 7.0206 ± 0.5055 |
Liver (%) | 2.7544 ± 0.2307 | 2.6718 ± 0.2377 | Liver (%) | 2.5678 ± 0.1359 | 2.4899 ± 0.1569 |
Thyroid gland + PTG_L (g) | 0.0122 ± 0.0018 | 0.0128 ± 0.0025 | Thyroid gland + PTG_L (g) | 0.0088 ± 0.0016 | 0.0095 ± 0.0010 |
Thyroid gland + PTG_L (%) | 0.0025 ± 0.0004 | 0.0025 ± 0.0005 | Thyroid gland + PTG_L (%) | 0.0031 ± 0.0007 | 0.0034 ± 0.0007 |
Thyroid gland + PTG_R (g) | 0.0125 ± 0.0021 | 0.0131 ± 0.0018 | Thyroid gland + PTG_R (g) | 0.0090 ± 0.0010 | 0.0091 ± 0.0009 |
Thyroid gland + PTG_R (%) | 0.0025 ± 0.0005 | 0.0026 ± 0.0003 | Thyroid gland + PTG_R (%) | 0.0032 ± 0.0006 | 0.0033 ± 0.0006 |
Finding | Main (mg/kg/Day) | Recovery (mg/kg/Day) | ||||
---|---|---|---|---|---|---|
G1 (0) | G2 (100) | G3 (300) | G4 (1000) | G1 (0) | G4 (1000) | |
Atrophy of prostate gland | 0 | 0 | 0 | 3 | 0 | 0 |
Minimal (+1) | 0 | 0 | 0 | 3 | 0 | 0 |
Group | G1 0 mg/kg/Day | G2 100 mg/kg/Day | G3 300 mg/kg/Day | G4 1000 mg/kg/Day |
---|---|---|---|---|
No. of pregnant dams | 10 | 12 | 10 | 10 |
No. of dead pregnancy | 0 | 0 | 0 | 1 |
No. of stillbirth | 0 | 0 | 0 | 1 |
No. of litters with live-born pups | 10 | 12 | 10 | 9 |
Gestation length (days) | 22.60 ± 0.52 | 22.33 ± 0.49 | 22.30 ± 0.48 | 22.50 ± 0.53 |
No. of corpora lutea | 16.60 ± 1.65 | 17.50 ± 1.45 | 16.20 ± 3.65 | 15.30 ± 1.77 |
No. of implantation sites | 16.60 ± 1.65 | 17.50 ± 1.45 | 16.20 ± 3.65 | 15.30 ± 1.77 |
Pre-implantation loss (%) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
No. of total pups born | 148 | 197 | 155 | 148 |
No. of live pups (PND 0) | 145 | 195 | 153 | 120 |
Litter size | 14.50 ± 3.75 | 16.25 ± 1.76 | 15.30 ± 4.19 | 12.00 ± 5.58 |
Sex ratio (% males) | 52.39 ± 12.45 | 53.49 ± 15.67 | 50.67 ± 17.16 | 53.78 ± 14.81 |
Post-implantation loss (%) | 13.23 ± 19.18 | 7.12 ± 6.80 | 6.58 ± 8.79 | 20.52 ± 35.67 |
Dead pups (PND 0) | 0.30 ± 0.67 | 0.17 ± 0.39 | 0.20 ± 0.63 | 2.80 ± 5.88 |
Live pups precull (PND 4) | 12.70 ± 5.91 | 16.17 ± 1.70 | 14.50 ± 3.72 | 10.56 ± 6.21 |
Live pups postcull (PND 4) | 7.67 ± 1.00 | 8.00 ± 0.00 | 7.90 ± 0.32 | 8.00 ± 0.00 |
Live pups on day 13 | 7.67 ± 1.00 | 8.00 ± 0.00 | 7.90 ± 0.32 | 8.00 ± 0.00 |
Litters with dead pups (%) | 20.0 | 16.7 | 10.0 | 30.0 |
Litters with ex. abnormalities (%) | 0.0 | 0.0 | 0.0 | 0.0 |
Pups with ex. anomalies (%) | 0.0 | 0.0 | 0.0 | 0.0 |
Gestation index (%) | 100.0 | 100.0 | 100.0 | 90.0 |
Live born index (%) | 98.23 ± 3.81 | 98.98 ± 2.39 | 99.05 ± 3.01 | 82.14 ± 36.46 |
Viability index (%) | 87.78 ± 31.30 | 99.54 ± 1.60 | 95.70 ± 7.92 | 83.85 ± 34.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eom, J.-W.; Kang, H.-i.; Lee, J.-H.; Song, S.-H.; Hong, J.-h.; Bae, S.; Nam, C.-J.; Lim, K.-M. Combined Repeated-Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test of Calcium Nitrate Tetrahydrate in Sprague Dawley Rats. Toxics 2025, 13, 835. https://doi.org/10.3390/toxics13100835
Eom J-W, Kang H-i, Lee J-H, Song S-H, Hong J-h, Bae S, Nam C-J, Lim K-M. Combined Repeated-Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test of Calcium Nitrate Tetrahydrate in Sprague Dawley Rats. Toxics. 2025; 13(10):835. https://doi.org/10.3390/toxics13100835
Chicago/Turabian StyleEom, Ji-Woo, Han-il Kang, Jae-Hyun Lee, Si-Hwan Song, Jeong-hyun Hong, Seungjin Bae, Chun-Ja Nam, and Kyung-Min Lim. 2025. "Combined Repeated-Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test of Calcium Nitrate Tetrahydrate in Sprague Dawley Rats" Toxics 13, no. 10: 835. https://doi.org/10.3390/toxics13100835
APA StyleEom, J.-W., Kang, H.-i., Lee, J.-H., Song, S.-H., Hong, J.-h., Bae, S., Nam, C.-J., & Lim, K.-M. (2025). Combined Repeated-Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test of Calcium Nitrate Tetrahydrate in Sprague Dawley Rats. Toxics, 13(10), 835. https://doi.org/10.3390/toxics13100835