Circular Strategic Options for Ethanol Supply Chain Resilience Under Uncertainties Using a Composition of Probabilities Group Decision Model
Abstract
1. Introduction
- To structure and evaluate circular strategies through stakeholder engagement using SODA;
- To develop and apply CPP-ROC for integrating stakeholder preferences and modeling uncertainty in group decision making;
- To provide robust and actionable insights for policymakers and managers in the ethanol industry, supporting Brazil’s transition toward a more circular and resilient bioeconomy.
2. Literature Review
2.1. Vulnerabilities in Biofuel Supply Chains
2.2. Resilient Biofuel Supply Chain Design
2.3. Circular Economy Applications in Bioenergy Systems
2.4. Decision Models for Sustainable and Resilient Supply Chains
3. Proposed Approach
3.1. Theoretical Basis and Method Selection
3.2. Methodological Phases
3.3. Phase I—Process Characterization
3.4. Phase II—SODA Implementation and Analysis
- Tail constructs: represent the root causes of the problem situation, characterized by the absence of incoming arrows;
- Head constructs: denote goals, outcomes, or consequences that arise from preceding constructs, characterized by the absence of outgoing arrows;
- Implosions: constructs influenced by multiple preceding constructs, meaning a significant effect with broad-reaching implications;
- Explosions: constructs exerting influence over multiple subsequent constructs, indicating a major causal factor;
- Dominants: constructs exhibiting the highest number of both incoming and outgoing connections, indicating key leverage points for addressing the problem.
3.5. Phase III—CPP-ROC Preference Elicitation
3.5.1. Step 1: Elicitation of Weights Using the Rank-Order Centroid (ROC) Method
- Ranking of criteria: Each decision maker ranks the criteria in order of importance. Let denote the rank of criterion , where is the most important, and is the least important, as in Equation (1):
- Calculation using ROC: the ROC method calculates the weight for each criterion and decision maker separately, as in Equation (2):
3.5.2. Step 2: Calculation of Probabilities for Each Alternative
- Probability of being the best :
- Probability of being the worst :
3.6. Phase IV—Preference Aggregation and Alternative Ranking
3.6.1. Step 1: Aggregation of Preferences Using CPP-ROC
- Aggregated probability of being the best ():
- Aggregated probability of being the worst ():
- indicates its overall chance of being the best;
- indicates its overall chance of being the worst.
3.6.2. Step 2: Ranking of Alternatives Based on Aggregated Probabilities and Decision Profiles
- Profiles of decision makers: After calculating and , we may compute the following decision profiles (Equations (10)–(13)) for each alternative based on what the decision makers have chosen from Table 1:
- ○
- Optimistic/progressive (OP):
- ○
- Optimistic/conservative (OC):
- ○
- Pessimistic/progressive (PPe):
- ○
- Pessimistic/conservative (PC):
- Aggregating decision profiles: Once the profiles are computed, we aggregate them across criteria as in Equations (14)–(17):
- Ranking of alternatives: The alternatives are then ranked based on each of the profiles. For instance, ranking based on would give us Equation (18):
4. Results
4.1. Phase I—Process Characterization
4.2. Phase II—SODA Implementation and Analysis
- Optimization of resource efficiency;
- Water reuse;
- Enhancement of waste valorization;
- By-product recovery;
- Adoption of renewable energy;
- Clean technologies;
- Economic feasibility;
- Investment in circular strategies;
- Strong partnerships;
- Capacity building;
- Workforce training.
- Optimization of resource efficiency … inefficient resource utilization;
- Water reuse … excessive water consumption;
- Enhancement of waste valorization … unexploited waste streams;
- By-product recovery … disposal of by-products;
- Adoption of renewable energy … reliance on fossil-based processes;
- Clean technologies … outdated and polluting technologies;
- Economic feasibility … unviable cost structures;
- Investment in circular strategies … lack of financial commitment;
- Strong partnerships … fragmented stakeholder relationships;
- Capacity building … lack of technical knowledge;
- Workforce training … insufficient skill development.
4.3. Phase III—CPP-ROC Preference Elicitation
4.4. Phase IV—Preference Aggregation and Alternative Ranking
5. Discussion
6. Conclusions
Implications for Policy and Practice
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bathrinath, S.; Abuthakir, N.; Koppiahraj, K.; Saravanasankar, S.; Rajpradeesh, T.; Manikandan, R. An initiative towards sustainability in the petroleum industry: A review. Mater. Today Proc. 2021, 46, 7798–7802. [Google Scholar] [CrossRef]
- Gilani, H.; Sahebi, H.; Oliveira, F. Sustainable Sugarcane-to-Bioethanol Supply Chain Network Design: A Robust Possibilistic Programming Model. Appl. Energy 2020, 278, 115653. [Google Scholar] [CrossRef]
- Ho, D.P.; Ngo, H.H.; Guo, W. A Mini Review on Renewable Sources for Biofuel. Bioresour. Technol. 2014, 169, 742–749. [Google Scholar] [CrossRef]
- Mousavi Ahranjani, P.; Ghaderi, S.F.; Azadeh, A.; Babazadeh, R. Robust Design of a Sustainable and Resilient Bioethanol Supply Chain under Operational and Disruption Risks. Clean Technol. Environ. Policy 2020, 22, 119–151. [Google Scholar] [CrossRef]
- Kim, J.; Realff, M.J.; Lee, J.H. Optimal Design and Global Sensitivity Analysis of Biomass Supply Chain Networks for Biofuels under Uncertainty. Comput. Chem. Eng. 2011, 35, 1738–1751. [Google Scholar] [CrossRef]
- Muktham, R.; Bhargava, S.; Bankupalli, S.; Ball, A.S. A Review on 1st and 2nd Generation Bioethanol Production-Recent Progress. J. Sustain. Bioenergy Syst. 2016, 6, 72–92. [Google Scholar] [CrossRef]
- Tordecilla, R.D.; Juan, A.A.; Montoya-Torres, J.R.; Quintero-Araujo, C.L.; Panadero, J. Simulation-Optimization Methods for Designing and Assessing Resilient Supply Chain Networks under Uncertainty Scenarios: A Review. Simul. Model. Pract. Theory 2021, 106, 102166. [Google Scholar] [CrossRef]
- Maheshwari, P.; Singla, S.; Shastri, Y. Resiliency Optimization of Biomass to Biofuel Supply Chain Incorporating Regional Biomass Pre-Processing Depots. Biomass Bioenergy 2017, 97, 116–131. [Google Scholar] [CrossRef]
- Zhao, S.; You, F. Resilient Supply Chain Design and Operations with Decision-dependent Uncertainty Using a Data-driven Robust Optimization Approach. AIChE J. 2019, 65, 1006–1021. [Google Scholar] [CrossRef]
- Foreign Agricultural Service. Brazil: Biofuels Annual; U.S. Department of Agriculture: Washington, DC, USA, 2024.
- Machado, R.L.; Abreu, M.R. Multi-Objective Optimization of the First and Second-Generation Ethanol Supply Chain in Brazil Using the Water-Energy-Food-Land Nexus Approach. Renew. Sustain. Energy Rev. 2024, 193, 114299. [Google Scholar] [CrossRef]
- Carvajal, J.; Sarache, W.; Costa, Y. Economic Justice in the Design of a Sugarcane-Derived Biofuel Supply Chain: A Fair Profit Distribution Approach. Logistics 2024, 8, 122. [Google Scholar] [CrossRef]
- Benites-Lazaro, L.L.; Mello-Théry, N.A.; Lahsen, M. Business Storytelling about Energy and Climate Change: The Case of Brazil’s Ethanol Industry. Energy Res. Soc. Sci. 2017, 31, 77–85. [Google Scholar] [CrossRef]
- Hashemi-Tabatabaei, M.; Amiri, M.; Keshavarz-Ghorabaee, M. Gresilient Supplier Evaluation and Selection under Uncertainty Using a Novel Streamlined Full Consistency Method. Logistics 2024, 8, 90. [Google Scholar] [CrossRef]
- Donner, M.; Gohier, R.; De Vries, H. A New Circular Business Model Typology for Creating Value from Agro-Waste. Sci. Total Environ. 2020, 716, 137065. [Google Scholar] [CrossRef]
- Antikainen, M.; Valkokari, K. A Framework for Sustainable Circular Business Model Innovation. Technol. Innov. Manag. Rev. 2016, 6, 5–12. [Google Scholar] [CrossRef]
- Oliveira, M.; Cocozza, A.; Zucaro, A.; Santagata, R.; Ulgiati, S. Circular Economy in the Agro-Industry: Integrated Environmental Assessment of Dairy Products. Renew. Sustain. Energy Rev. 2021, 148, 111314. [Google Scholar] [CrossRef]
- Vyas, M.; Yadav, G. Leveraging Enablers and Performance Metrics for Building Industrial Circular Supply Chain: A Hybrid Multi-Criteria Decision-Making Approach. Circ. Econ. Sustain. 2025, 5, 209–230. [Google Scholar] [CrossRef]
- Bello, A.O.; Mbhele, T.P. A Fuzzy-AHP Multi-Criteria Decision-Making Approach for a Sustainable Supply Chain of Rice Farming Stakeholders in Edu-Patigi LGA, Kwara State, Nigeria. Sustainability 2024, 16, 1751. [Google Scholar] [CrossRef]
- Wang, J.; Chang, J.; Wu, Y. The Optimal Production Decision of Competing Supply Chains When Considering Green Degree: A Game-Theoretic Approach. Sustainability 2020, 12, 7413. [Google Scholar] [CrossRef]
- Wang, L.; Su, X. Carbon Reduction Decision-Making in the Supply Chain Considering Carbon Allowances and Bidirectional Option Trading Mode of Carbon Emission Rights. Energy Rep. 2025, 13, 2678–2696. [Google Scholar] [CrossRef]
- Koppiahraj, K.; Virmani, N.; Sindhwani, R. Toward a sustainable future: Integrating circular economy in the digitally advanced supply chain. J. Bus. Ind. Mark. 2024, 39, 2605–2619. [Google Scholar] [CrossRef]
- Costa, Y.; Duarte, A.; Sarache, W. A Decisional Simulation-Optimization Framework for Sustainable Facility Location of a Biodiesel Plant in Colombia. J. Clean. Prod. 2017, 167, 174–191. [Google Scholar] [CrossRef]
- Suryawanshi, P.; Dutta, P. Optimization Models for Supply Chains under Risk, Uncertainty, and Resilience: A State-of-the-Art Review and Future Research Directions. Transp. Res. Part E Logist. Transp. Rev. 2022, 157, 102553. [Google Scholar] [CrossRef]
- Contreras-Lisperguer, R.; Muñoz-Cerón, E.; Aguilera, J.; De La Casa, J. A Set of Principles for Applying Circular Economy to the PV Industry: Modeling a Closed-Loop Material Cycle System for Crystalline Photovoltaic Panels. Sustain. Prod. Consum. 2021, 28, 164–179. [Google Scholar] [CrossRef]
- Koppiahraj, K.; Bathrinath, S.; Venkatesh, V.G.; Mani, V.; Shi, Y. Optimal sustainability assessment method selection: A practitioner perspective. Ann. Oper. Res. 2023, 324, 629–662. [Google Scholar] [CrossRef]
- Santos, D.S.; Ianda, T.F.; De Carvalho, P.P.S.; De Camargo, P.L.T.; Dos Santos, F.C.G.; Alzate, C.A.C.; Pessoa, F.L.P.; De Araújo Kalid, R. Multi-Purpose Biorefineries and Their Social Impacts: A Systematic Literature Review. Environ. Dev. Sustain. 2023, 26, 10865–10925. [Google Scholar] [CrossRef]
- Santos, D.S.; Primo, R.G.B.; De Araújo Lima, A.P.H.G.; Schramm, V.B.; Rodrigues, Y.V.S.; Belderrain, M.C.N.; Pessoa, F.L.P.; De Araújo Kalid, R.; Callefi, M.H.B.M. Evaluation of the Social Impacts of Small- and Medium-Sized Biorefineries in the Southern Coast Territory of Bahia Considering the Selection of Technologies for Bioactives: An MCDA Model. Environ. Dev. Sustain. 2023, 26, 13117–13137. [Google Scholar] [CrossRef]
- Salehi, S.; Zare Mehrjerdi, Y.; Sadegheih, A.; Hosseini-Nasab, H. Designing a Resilient and Sustainable Biomass Supply Chain Network through the Optimization Approach under Uncertainty and the Disruption. J. Clean. Prod. 2022, 359, 131741. [Google Scholar] [CrossRef]
- Safari, L.; Sadjadi, S.J.; Sobhani, F.M. Resilient and Sustainable Supply Chain Design and Planning under Supply Disruption Risk Using a Multi-Objective Scenario-Based Robust Optimization Model. Environ. Dev. Sustain. 2023, 26, 27485–27527. [Google Scholar] [CrossRef]
- Ebadian, M.; Sowlati, T.; Sokhansanj, S.; Townley-Smith, L.; Stumborg, M. Modeling and Analysing Storage Systems in Agricultural Biomass Supply Chain for Cellulosic Ethanol Production. Appl. Energy 2013, 102, 840–849. [Google Scholar] [CrossRef]
- Soren, A.; Shastri, Y. Resilient Design of Biomass to Energy System Considering Uncertainty in Biomass Supply. Comput. Chem. Eng. 2019, 131, 106593. [Google Scholar] [CrossRef]
- Payer, R.C.; Quelhas, O.L.G.; Bergiante, N.C.R. Framework to Supporting Monitoring the Circular Economy in the Context of Industry 5.0: A Proposal Considering Circularity Indicators, Digital Transformation, and Sustainability. J. Clean. Prod. 2024, 466, 142850. [Google Scholar] [CrossRef]
- Eden, C.; Ackermann, F. Cognitive Mapping Expert Views for Policy Analysis in the Public Sector. Eur. J. Oper. Res. 2004, 152, 615–630. [Google Scholar] [CrossRef]
- Georgiou, I. A Graph-Theoretic Perspective on the Links-to-Concepts Ratio Expected in Cognitive Maps. Eur. J. Oper. Res. 2009, 197, 834–836. [Google Scholar] [CrossRef]
- Medeiros, D.F.K.L.; Urtiga, M.M.; Morais, D.C. Integrative Negotiation Model to Support Water Resources Management. J. Clean. Prod. 2017, 150, 148–163. [Google Scholar] [CrossRef]
- Guarnieri, P.; Camara E Silva, L.; Vieira, B. How to Assess Reverse Logistics of E-Waste Considering a Multicriteria Perspective? A Model Proposition. Logistics 2020, 4, 25. [Google Scholar] [CrossRef]
- Georgiou, I. Messing about in Transformations: Structured Systemic Planning for Systemic Solutions to Systemic Problems. Eur. J. Oper. Res. 2012, 223, 392–406. [Google Scholar] [CrossRef]
- Sant’Anna, A.P. Aleatorização e Composição de Medidas de Preferência. Pesqui. Oper. 2002, 22, 87–103. [Google Scholar] [CrossRef]
- Barron, F.H.; Bruce, E. Barrett Decision Quality Using Ranked Attribute Weights. Manag. Sci. 1996, 42, 1515–1523. [Google Scholar] [CrossRef]
- Young, H.P.; Raiffa, H. The Art and Science of Negotiation. J. Policy Anal. Manag. 1983, 3, 152. [Google Scholar] [CrossRef]
- Sant’, A.P.; Anna, N.A.; Conde, F.Q. Probabilistic Comparison of Call Centres in a Group Decision Process. Int. J. Manag. Decis. Mak. 2011, 11, 417. [Google Scholar] [CrossRef]
- Abuabara, L.; Paucar-Caceres, A. Surveying Applications of Strategic Options Development and Analysis (SODA) from 1989 to 2018. Eur. J. Oper. Res. 2021, 292, 1051–1065. [Google Scholar] [CrossRef]
- Collins, A.J.; Thaviphoke, Y.; Tako, A.A. Using Strategic Options Development and Analysis (SODA) to Understand the Simulation Accessibility Problem. J. Oper. Res. Soc. 2023, 74, 2143–2164. [Google Scholar] [CrossRef]
- Cunha, A.A.R.; Morais, D.C. Analysing the Use of Cognitive Maps in an Experiment on a Group Decision Process. J. Oper. Res. Soc. 2016, 67, 1459–1468. [Google Scholar] [CrossRef]
- Karagoz, A.B.; Reagh, Z.M.; Kool, W. The Construction and Use of Cognitive Maps in Model-Based Control. J. Exp. Psychol. Gen. 2024, 153, 372–385. [Google Scholar] [CrossRef]
- Georgiou, I. Cognitive Mapping and Strategic Options Development and Analysis (SODA). In Wiley Encyclopedia of Operations Research and Management Science; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-40063-0. [Google Scholar]
- Cunha, A.; Morais, D. Problem Structuring Methods in Group Decision Making: A Comparative Study of Their Application. Oper. Res. Int. J. 2019, 19, 1081–1100. [Google Scholar] [CrossRef]
- Gavião, L.O.; Sant’Anna, A.P.; Lima, G.B.A.; Garcia, P.A.D.A. Composition of Probabilistic Preferences in Multicriteria Problems with Variables Measured in Likert Scales and Fitted by Empirical Distributions. Standards 2023, 3, 268–282. [Google Scholar] [CrossRef]
- Johnson, D. The Triangular Distribution as a Proxy for the Beta Distribution in Risk Analysis. J. R. Stat. Soc. D 1997, 46, 387–398. [Google Scholar] [CrossRef]
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Circular Economy Strategies for Combating Climate Change and Other Environmental Issues. Environ. Chem. Lett. 2023, 21, 55–80. [Google Scholar] [CrossRef]
- Li, J.; Xiao, F.; Zhang, L.; Amirkhanian, S.N. Life Cycle Assessment and Life Cycle Cost Analysis of Recycled Solid Waste Materials in Highway Pavement: A Review. J. Clean. Prod. 2019, 233, 1182–1206. [Google Scholar] [CrossRef]
- Fontana, M.E.; Vidal, R.; Marques, P.C.; Silva, W.D.O. Priority model for critical success factors in reverse flow inventory management. Int. J. Inventory Res. 2023, 6, 116. [Google Scholar] [CrossRef]
- Sanches, R.A.; Rocha, R.; Duarte, A.Y.S. Proposal for Producing New Fabric Through the Use of Fabric Scraps Discarded by Ibitinga Clothing Manufacturers: A Brazilian Example of Circular Economy. In Advances in Design, Music and Arts II; Raposo, D., Neves, J., Silva, R., Correia Castilho, L., Dias, R., Eds.; Springer Series in Design and Innovation; Springer International Publishing: Cham, Switzerland, 2023; Volume 25, pp. 328–341. ISBN 978-3-031-09658-7. [Google Scholar]
- Zhu, Y.; Zhang, Y.; Luo, D.; Chong, Z.; Li, E.; Kong, X. A Review of Municipal Solid Waste in China: Characteristics, Compositions, Influential Factors and Treatment Technologies. Environ. Dev. Sustain. 2021, 23, 6603–6622. [Google Scholar] [CrossRef]
- Cucciniello, R.; Cespi, D. Recycling within the Chemical Industry: The Circular Economy Era. Recycling 2018, 3, 22. [Google Scholar] [CrossRef]
- Wang, N.; Guo, Z.; Meng, F.; Wang, H.; Yin, J.; Liu, Y. The Circular Economy and Carbon Footprint: A Systematic Accounting for Typical Coal-Fuelled Power Industrial Parks. J. Clean. Prod. 2019, 229, 1262–1273. [Google Scholar] [CrossRef]
- Isabella, G.; Yu, A.S.O.; Silva, A.M.D.; Pegetti, A.L. Another Driver of the Brazilian Fuel Ethanol Supply Chain: The Consumers’ Preferences. Rev. Adm. 2017, 52, 304–316. [Google Scholar] [CrossRef]
- Vaccaro, G.L.R.; Longhi, A.; Moutinho, M.H.C.; Scavarda, A.; Lopes, C.M.; Dos Reis, A.N.; Nunes, F.; Azevedo, D. Interrelationship among Actors in Ethanol Production Chain as a Competitive and Sustainable Factor: The Case of Associative Production and Family-Farming in Southern Brazil. J. Clean. Prod. 2018, 196, 1239–1255. [Google Scholar] [CrossRef]
- Ahn, B.S. Compatible Weighting Method with Rank Order Centroid: Maximum Entropy Ordered Weighted Averaging Approach. Eur. J. Oper. Res. 2011, 212, 552–559. [Google Scholar] [CrossRef]
- Brandão, S.C.G.; Fontana, M.E.; Silva, W.D.O.; da Silva, G.L. Drivers and barriers of sustainability-oriented innovations in Brazilian denim treatment facilities: An expert-driven decision support. Humanit. Soc. Sci. Commun. 2025, 12, 679. [Google Scholar] [CrossRef]
- Rosa, A.; Silva, W.; Fontana, M.; Levino, N.; Guarnieri, P. A GIS-based multi-criteria approach for identifying areas vulnerable to subsidence in the world’s largest ongoing urban socio-environmental mining disaster. Extr. Ind. Soc. 2024, 19, 101500. [Google Scholar] [CrossRef]
- Oliveira Silva, W.D.; Fontana, M.E.; Belarmino, H.L.; Levino, N.; Marques, P.C. Resilience Optimization in Disruption-Prone Sustainable Reverse Supply Chains for Lead-Acid Battery Waste Management in Brazil: A Stochastic Model for Public and Private Policy Formulation. Socio-Econ. Plan. Sci. 2024, 95, 102027. [Google Scholar] [CrossRef]
- Silva, C.P.L.; Lima, M.; Silva, W.D.O.; Levino, N. Water-Path Game: Transformando crianças em guardiãs ambientais com jogo interativo sobre a preservação de águas urbanas. Rev. Tecnol. Gestão Sustentável 2024, 3, 159–172. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
Total number of decision makers | |
Total number of criteria | |
Decision-maker index | |
Criterion index | |
Weight of criterion k by decision maker j based on the Rank-Order Centroid (ROC) method | |
Rank of criterion k, where r1 is the most important, and rn is the least important | |
The probability that alternative i is the best according to decision maker j (and criterion k) | |
The probability that alternative i is the worst according to decision maker j (and criterion k) | |
Aggregated probability that alternative i is the best, computed across all decision makers and criteria considering the choice problematic | |
Aggregated probability that alternative i is the worst, computed across all decision makers and criteria considering the choice problematic | |
Cumulative distribution function (CDF) of all alternatives except alternative i | |
Probability density function (PDF) of alternative i | |
Domain of integration for alternative i | |
Set of all alternatives | |
Ranking alternatives based on their aggregated probabilities Mi or mi considering the outranking problematic | |
Optimistic/progressive profile for alternative i | |
Optimistic/conservative profile for alternative i | |
Pessimistic/progressive profile for alternative i | |
Pessimistic/conservative profile for alternative i |
Optimistic | Pessimistic |
---|---|
Consider it satisfactory to optimize at least one criterion. | Pursues optimizations for all criteria. |
The composition uses the connective “or”. | The composition uses the connective “and”. |
Progressive | Conservative |
Considers the probabilities of maximizing preferences. | Concerned only with avoiding extreme negatives; probability of not minimizing preferences. |
Associated with the idea of always increasing the level of satisfaction; high standards. | Related to the idea of avoiding losses; risk-averse; the objective is to avoid poor performance. |
Code | Construct | Category | ||||
---|---|---|---|---|---|---|
T | H | I | E | D | ||
1 | Manage waste … cause pollution | x | ||||
2 | Treat effluent … water pollution | x | ||||
3 | Optimization of resource efficiency … inefficient resource utilization | x | x | |||
4 | Generate energy from biomass … lose clean energy potential | x | ||||
5 | x | |||||
6 | Enhancement of waste valorization … unexploited waste streams | x | ||||
7 | Water reuse … excessive water consumption | x | x | |||
8 | Sequestrate CO2 generated in fermentation… cause air pollution | x | ||||
9 | Reduce greenhouse gas emissions … increase it | x | ||||
10 | Reuse material leftovers …discard | x | ||||
11 | Reduce environmental impacts … increase | x | ||||
12 | By-product recovery … disposal of by-products | x | x | |||
13 | Keep company credibility… not having a good image in the market | x | ||||
14 | Eliminate fines … receive fines | x | ||||
15 | Obtain ISO certification … no improvement of processes | x | ||||
16 | Use vinasse in fertigation … lose it | x | ||||
17 | Reduce the use of chemicals… have contamination | x | x | x | ||
18 | Adoption of renewable energy … reliance on fossil-based processes | x | ||||
19 | Invest in technologies … have an outdated process | x | ||||
20 | Clean technologies … outdated and polluting technologies | x | x | |||
21 | Economic feasibility … unviable cost structures | x | x | |||
22 | Investment in circular strategies … lack of financial commitment | x | x | |||
23 | Strong partnerships … fragmented stakeholder relationships | x | ||||
24 | Produce biogas … not produce | x | ||||
25 | Have an organizational culture committed to CE … not have | x | ||||
26 | Capacity building … lack of technical knowledge | x | x | x | ||
27 | Commercialize waste as secondary raw material … not commercialize | x | ||||
28 | Diversify production … maintain | x | ||||
29 | Generate more jobs … maintain | x | ||||
30 | Workforce training … insufficient skill development | x | x |
Code | Alternative | Description |
---|---|---|
A1 | Crop rotation | Implement cover crops to improve soil and reduce pests. |
A2 | Reuse of by-products | Use bagasse, straw, and vinasse for cogeneration and fertilization. |
A3 | Crop-livestock integration | Utilize sugarcane residues for animal feed and organic fertilization. |
A4 | Logistics optimization | Improve transport infrastructure to reduce losses and costs. |
A5 | Efficient irrigation | Apply techniques such as drip irrigation to reduce water consumption. |
A6 | Genetic improvement | Use cane varieties more resistant to pests and climate changes. |
A7 | Precision agriculture | Use sensors and drones to optimize the use of agricultural inputs. |
A8 | Biofertilizer production | Utilize vinasse to produce organic fertilizers. |
A9 | Waste reduction | Improve processes to minimize losses in harvesting and milling. |
A10 | Biomass diversification | Integrate complementary energy crops such as sorghum and eucalyptus. |
A11 | Carbon management | Adopt carbon sequestration practices in soil and reforestation. |
A12 | Biogas use | Produce biogas from waste to reduce fossil fuel consumption. |
A13 | Input cooperatives | Create cooperatives to ensure lower prices for agricultural inputs. |
A14 | Climate risk modeling | Use artificial intelligence to predict climate impacts and adapt crops. |
A15 | Reverse logistics | Implement reverse logistics for material reuse. |
A16 | Environmental certifications | Seek certifications like Bonsucro to add value and access premium markets. |
A17 | Blockchain in traceability | Use blockchain to ensure traceability and transparency in the supply chain. |
A18 | Decentralized energy production | Invest in solar and wind plants to reduce dependence on external sources. |
A19 | Microdistilleries | Create small distilleries to absorb variations in raw material supply. |
A20 | Education and training | Train farmers and workers to adopt sustainable practices. |
Code | Criterion | Description | Evaluation Scale | Objective |
---|---|---|---|---|
C1 | Implementation cost | Investment required to adopt the alternative. | BRL per hectare or BRL per ton processed | Minimize |
C2 | Expected financial return | Economic gain resulting from the alternative. | BRL per hectare or BRL per ton processed | Maximize |
C3 | Resource use efficiency | Reduction in water, energy, and input consumption. | % reduction in resource use | Maximize |
C4 | Environmental impact | Emissions avoided, degraded areas recovered, etc. | Tons of CO2 avoided or hectares recovered | Maximize |
C5 | Implementation complexity | Degree of difficulty to adopt the alternative in the production chain. | Indexes from 0 (low) to 1 (high) | Minimize |
C6 | Climate resilience | The capacity of the alternative to mitigate climate impacts. | Indexes from 0 (low) to 1 (high) | Maximize |
C7 | Job creation | Number of direct and indirect jobs created. | Number of jobs per hectare or ton processed | Maximize |
C8 | Return on investment time | Time required to recover the invested capital. | Years | Minimize |
C9 | Technological adoption level | Level of technological innovation required for implementation. | Indexes from 0 (low) to 1 (high) | Minimize |
C10 | Supply chain security | Reduction of the risk of supply shortage or production interruption. | Indexes from 0 (low) to 1 (high) | Maximize |
Alternative | Criterion | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | |
A1 | 8260.10 | 8705.45 | 14.01 | 36.25 | 0.21 | 0.59 | 12.51 | 7.28 | 0.32 | 0.75 |
A2 | 6038.18 | 12,853.27 | 26.05 | 93.98 | 0.43 | 0.79 | 2.72 | 6.56 | 0.36 | 0.65 |
A3 | 9363.68 | 5706.13 | 56.41 | 75.05 | 0.54 | 0.50 | 25.47 | 6.12 | 0.32 | 0.78 |
A4 | 3993.44 | 10,523.43 | 13.64 | 69.33 | 0.30 | 0.48 | 20.26 | 7.81 | 0.28 | 0.77 |
A5 | 12,771.62 | 7461.79 | 29.34 | 31.63 | 0.35 | 0.58 | 12.77 | 7.61 | 0.67 | 0.66 |
A6 | 2929.64 | 7307.06 | 36.53 | 79.28 | 0.53 | 0.52 | 34.83 | 3.65 | 0.27 | 0.55 |
A7 | 11,438.47 | 11,758.24 | 22.91 | 44.30 | 0.50 | 0.51 | 9.16 | 10.69 | 0.52 | 0.49 |
A8 | 4421.45 | 7205.69 | 44.54 | 170.19 | 0.49 | 0.61 | 35.76 | 8.33 | 0.24 | 0.71 |
A9 | 4942.90 | 7288.87 | 48.70 | 35.77 | 0.64 | 0.59 | 3.41 | 4.55 | 0.49 | 0.39 |
A10 | 8971.85 | 9659.03 | 16.62 | 34.58 | 0.43 | 0.44 | 2.30 | 4.17 | 0.71 | 0.65 |
A11 | 12,371.41 | 4713.22 | 40.35 | 79.95 | 0.45 | 0.33 | 22.80 | 4.48 | 0.29 | 0.66 |
A12 | 2352.39 | 7564.99 | 37.92 | 16.04 | 0.38 | 0.79 | 9.71 | 7.29 | 0.26 | 0.65 |
A13 | 8284.66 | 10,504.11 | 29.11 | 41.99 | 0.45 | 0.49 | 13.35 | 8.77 | 0.38 | 0.67 |
A14 | 6588.03 | 2737.44 | 22.26 | 62.69 | 0.46 | 0.83 | 18.93 | 10.52 | 0.22 | 0.62 |
A15 | 3391.90 | 4725.77 | 50.13 | 61.48 | 0.59 | 0.80 | 28.81 | 4.90 | 0.25 | 0.47 |
A16 | 8307.23 | 7697.23 | 17.22 | 22.86 | 0.58 | 0.64 | 7.97 | 2.84 | 0.80 | 0.70 |
A17 | 3390.40 | 11,330.38 | 24.58 | 102.53 | 0.59 | 0.41 | 14.04 | 4.43 | 0.56 | 0.61 |
A18 | 7500.25 | 19,030.78 | 39.63 | 121.09 | 0.29 | 0.46 | 12.24 | 3.77 | 0.25 | 0.75 |
A19 | 4220.62 | 6701.44 | 38.62 | 62.57 | 0.43 | 0.59 | 2.71 | 7.85 | 0.61 | 0.68 |
A20 | 5135.23 | 3559.14 | 50.10 | 22.61 | 0.40 | 0.47 | 16.90 | 4.73 | 0.32 | 0.71 |
DM1 | DM2 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | |
A1 | 5 | 5 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 5 | 5 | 3 | 2 | 4 | 3 | 3 | 4 | 3 | 3 |
A2 | 4 | 2 | 4 | 4 | 5 | 5 | 1 | 5 | 1 | 4 | 4 | 2 | 4 | 4 | 5 | 5 | 1 | 5 | 1 | 4 |
A3 | 3 | 2 | 5 | 4 | 5 | 4 | 3 | 4 | 2 | 4 | 3 | 2 | 5 | 4 | 5 | 4 | 3 | 4 | 2 | 4 |
A4 | 3 | 4 | 3 | 5 | 3 | 2 | 3 | 2 | 2 | 4 | 3 | 4 | 3 | 5 | 3 | 2 | 3 | 2 | 1 | 3 |
A5 | 4 | 2 | 5 | 3 | 5 | 4 | 3 | 5 | 2 | 4 | 4 | 1 | 5 | 3 | 5 | 4 | 2 | 5 | 2 | 4 |
A6 | 3 | 5 | 2 | 5 | 3 | 5 | 3 | 4 | 3 | 3 | 3 | 5 | 2 | 5 | 3 | 5 | 3 | 4 | 3 | 3 |
A7 | 4 | 3 | 3 | 4 | 4 | 1 | 5 | 4 | 4 | 3 | 4 | 3 | 2 | 4 | 4 | 1 | 5 | 4 | 4 | 3 |
A8 | 5 | 3 | 2 | 2 | 4 | 4 | 4 | 4 | 3 | 3 | 5 | 2 | 2 | 2 | 4 | 4 | 3 | 4 | 3 | 3 |
A9 | 4 | 2 | 5 | 4 | 4 | 4 | 5 | 3 | 4 | 3 | 3 | 2 | 5 | 4 | 4 | 4 | 5 | 3 | 4 | 3 |
A10 | 3 | 5 | 5 | 4 | 3 | 3 | 3 | 3 | 2 | 4 | 2 | 5 | 5 | 4 | 3 | 3 | 3 | 3 | 1 | 3 |
A11 | 4 | 4 | 4 | 4 | 4 | 2 | 5 | 3 | 2 | 5 | 4 | 4 | 4 | 4 | 3 | 2 | 5 | 3 | 1 | 5 |
A12 | 3 | 5 | 2 | 5 | 4 | 4 | 5 | 5 | 4 | 5 | 3 | 5 | 2 | 5 | 4 | 4 | 5 | 5 | 4 | 5 |
A13 | 4 | 2 | 5 | 1 | 4 | 3 | 2 | 1 | 3 | 5 | 4 | 2 | 5 | 1 | 4 | 3 | 2 | 1 | 3 | 5 |
A14 | 3 | 4 | 4 | 5 | 2 | 4 | 3 | 4 | 2 | 5 | 3 | 4 | 4 | 5 | 2 | 4 | 3 | 4 | 2 | 5 |
A15 | 1 | 5 | 4 | 4 | 2 | 3 | 1 | 2 | 4 | 4 | 1 | 5 | 4 | 4 | 2 | 3 | 1 | 2 | 4 | 3 |
A16 | 2 | 4 | 2 | 5 | 3 | 5 | 4 | 3 | 4 | 4 | 2 | 4 | 2 | 5 | 3 | 5 | 4 | 3 | 4 | 4 |
A17 | 5 | 1 | 5 | 2 | 4 | 4 | 2 | 5 | 4 | 5 | 5 | 1 | 5 | 1 | 4 | 4 | 2 | 5 | 4 | 5 |
A18 | 4 | 3 | 5 | 4 | 3 | 2 | 2 | 2 | 4 | 4 | 4 | 3 | 5 | 4 | 3 | 2 | 2 | 2 | 4 | 3 |
A19 | 4 | 3 | 2 | 4 | 4 | 5 | 4 | 1 | 3 | 3 | 4 | 3 | 2 | 4 | 4 | 5 | 4 | 1 | 2 | 3 |
A20 | 4 | 2 | 3 | 4 | 2 | 3 | 2 | 2 | 1 | 5 | 4 | 2 | 3 | 4 | 2 | 3 | 1 | 1 | 1 | 5 |
Criterion | Beta-PERT (p-Value) | Normal (p-Value) | Lognormal (p-Value) | Gamma (p-Value) | Weibull (p-Value) | Triangular (p-Value) |
---|---|---|---|---|---|---|
C1 | 0.9949 | 0.0321 | 0.0482 | 0.0955 | 0.0832 | 0.9713 |
C2 | 0.1964 | 0.0103 | 0.0215 | 0.0508 | 0.0451 | 0.1782 |
C3 | 0.9753 | 0.0724 | 0.0627 | 0.9452 | 0.9328 | 0.0821 |
C4 | 0.5062 | 0.0349 | 0.0678 | 0.5126 | 0.0412 | 0.2993 |
C5 | 0.1617 | 0.0121 | 0.0236 | 0.0873 | 0.1485 | 0.1764 |
C6 | 0.3181 | 0.0294 | 0.0342 | 0.0928 | 0.3206 | 0.3012 |
C7 | 0.6534 | 0.0417 | 0.0593 | 0.6972 | 0.6609 | 0.1734 |
C8 | 0.7077 | 0.0502 | 0.0738 | 0.7401 | 0.7224 | 0.6847 |
C9 | 0.1156 | 0.0098 | 0.0184 | 0.0492 | 0.0536 | 0.1324 |
C10 | 0.2144 | 0.0165 | 0.0267 | 0.0789 | 0.0653 | 0.2032 |
DM1 | DM2 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | |
A1 | 1.00 | 1.00 | 0.33 | 0.50 | 0.67 | 0.50 | 0.50 | 0.75 | 0.67 | 0.00 | 1.00 | 1.00 | 0.33 | 0.25 | 0.67 | 0.50 | 0.50 | 0.75 | 0.67 | 0.00 |
A2 | 0.75 | 0.25 | 0.67 | 0.75 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | 0.50 | 0.75 | 0.25 | 0.67 | 0.75 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | 0.50 |
A3 | 0.50 | 0.25 | 1.00 | 0.75 | 1.00 | 0.75 | 0.50 | 0.75 | 0.33 | 0.50 | 0.50 | 0.25 | 1.00 | 0.75 | 1.00 | 0.75 | 0.50 | 0.75 | 0.33 | 0.50 |
A4 | 0.50 | 0.75 | 0.33 | 1.00 | 0.33 | 0.25 | 0.50 | 0.25 | 0.33 | 0.50 | 0.50 | 0.75 | 0.33 | 1.00 | 0.33 | 0.25 | 0.50 | 0.25 | 0.00 | 0.00 |
A5 | 0.75 | 0.25 | 1.00 | 0.50 | 1.00 | 0.75 | 0.50 | 1.00 | 0.33 | 0.50 | 0.75 | 0.00 | 1.00 | 0.50 | 1.00 | 0.75 | 0.25 | 1.00 | 0.33 | 0.50 |
A6 | 0.50 | 1.00 | 0.00 | 1.00 | 0.33 | 1.00 | 0.50 | 0.75 | 0.67 | 0.00 | 0.50 | 1.00 | 0.00 | 1.00 | 0.33 | 1.00 | 0.50 | 0.75 | 0.67 | 0.00 |
A7 | 0.75 | 0.50 | 0.33 | 0.75 | 0.67 | 0.00 | 1.00 | 0.75 | 1.00 | 0.00 | 0.75 | 0.50 | 0.00 | 0.75 | 0.67 | 0.00 | 1.00 | 0.50 | 1.00 | 0.00 |
A8 | 1.00 | 0.50 | 0.00 | 0.25 | 0.67 | 0.75 | 0.75 | 0.75 | 0.67 | 0.00 | 1.00 | 0.25 | 0.00 | 0.25 | 0.67 | 0.75 | 0.50 | 0.75 | 0.67 | 0.00 |
A9 | 0.75 | 0.25 | 1.00 | 0.75 | 0.67 | 0.75 | 1.00 | 0.50 | 1.00 | 0.00 | 0.50 | 0.25 | 1.00 | 0.75 | 0.67 | 0.75 | 1.00 | 0.50 | 1.00 | 0.00 |
A10 | 0.50 | 1.00 | 1.00 | 0.75 | 0.33 | 0.50 | 0.50 | 0.50 | 0.33 | 0.50 | 0.25 | 1.00 | 1.00 | 0.75 | 0.33 | 0.50 | 0.50 | 0.50 | 0.00 | 0.00 |
A11 | 0.75 | 0.75 | 0.67 | 0.75 | 0.67 | 0.25 | 1.00 | 0.50 | 0.33 | 1.00 | 0.75 | 0.75 | 0.67 | 0.75 | 0.33 | 0.25 | 1.00 | 0.50 | 0.00 | 1.00 |
A12 | 0.50 | 1.00 | 0.00 | 1.00 | 0.67 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 0.00 | 1.00 | 0.67 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 |
A13 | 0.75 | 0.25 | 1.00 | 0.00 | 0.67 | 0.50 | 0.25 | 0.00 | 0.67 | 1.00 | 0.75 | 0.25 | 1.00 | 0.00 | 0.67 | 0.50 | 0.25 | 0.00 | 0.67 | 1.00 |
A14 | 0.50 | 0.75 | 0.67 | 1.00 | 0.00 | 0.75 | 0.50 | 0.75 | 0.33 | 1.00 | 0.50 | 0.75 | 0.67 | 1.00 | 0.00 | 0.75 | 0.50 | 0.75 | 0.33 | 1.00 |
A15 | 0.00 | 1.00 | 0.67 | 0.75 | 0.00 | 0.50 | 0.00 | 0.25 | 1.00 | 0.50 | 0.00 | 1.00 | 0.67 | 0.75 | 0.00 | 0.50 | 0.00 | 0.25 | 1.00 | 0.00 |
A16 | 0.25 | 0.75 | 0.00 | 1.00 | 0.33 | 1.00 | 0.75 | 0.50 | 1.00 | 0.50 | 0.25 | 0.75 | 0.00 | 1.00 | 0.33 | 1.00 | 0.75 | 0.50 | 1.00 | 0.50 |
A17 | 1.00 | 0.00 | 1.00 | 0.25 | 0.67 | 0.75 | 0.25 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | 0.67 | 0.75 | 0.25 | 1.00 | 1.00 | 1.00 |
A18 | 0.75 | 0.50 | 1.00 | 0.75 | 0.33 | 0.25 | 0.25 | 0.25 | 1.00 | 0.50 | 0.75 | 0.50 | 1.00 | 0.75 | 0.33 | 0.25 | 0.25 | 0.25 | 1.00 | 0.00 |
A19 | 0.75 | 0.50 | 0.00 | 0.75 | 0.67 | 1.00 | 0.75 | 0.00 | 0.67 | 0.00 | 0.75 | 0.50 | 0.00 | 0.75 | 0.67 | 1.00 | 0.75 | 0.00 | 0.33 | 0.00 |
A20 | 0.75 | 0.25 | 0.33 | 0.75 | 0.00 | 0.50 | 0.25 | 0.25 | 0.00 | 1.00 | 0.75 | 0.25 | 0.33 | 0.75 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 1.00 |
Ranking | Criteria Ranking for DM1 | Criteria Ranking for DM2 | ROC Weight Calculation | Final Weight |
---|---|---|---|---|
1st | C5 | C1 | 0.2929 | |
2nd | C3 | C9 | 0.1929 | |
3rd | C7 | C4 | 0.1429 | |
4th | C1 | C10 | 0.1095 | |
5th | C9 | C7 | 0.0873 | |
6th | C2 | C5 | 0.0706 | |
7th | C4 | C3 | 0.0571 | |
8th | C6 | C8 | 0.0460 | |
9th | C8 | C6 | 0.0365 | |
10th | C10 | C2 | 0.0274 |
Ranking | Alternative | |
---|---|---|
1st | A14 | 1.36 × 10−63 |
2nd | A12 | 3.44 × 10−66 |
3rd | A17 | 7.75 × 10−67 |
4th | A16 | 3.95 × 10−68 |
5th | A9 | 3.86 × 10−68 |
6th | A5 | 3.82 × 10−68 |
7th | A2 | 3.81 × 10−68 |
8th | A6 | 3.66 × 10−68 |
9th | A11 | 9.39 × 10−69 |
10th | A3 | 8.88 × 10−69 |
11th | A13 | 8.67 × 10−69 |
12th | A7 | 8.47 × 10−69 |
13th | A1 | 8.47 × 10−69 |
14th | A15 | 8.26 × 10−69 |
15th | A10 | 8.08 × 10−69 |
16th | A8 | 1.97 × 10−69 |
17th | A18 | 1.94 × 10−69 |
18th | A19 | 1.94 × 10−69 |
19th | A20 | 1.85 × 10−69 |
20th | A4 | 1.83 × 10−69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, E.d.S.; Silva, W.D.O.; Fontana, M.E.; Marques, P.C.; Pedro, H.C.; Mota, R.d.O.; Nepomuceno, V. Circular Strategic Options for Ethanol Supply Chain Resilience Under Uncertainties Using a Composition of Probabilities Group Decision Model. Logistics 2025, 9, 71. https://doi.org/10.3390/logistics9020071
Santos EdS, Silva WDO, Fontana ME, Marques PC, Pedro HC, Mota RdO, Nepomuceno V. Circular Strategic Options for Ethanol Supply Chain Resilience Under Uncertainties Using a Composition of Probabilities Group Decision Model. Logistics. 2025; 9(2):71. https://doi.org/10.3390/logistics9020071
Chicago/Turabian StyleSantos, Edson da Silva, Wesley Douglas Oliveira Silva, Marcele Elisa Fontana, Pedro Carmona Marques, Hemmylly Cawanne Pedro, Renata de Oliveira Mota, and Vilmar Nepomuceno. 2025. "Circular Strategic Options for Ethanol Supply Chain Resilience Under Uncertainties Using a Composition of Probabilities Group Decision Model" Logistics 9, no. 2: 71. https://doi.org/10.3390/logistics9020071
APA StyleSantos, E. d. S., Silva, W. D. O., Fontana, M. E., Marques, P. C., Pedro, H. C., Mota, R. d. O., & Nepomuceno, V. (2025). Circular Strategic Options for Ethanol Supply Chain Resilience Under Uncertainties Using a Composition of Probabilities Group Decision Model. Logistics, 9(2), 71. https://doi.org/10.3390/logistics9020071