Complementary Methods to Improve the Depuration of Bivalves: A Review
Abstract
:1. Introduction
2. Modification of Marine Water Employed in Depuration
3. Depuration by Biological Methods
4. Depuration by Physical Methods
5. Depuration by Chemical Methods
6. Methodologies for Decontamination during Industrial Processing
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations, Department of Economics and Social affairs, Population Division. World Population Prospects 2019: Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Food and Agriculture Organization of the Unites Nations (FAO). FAO Fisheries Technical Paper No 511 Bivalve Depuration: Fundamental and Practical Aspects; FAO: Rome, Italy, 2010. [Google Scholar]
- Rodney, E.; Herrera, P.; Luxama, J.; Boykin, M.; Crawford, A.; Carroll, M.A.; Catapane, E.J. Bioaccumulation and tissue distribution of arsenic, cadmium, copper and zinc in Crassostrea virginica grown at two different depths in Jamaica Bay, New Yowk. In Vivo 2007, 29, 16–27. [Google Scholar] [PubMed]
- Bellou, M.; Kokkinos, P.; Vantarakis, A. Shellfish-borne viral outbreaks: A systematic review. Food Environ. Virol. 2013, 5, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Biessy, L.; Smith, K.F.; Tim Harwood, D.; Boundy, M.J.; Hawes, I.; Wood, S.A. Spatial variability and depuration of tetrodotoxin in the bivalve Pahies australis from New Zealand. Toxicon 2019, 2, 100008. [Google Scholar] [CrossRef]
- Fajardo, P.; Atanassova, M.; Garrido-Maestru, A.; Wortner-Smith, T.; Cotterill, J.; Cabado, A.G. Bacteria isolated from shellfish digestive gland with antipathogenic activity as candidates to increase the efficiency of shellfish depuration process. Food Cont. 2014, 46, 272–281. [Google Scholar] [CrossRef]
- Fernández, E.; Álvarez-Salgado, X.A.; Beiras, R.; Ovejero, A.; Méndez, G. Coexistence of urban uses and shellfish production in an upwelling-driven, highly productive marine environment: The case of the Ría de Vigo (Galicia, Spain). Reg. Stud. Mar. Sci. 2016, 8, 362–370. [Google Scholar] [CrossRef] [Green Version]
- García, L.A.T.; Nascimento, M.A.; Barardi, C.R.M. Effect of UV light on the inactivation of recombinant human adenovirus and murine norovirus in seawater in shellfish depuration tanks. Food Environ. Virol. 2015, 7, 67–75. [Google Scholar] [CrossRef]
- Love, D.C.; Lovelace, G.L.; Sobsey, M.D. Removal of Escherichia coli, Enterococcus faecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard-shell clams (Mercinaria mercinaria) by depuration. Int. J. Food Microbiol. 2010, 143, 211–217. [Google Scholar] [CrossRef]
- Polo, D.; Feal, X.; Romalde, J.L. Mathematical model for viral depuration kinetics in shellfish: An useful tool to estimate the risk for the consumers. Food Microbiol. 2015, 49, 220–225. [Google Scholar] [CrossRef]
- Polo, D.; Álvarez, C.; Díez, J.; Darriba, S.; Longa, A.; Romalde, J.L. Viral elimination during commercial depuration of shellfish. Food Cont. 2014, 43, 206–212. [Google Scholar] [CrossRef]
- Lees, D.; Younger, A.; Dore, B. Depuration and Relaying. In Safe Management of Shellfish and Harvest Waters; Rees, G., Pond, K., Kay, D., Bartram, J., Santo Domingo, J., Eds.; IWA Publishing: London, UK, 2010; pp. 145–181. [Google Scholar]
- Polo, D.; Álvarez, C.; Longa, A.; Romalde, J.L. Effectiveness of depuration for hepatitis A virus removal from mussels (Mytilus galloprovincialis). Int. J. Food Microbiol. 2014, 180, 24–29. [Google Scholar] [CrossRef]
- Le Guyader, F.S.; Atmar, R.L.; Le Pendu, J. Transmission of viruses through shellfish: When specific ligands come into play. Curr. Opin. Virol. 2012, 2, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgson, K.R.; Torok, V.A.; Turnbull, A.R. Bacteriophages as enteric viral infections in bivalve mollusk management. Food Microbiol. 2017, 65, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Naïma, B.M.H. Human enteric viruses in bivalve molluscs: Contamination and detection. Int. J. Sci. Technol. 2015, 4, 6. [Google Scholar]
- Razafimahefa, R.M.; Ludwig-Begall, L.F.; Thiry, E. Cockles and mussels, alive, alive, oh—The role of bivalve molluscs as transmission vehicles for human norovirus infections. Transbound. Emerg. Dis. 2019, 1, 17. [Google Scholar] [CrossRef]
- Richards, G.P.; McLeod, C.; Le Guyader, F.S. Processing strategies to inactivate viruses in shellfish. Food Environ. Virol. 2010, 2, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Lovatelli, A.; Ababouch, L.; Bivalve Depuration: Fundamental and Practical Aspects. 2008, 1-139. Available online: http://www.fao.org/3/i0201e/i0201e.pdf (accessed on 23 January 2020).
- Galimany, E.; Ramón, M.; Ibarrola, I. Feeding behavior of the mussel Mytilus galloprovincialis (L.) in a Mediterranean estuary: A field study. Aquaculture 2011, 314, 236–243. [Google Scholar] [CrossRef]
- Wigginton, K.R.; Pecson, B.M.; Sigstam, T.; Bosshard, F.; Kohn, T. Virus inactivation mechanisms: Impact of disinfectants on virus function and structural integrity. Environ. Sci. Technol. 2012, 46, 12069–12078. [Google Scholar] [CrossRef]
- Djaoued, Y.; Robichaud, J.; Thibodeau, M.; Balaji, S.; Tchoukanova, N.; Bates, S.S. Photocatalytic properties of nanocrystalline titanium films in the degradation of domoic acid in aqueous solution: Potential for use in molluscan shellfish biotoxin depuration facilities. Food Addit. Contam. 2009, 26, 248–257. [Google Scholar] [CrossRef]
- Bates, S.S.; Léger, C.; Wells, M.L.; Hardy, K. Photodegradation of domoic acid. In Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, Moncton, Canada, May 2003; pp. 30–35. [Google Scholar]
- Wang, L.C.; Di, L.Q.; Li, J.S.; Cheng, J.M.; Wu, H. Elaboration in type, primary structure and bioactivity of polysaccharides derived from mollusks. Crit. Rev. Food Sci. Nutr. 2019, 7, 1091–1114. [Google Scholar] [CrossRef]
- Defer, D.; Desriac, F.; Henry, J.; Bourgougnon, N.; Baudy-Floch, M.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Antimicrobial peptides in oyster hemolymph: The bacterial connection. Fish Shellfish Immunol. 2013, 34, 1439–1447. [Google Scholar] [CrossRef] [Green Version]
- Leoni, G.; De Poli, A.; Mardirossian, M.; Gambato, S.; Florian, F.; Venier, P.; Wilson, D.N.; Tossi, A.; Pallavicini, A.; Gerdol, M. Myticalins: A novel multigenic family of linear, cationic antimicrobial peptides from marine mussels (Mytilus spp.). Mar. Drugs 2017, 15, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbanalizadeh, A.; Moshfegh, A.; Setorki, M. Evaluation of antimicrobial activity of peptides isolated from Cerastoderma and Didacta bivalves habitat in the southern shores of the Caspian Sea. Iran. J. Aquat. Anim. Health 2018, 4, 1–12. [Google Scholar] [CrossRef]
- Destoumieux-Garzón, D.; Costa, R.D.; Schmitt, P.; Barreto, C.; Vidal-Dupiol, J.; Mitta, G. Antimicrobial peptides in marine invertebrate health and disease. Philos. Trans. R. Lond. B. Biol. Sci. 2016, 371, 20150300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campa-Córdova, A.I.; González, H.; Luna-González, A.; Mazón-Suástegui, J.M.; Ascencio, F. Growth, survival, and superoxide dismutase activity in juveline Crassostrea corteziensis (Hertlein, 1951) treated with probiotics. Hidrobiologica 2009, 19, 151–157. [Google Scholar]
- Abasolo-Pacheco, F.; Campa-Códova, A.I.; Mazón-Suástegui, J.M.; Tovar-Ramirez, D.; Araya, R.; Saucedo, P.E. Enhancing growth and resistance to Vibrio alginolyticus disease in Catarina scallop (Arcopecten ventricosus) with Bacillus and Lactobacillus probiotic strains during early development. Aquac. Res. 2017, 48, 4597–4607. [Google Scholar] [CrossRef]
- Lim, H.J.; Kapareiko, D.; Schott, E.J.; Hanif, A.; Wikfors, G.H. Isolation and evaluation of new probiotic bacteria for use in shellfish hatcheries: Isolation and screening for bioactivity. J. Shellfish Res. 2011, 30, 609–615. [Google Scholar] [CrossRef]
- Sánchez-Valenzuela, A.; Benomar, N.; Abriouel, H.; Cañamero, M.M.; Gálvez, A. Isolation and identification of Enterococcus faecium from seafoods: Antimicrobial resistance and production of bacteriocin-like substances. Food Microbiol. 2010, 27, 955–961. [Google Scholar] [CrossRef]
- Pinto, A.L.; Fernandes, M.; Pinto, C.; Albano, H.; Castilho, F.; Teixeira, P.; Gibbs, P.A. Characterization of anti-Listeria bacteriocins isolated from shellfish: Potential antimicrobials to control non-fermented seafood. Int. J. Food Microbiol. 2009, 129, 50–58. [Google Scholar] [CrossRef]
- Lee, H.I.; Kim, M.H.; Kim, K.Y.; So, J.S. Screening and selection of stress resistant Lactobacillus spp. isolated from the marine oyster (Crassostrea gigas). Anaerobe 2010, 16, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.W.; Kim, H.J.; Yun, S.K.; Chai, J.Y.; Park, S.C. Eating oysters without risk of vibriosis: Application of a bacteriophage against Vibrio parahaemolyticus in oysters. Int. J. Food Microbiol. 2014, 188, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Moreirinha, C.; Teles, L.; Rocha, R.J.M.; Calado, R.; Romalde, J.L.; Nunes, M.L.; Almeida, A. Application of phage therapy during bivalve depuration improves Escherichia coli decontamination. Food Microbiol. 2017, 61, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Rong, R.; Lin, H.; Wang, J.; Khan, M.N.; Li, M. Reductions of Vibrio parahaemolyticus in oysters after bacteriophage application during depuration. Aquaculture 2014, 418–419, 171–176. [Google Scholar] [CrossRef]
- Urbizu, L.; Sparo, M.; Bruni, S.S. Bacterial antagonist mediated protein molecules. Clin. Exp. Pharmacol. Physiol. 2013, 3, 123. [Google Scholar]
- Liu, C.; Lu, J.; Su, Y. Effects of flash freezing, followed by frozen storage, on reducing Vibrio parahaemolyticus in Pacific raw oysters (Crassostrea gigas). J. Food Prot. 2009, 72, 174–177. [Google Scholar] [CrossRef]
- Phuvasate, S.; Chen, M.H.; Su, Y.C. Reductions of Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas) by depuration at various temperatures. Food Microbiol. 2012, 31, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, B.S.M.; Burrage, D.D. Inactivation of Vibrio parahaemolyticus in pure culture, whole live and half shell oysters (Crassostrea virginica) by X-ray. Lett. Appl. Microbiol. 2009, 48, 572–578. [Google Scholar] [CrossRef]
- Louppis, A.P.; Katikou, P.; Georgantelis, D.; Badeka, A.V.; Kontominas, M.G. Effect of ozonation and γ-irradiation of post-harvest decontamination of mussels (Mytilus galloprovincialis) containing diarrheic shellfish toxins. Food Addit. Contam. 2011, 28, 1735–1744. [Google Scholar]
- McCarron, P.; Kotterman, M.; de Boer, J.; Rehmann, N.; Hess, P. Feasibility of gamma irradiation as a stabilisation technique in the preparation of tissue reference materials for a range of shellfish toxins. Anal. Bioanal. Chem. 2007, 387, 2487–2493. [Google Scholar] [CrossRef]
- Croci, L.; Toti, L.; De Medici, D.; Cozzi, L. Diarrhetic shellfish poison in mussels: Comparison of methods of detection and determination of the effectiveness of depuration. Int. J. Food Microbiol. 1994, 24, 337–342. [Google Scholar] [CrossRef]
- Reboreda, A.; Lago, J.; Chapela, M.J.; Vieites, J.M.; Botana, L.M.; Alfonso, A.; Cabado, A.G. Decrease of marine toxin content in bivalves by industrial processes. Toxicon 2010, 55, 235–243. [Google Scholar] [CrossRef]
- Rositano, J.; Nicholson, B.C.; Pieronne, P. Destruction of cyanobacterial toxins by ozone. Ozone Sci. Engin. 1998, 20, 209–215. [Google Scholar] [CrossRef]
- Schneider, K.; Rodrick, G. The use of ozone to degrade Gymnodinium breve toxins. In Proceedings of the Conférence Internationale sur la Purification des Coquillages, Rennes, France, April 1992; pp. 277–289. [Google Scholar]
- Ahmadi, H.; Anany, H.; Walkling-Ribeiro, M.; Griffiths, M.W. Biocontrol of Shigella flexneri in ground beef and Vibrio cholerae in seafood with bacteriophage-assisted high hydrostatic pressure (HHP) treatment. Food Bioproc. Technol. 2015, 8, 1160–1167. [Google Scholar] [CrossRef]
- Ye, M.; Huang, Y.; Chen, H. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat. Food Microbiol. 2012, 32, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Rey, M.S.; Miranda, J.M.; Aubourg, S.P.; Barros-Velazquez, J. Improved microbial and sensory quality of clams (Venerupis rhomboideus), oysters (Ostrea edulis) and mussels (Mytillus galloprovincialis) by refrigeration in a slurry ice packaging system. Int. J. Food Sci. Tech. 2012, 47, 861–869. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Food Irradiation: A Technique for Preserving and Improving the Safety of Food; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Rose, R.T.; Engeljohn, D. Food irradiation in the United States: Irradiation as a phytosanitary treatment for fresh fruits and vegetables and for the control of microorganisms in meat and poultry. Radiat. Phys. Chem. 2000, 57, 211–214. [Google Scholar] [CrossRef]
- European Union Parliament. List of Member States’ authorizations of food and food ingredients which may be treated with ionising radiation. Off. J. Eur. Un. 2009, C283, 52–55. [Google Scholar]
- European Food Safety Authority (EFSA). Irradiation of Food (Efficacy and Microbiological Safety). Scientific Opinion of the Panel on Biological Hazards; EFSA: Parma, Italy, 2008.
- Raul, F.; Gosse, F.; Delince, H.; Hartwig, A.; Marchioni, E.; Miesch, M.; Werner, D.; Burnouf, D. Food-borne radiolytic compounds (2-alkylcyclobutanones) may promote experimental colon carcinogenesis. Nutr. Cancer 2002, 44, 189–191. [Google Scholar] [CrossRef]
- Soriano, N.U.; Migo, V.P.; Matsumura, M. Functional group analysis during ozonation of sunflower oil methyl esters by FT-IR and NMR. Chem. Phys. Lipids 2003, 126, 133–140. [Google Scholar] [CrossRef]
- Smith, L.L. Oxygen, oxysterols, ouabain, and ozone: A cautionary tale. Free Rad. Biol. Med. 2004, 37, 318–324. [Google Scholar] [CrossRef]
- Zhang, B.; Fang, C.D.; Cao, H.J. Depuration of cadmium from blue mussel (Mytilus edulis) by protein hydrolysate-Fe2+ complex: The role of metallothionein. J. Food Sci. 2017, 82, 2767–2773. [Google Scholar] [CrossRef]
- Gallego-Vinas, G.; Ballester, F.; Llop, S. Chronic mercury exposure and blood pressure in children and adolescents; A systematic review. Environ. Sci. Pollut. Res. 2019, 26, 2238–2252. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Zhao, X.; Han, Y.; Che, Z.; Chai, X.; Liu, G. Ocean acidification increases cadmium accumulation in marine bivalves: A potential threat to seafood safety. Sci. Rep. 2015, 6, 20197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, P.G.; Grilo, T.F.; Reis, A.T.; Coelho, J.P.; Pereira, E.; Pardal, M.A. Field transplantation of the bivalve Scrobicularia plana along a mercury gradient in Ria de Aveiro (Portugal): Uptake and depuration kinetics. Sci. Total Envirom. 2015, 512–513, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Harnedy, P.A.; Li, B.; Hou, H.; Zhang, Z.; Zhao, X.; Fitzgerald, R.J. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci. Technol. 2014, 37, 92–105. [Google Scholar] [CrossRef]
- Digilio, G.; Bracco, C.; Vergani, L.; Botta, M.; Osella, D.; Viarengo, A. The cadmium binding domains in the metallothionein isoform Cd7-MT10 from Mytilus galloprovincialis revealed by NMR spectroscopy. J. Biol. Inorg. Chem. 2009, 14, 167–178. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, Z.R.; Wang, X.L.; Deng, S.D.; Lin, H.M. Depuration of cadmium from blue mussel (Mytilus edulis) by hydrolysis peptides and chelating metal elements. Food Res. Int. 2015, 73, 162–168. [Google Scholar] [CrossRef]
- Geng, N.; Wang, P.F.; Wang, C.; Hou, J.; Qian, J.; Miao, L.Z. Mechanisms of cadmium accumulation (adsorption and absorption) by the freshwater bivalve Corbinula fluminea under hydrodynamic conditions. Environ. Pollut. 2016, 212, 550–558. [Google Scholar]
- Baudrimont, M.; Andres, S.; Durrieu, G.; Boudou, A. The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after in situ exposure to Cd and Zn. Aquat. Toxicol. 2003, 63, 89–102. [Google Scholar] [CrossRef]
- Huang, G.; Sun, J.; Wang, D.; Xu, Y.; Xu, W. Chitosan oligosaccharide-Ca complex accelerates the depuration of cadmium from Chlamys ferrari. J. Ocean Univ. 2012, 11, 219–226. [Google Scholar] [CrossRef]
- Widiah Ningrum, E.; Solidhin, D.D.; Butet, N.A. Mercury depuration effectiveness on green mussel (Perna viridis L.) and blood cockle (Anadara granosa L.) from Jakarta bay using ozone, chitosan and hydrodynamic technique. Environ. Earth. Sci. 2016, 31, 012041. [Google Scholar]
- Xie, W.; Liu, X.; Yang, X.; Zhang, C.; Bian, Z. Accumulation and depuration of paralytic shellfish poisoning toxins in the oyster Ostrea rivularis gould-chitosan facilitates the toxin depuration. Food Cont. 2013, 30, 446–452. [Google Scholar] [CrossRef]
- Blanco, J.; Mariño, C.; Martín, H.; Acosta, C.P. Anatomical distribution of diarrheic shellfish poisoning (DSP) toxins in the mussel Mytilus galloprovincialis. Toxicon 2007, 50, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.; Acosta, C.P.; Bermúdez de la Puente, M.; Salgado, C. Depuration and anatomical distribution of the amnesic shellfish poisoning (ASP) toxin domoic acid in the king scallop Pecten maximus. Aquat. Toxicol. 2002, 60, 111–121. [Google Scholar] [CrossRef]
- Gonzalez, J.C.; Fontal, O.I.; Vieytes, M.R.; Vieites, J.M.; Botana, L.M. Basis for a new procedure to eliminate diarrheic shellfish toxins from a contaminated matrix. J. Agric. Food Chem. 2002, 50, 400–405. [Google Scholar] [CrossRef]
- Peña-Llopis, S.; Serrano, R.; Pitarch, E.; Beltrán, E.; Ibánez, M.; Hernández, F.; Peña, J.B. N-Acetylcysteine boosts xenobiotic detoxification in shellfish. Aquat. Toxicol. 2014, 154, 131–140. [Google Scholar] [CrossRef]
- Vale, P. Differential dynamics of dinophysistoxins and pectenotoxins between blue mussel and common cockle: A phenomenon originating from the complex toxin profile of Dinophysis acuta. Toxicon 2004, 44, 123–134. [Google Scholar] [CrossRef]
- Svensson, S.; Särngren, A.; Förlin, L. Mussel blood cells, resistant to the cytotoxic effects of okadaic acid, do not express cell membrane p-glycoprotein activity (multixenobiotic resistance). Aquat. Toxicol. 2003, 65, 27–37. [Google Scholar] [CrossRef]
Reference | Treatment | Dosage and Time | Depuration Against | Efficacy |
---|---|---|---|---|
[23] | UV light + Fe3+ | Continued exposure of light (full spectrum light and UV) + Fe3+ 0.3 mM for 22 h | Domoic acid | Degradation of 41% in the better results |
[8] | UV light | Continue exposure at 44 mJ/cm2 for 24 h | Adenovirus and norovirus | 99.9% of elimination of adenovirus and norovirus after 24 h |
[9] | Combinations of temperature, salinity, turbidity, pH, and the presence of algae (Isochrysis) | Continue exposure for 5 days | Escherichia coli, Enterococcus faecalis, coliphage MS2, Poliovirustype-1 and Hepatitis A virus | In both clams (Crassostrea virginica) and oysters (Mercinaria mercinaria), bacterial indicators were depurated faster than viral indicators |
Reference | Bacterial Species | Origin | Inhibition Against | Results |
---|---|---|---|---|
[34] | Lactobacillus rhamnosus | Oysters (Crassostrea gigas) | In vitro agar test of inhibition against pathogens | Good inhibition against Vibrio alginolyticus and V. proteolyticus and poor inhibition against Edwardsinella tarda |
[6] | Enterococcus hirae | Mussels (Mytilus galloprovincilais) | In vitro agar test of inhibition against bacterial pathogens and on cellular lines for viruses | Good antibacterial activity against Listeria monocytogenes, and Enterococcus faecalis. Low antibacterial activity against L. innocua, good antiviral activity against Hepatitis A virus and Norovirus |
[35] | Bacteriophagues | Oysters (Crassostrea gigas) | V. parahaemolyticus | Bacterial growth inhibition from 1.4 × 106 CFU/mL to 1.4 × 10 CFU/mL |
[36] | Bacteriophagues | Cockles (Cerastoderma edule) | Escherichia coli | Reducing E. coli counts about 5 log CFU/g after 4-h period of depuration |
[33] | E. faecium and Pediococcus pentosaecus | Oyster (Ostrea edulis) and clams (Venerupis rhomboides) | In vitro agar test of inhibition against pathogen and spoilage bacteria | Inhibition against Gram-positive bacteria, such as L. monocytogenes, L. innocua, Staphylococcus aureus, or Bacillus cereus. No inhibition against Gram-negative bacteria |
[32] | Various bacterial species from genera Bacillus, Paenibacillus, Saccharorhix, Pseudomonas and Sphingomonas | Ark clams (Anadara broughtoni) | In vitro agar test of inhibition against bacteria and in vitro agar modified method for fungi and yeast | Inhibition activity of various strains isolated against Gram-positive bacteria, such as S. aureus, B. subtillis, and E. faecium, and even against yeast (Candida albicans) and molds (Aspergillus niger and Fusarium oxysporum) |
[37] | Bacteriophagues | Oysters (O. plicatula) | V. parahaemolyticus | Depuration at 16 °C with bacteriophage decreased V. parahaemolyticus in oysters, by 2.35–2.76 log CFU/g within 36 h |
[30] | Bacillus and Lactobacillus mix | Lion paw scallops (Nodipecten subnodosus) | V. alginolyticus | Increase in survival of juveniles of catarina scallop (Argopecten ventricosus) in 120 h |
[31] | Enterococcus faecium | Clams (Tapes decussatus) | L. monocytogenes | In vitro inhibition activity |
[25] | Peptides isolated from hemolymph bacteria (not identified) | Oysters (C. gigas) | Bacillus megaterium and Micrococcus luteus | In vitro inhibition activity |
[27] | Antimicrobial peptides | Cockles (Cerastoderma spp.) | Salmonella typhi, S. paratyphi and S. aureus | In vitro inhibition activity for both ethanolic and methanolic solutions against Salmonella and S. aureus |
Reference | Treatment | Dosage and Time | Bivalve Species | Inhibition Against (Efficacy) |
---|---|---|---|---|
[48] | High hydrostatic pressure (HHP) | 550 MPa for 5 min | Blue mussels (Mytilus edulis) | Shigella flexneri and Vibrio cholerae (complete elimination from 3.8 log CFU/g) |
[44] | Ozonation | 360 mg ozone/h for 3 days | Mussels (M. galloprovincialis) | Diarrheic shellfish poisoning (DSP) reduced toxicity in mouse after 3 days |
[39] | Flash freezing and frozen | Flash freezing, followed by storage at −21 +/−2 °C for 5 months | Pacific oysters (Crassostrea gigas) | Vibrio parahaemolyticus and Vibrio vulnificus (3.52-fold log MPN/g) |
[42] | Ozonation | 15 mg/kg for 6 h | Mussels (M. galloprovincialis) | Okadaic acid (21%–66% reduction) |
[42] | γ-irradiation | 6 kGy | Mussels (M. galloprovincialis) | Okadaic acid (10%–41% reduction) |
[41] | X-Ray | 1–5 kGy | Oysters (Crassostrea virginica) | V. parahaemolyticus (4-fold log CFU/g) |
[43] | γ-irradiation | 6, 12, and 24 kGy | Mussels (M. edulis) | Domoic acid (40%–100%), azaspirazids (15%–50%), Okadaic acid (0%–30%), pectenotoxin (30%–75%), yesotoxins (0%–15%), depending of the dose |
[40] | Refrigeration | Depuration at controlled temperature between 7–15 °C for 5 days | Oysters (C. gigas) | V. parahaemolyticus (3-fold log MPN/g) |
[46] | Ozonation under different pH | 1.24 V | Chemical analyses and mice bioassay | Ozone was more effective under acidic conditions and combined with hydrogen peroxide than alone conditions (2.07 V) |
[47] | Ozonation | 25 mg ozone/L for 30 seg | HPLC and fish (Cyprinodon variegatus) bioassay | Gymnodinium breve toxins showed 3-log CFU cycle reduction in the total toxin recovered after 10 min (135 mg/L) of ozone exposure |
[49] | Temperature combined by high hydrostatic pressure | HHP at ≥275 MPa for 2 min followed by heat treatment at 45 °C for 20 min; HHP at ≥200 Mpa for 2 min followed by heat treatment at 50 °C for 15 min | Oysters (C. virginica) | V. parahaemolyticus and V. vulnificus (3-fold log MPN/g) |
Reference | Chelating Agent | Dosage and Time | Bivalve Species | Inhibition Against (Efficacy) |
---|---|---|---|---|
[66] | Metallothioenins (MTs) | ND | Asiatic clams (Corbicula fluminea) | Cd2+ sequestered by the MTs fraction represented 40% of the total Cd2+ bioaccumulated in the soft body of the mollusks, compared with 4%–9% for total accumulated Zn2+ |
[67] | Chitosan oligosaccharide + Ca2+ (COS-Ca) | Different doses ranging 1.75–8.75 mg/L for 6 days | Scallops (ChlamysFerrari) | COS-Ca reduced Cd2+ content of the scallops, with highest depuration rate (47%) observed on day 3. Additionally, increased Ca2+ content (73.9%) on day 6, and did not significantly affected Zn2+ content |
[69] | Chitosan, Chlorella and Chitosan + Chlorella | 8 × 103 cells/mL Chlorella, 0.05 g/L chitosan, and combination of both | Oysters (Ostrea rivularis) | Toxicity caused by paralytic shellfish poisoning decreased from 9.07 mouse units (MUs) to 1.41 MUs using chitosan and 0.12 mouse units using chitosan plus Chlorella |
[58] | MTs (protein hydrolysate-Fe2+) | 40 mg/L protein hydrolysate-Fe2+ for 15 days | Blue mussels (Mytilus edulis) | Cd2+ concentration in blue mussel decreased from 46.1 to 23.3 µg/g |
[58] | MTs (hydrolysis peptide–metal element complexes (Fe2+, Zn2+, Ca2+, or Hg2+) | Different concentrations of MTs (5, 10, 15, and 20 mg/L) for 8 days | Blue mussels (M. edulis) | Cd2+ decreased in the range 25%–40% after exposure to 20 mg/L of hydrolysis peptide–metal element complexed to Fe2+, Zn2+, and Ca2+ No significant decrease was found for hydrolysis peptide–metal element complexed to Hg2+ |
[68] | Combinations between chitosan, ozone and hydrodynamic treatment | 1.5 mg/L ozone, 0.5 mg/L chitosan and 1.3 m/s hydrodynamic treatment for 60 min | Green mussels (Perna Viridis L.) and blood cockles (Anadara granosa L.) | The most effective combination was chitosan-ozone, achieving a Hg2+ depuration of 96.5% in green mussels and 87% in blood cockles |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Albores, A.; Lopez-Santamarina, A.; Rodriguez, J.A.; Ibarra, I.S.; Mondragón, A.d.C.; Miranda, J.M.; Lamas, A.; Cepeda, A. Complementary Methods to Improve the Depuration of Bivalves: A Review. Foods 2020, 9, 129. https://doi.org/10.3390/foods9020129
Martinez-Albores A, Lopez-Santamarina A, Rodriguez JA, Ibarra IS, Mondragón AdC, Miranda JM, Lamas A, Cepeda A. Complementary Methods to Improve the Depuration of Bivalves: A Review. Foods. 2020; 9(2):129. https://doi.org/10.3390/foods9020129
Chicago/Turabian StyleMartinez-Albores, Antía, Aroa Lopez-Santamarina, José Antonio Rodriguez, Israel Samuel Ibarra, Alicia del Carmen Mondragón, Jose Manuel Miranda, Alexandre Lamas, and Alberto Cepeda. 2020. "Complementary Methods to Improve the Depuration of Bivalves: A Review" Foods 9, no. 2: 129. https://doi.org/10.3390/foods9020129