Effect of Vacuum Impregnation with Apple-Pear Juice on Content of Bioactive Compounds and Antioxidant Activity of Dried Chokeberry Fruit
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Standards
2.2. Plant Materials
2.3. Vacuum-Impregnation Treatment
2.4. Vacuum-Microwave Drying
2.5. Dry-Matter and Ash Content, and Water Activity
2.6. Antioxidant-Activity Analysis
2.7. Analysis of Sugars with HPLC-ELSD Method
2.8. Identification and Quantification of Polyphenols with UPLC-PDA-MS/MS Method
2.9. Statistical Analysis
3. Results and Discussion
Comparison of Phenolic Compounds Detected in Chokeberry Products
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, J.E.; Kim, G.S.; Park, S.; Kim, Y.H.; Kim, M.B.; Lee, W.S.; Jeong, S.W.; Lee, S.J.; Jin, J.S.; Shin, S.C. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography-tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chem. 2014, 146, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Lachowicz, S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules 2016, 21, 1098–1112. [Google Scholar]
- Oszmiański, J.; Wojdyło, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Kolniak-Ostek, J. Influence of different pectinolytic enzymes on bioactive compound content, antioxidant potency, colour and turbidity of chokeberry juice. Eur. Food Res. Technol. 2018, 244, 1907–1920. [Google Scholar] [CrossRef] [Green Version]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S.; Pellati, F.; Melegari, M.A.; Bertelli, D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004, 69, 164–169. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Scalbert, A. Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
- Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia powders obtained by different drying processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef]
- Loypimai, P.; Sittisuanjik, K.; Moongngarm, A.; Pimthong, W. Influence of sodium chloride and vacuum impregnation on the quality and bioactive compounds of parboiled glutinous rice. J. Food Sci. Technol. 2017, 54, 1990–1998. [Google Scholar] [CrossRef]
- Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Kidoń, M. Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products—A review. Int. J. Mol. Sci. 2014, 15, 16577–16610. [Google Scholar] [CrossRef] [Green Version]
- Pasławska, M.; Nawirska-Olszańska, A.; Stępień, B.; Klim, A. The influence of vacuum impregnation on nutritional properties of fluidized bed dried kale (Brassica oleracea L. Var. acephala) leaves. Molecules 2018, 23, 2764. [Google Scholar]
- Feng, H.; Tang, J.; Mattinson, D.S.; Fellman, J.K. Microwave and spouted bet drying of frozen blueberries: The effect of drying and pretreatment methods on physical properties and retention of flavor volatiles. J. Food Process. Preserv. 1999, 23, 463–479. [Google Scholar] [CrossRef]
- Szarycz, M.; Kamiński, E.; Jałoszyński, K.; Szponarska, A. Analiza mikrofalowego suszenia pietruszki w warunkach obniżonego ciśnienia. Część 1. Kinetyka suszenia pietruszki nie blanszowanej i blanszowanej. Tech. Agrar. 2003, 2, 17–27. [Google Scholar]
- Schmidt, P.S.; Bergman, T.L.; Peace, J.A.; Chen, P. Drying 92; Mujumdar, A.S., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Stępień, B. Effect of vacuum-microwave drying on selected mechanical and rheological properties of carrot. Biosyst. Eng. 2008, 99, 234–238. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Wojdyło, A.; Markowski, J.; Sucińska, K. 1-Methylcyclopropene postharvest treatment and their effect on apple quality during long-term storage time. Eur. Food Res. Technol. 2014, 239, 603–612. [Google Scholar] [CrossRef]
- Rojas-Garbanzo, C.; Winter, J.; Montero, M.L.; Zimmermann, B.F.; Schieber, A. Characterization of phytochemicals in Costa Rican guava (Psidium friedrichsthalianum-Nied.) fruit and stability of main compounds during juice processing-(U) HPLC-DAD-ESI-TQD-MSn. J. Food Compos. Anal. 2019, 75, 26–42. [Google Scholar] [CrossRef]
- AOAC International. AOAC: Official Methods of Analysis (Volume 1), 15th ed.; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Bio Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kolniak-Ostek, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. Effect of dried powder preparation process on polyphenolic content and antioxidant capacity of cranberry (Vaccinium macrocarpon L.). Ind. Crop. Prod. 2015, 77, 658–665. [Google Scholar]
- Kolniak-Ostek, J.; Oszmiański, J. Characterization of phenolic compounds in different anatomical pear (Pyrus communis L.) parts by ultra-performance liquid chromatography photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS). Int. J. Mass Spectrom. 2015, 392, 154–163. [Google Scholar]
- Oszmaiński, J.; Kolniak-Ostek, J.; Biernat, A. The content of phenolic compounds in leaf tissues of Aesculus glabra and Aesculus parviflora Walt. Molecules 2015, 20, 2176–2189. [Google Scholar] [CrossRef] [Green Version]
- Samoticha, J.; Wojdyło, A.; Lech, K. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT-Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Knekt, P.; Isotupa, S.; Rissanen, H.; Heliovaara, M.; Jarvinen, R.; Hakkinen, S.; Aromaa, A.; Reunanen, A. Quercetin intake and the incidence of cerebrovascular disease. Eur. J. Clin. Nutr. 2000, 54, 415–417. [Google Scholar] [CrossRef] [Green Version]
Fresh Chokeberry | Juice Apple-Pear | Impregnant, no Drying | Dried without Impregnation | 4 kPa | 6 kPa | 8 kPa | |
---|---|---|---|---|---|---|---|
Dry matter [%] | 27.28 ± 1.02 b | 17.40 ± 1.09 c | 29.18 ± 1.41 b | 96.53 ± 1.74 a | 94.00 ± 1.67 a | 96.28 ± 1.11 a | 95.52 ± 1.41 a |
Ash [%] | 2.93 ± 0.15 a | 2.11 ± 0.09 e | 2.57 ± 0.14 b | 2.48 ± 0.16 b | 2.36 ± 0.19 d | 2.42 ± 0.14 c | 2.35 ± 0.19 d |
aw [-] | 584.57 ± 11.38 a | - | 0.880 ± 0.041 c | 0.284 ± 0.061 b | 0.207 ± 0.015 a | 0.144 ± 0.009 a | 0.172 ± 0.009 a |
ABTS [µmol/100 g dm] | 567.82 ± 14.41 b | 519.15 ± 10.71 d | 533.94 ± 17.63 c | 495.15 ± 10.71 e | 539.71 ± 10.65 c | 521.89 ± 19.43 d | |
FRAP [µmol/100 g dm] | 218.36 ± 13.88 c | 189.19 ± 13.96 d | 204.06 ± 19.74 d | 123.12 ± 12.95 e | 289.47 ± 12.51 a | 254.76 ± 19.41 b | 190.82 ± 12.24 d |
Fructose | 21.18 ± 1.18 d | 31.46 ± 2.32 a | 25.32 ± 1.95 b | 19.18 ± 1.03 e | 22.63 ± 1.33 c | 22.49 ± 1.46 c | 21.29 ± 1.72 d |
[g/100 g dm] | |||||||
Glucose | 26.07 ± 1.19 c | 37.87 ± 3.14 a | 27.94 ± 1.58 b | 20.98 ± 1.36 d | 27.63 ± 1.22 b | 27.71 ± 1.54 b | 26.95 ± 1.63 b,c |
[g/100 g dm] | |||||||
Sorbitol | 42.19 ± 2.03 c | 48.43 ± 3.56 a | 47.19 ± 2.17 a | 39.56 ± 1.99 d | 43.98 ± 2.37 b | 43.56 ± 2.72 b | 42.35 ± 2.32 b |
[g/100 g dm] | |||||||
Sucrose | 0.00 | 0.83 ± 0.0 a | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
[g/100 g dm] |
Compounds 1 | Rt [min] | λ Max [nm] | [H−M]− (m/z) 2 | Fresh Chokeberry | Juice Apple-Pear | Impregnant, no Drying | Dried without Impregnation | 4 kPa | 6 kPa | 8 kPa |
---|---|---|---|---|---|---|---|---|---|---|
Anthocyanins | ||||||||||
Cyanidin-3.5-hexoside(epi)catechin | 2.54 | 520 | 737+ | 16.95 ± 1.09 a | 0.00 | 15.59 ± 1.06 a | 5.96 ± 0.09 d | 15.71 ± 0.99 a | 14.20 ± 1.02 b | 10.04 ± 0.97 c |
Cyanidin-3-pentoside-(epi)catechin | 2.98 | 520 | 707+ | 7.32 ± 0.48 a | 0.00 | 6.04 ± 0.34 b | 2.45 ± 0.19 d | 6.86 ± 0.28 a | 5.56 ± 0.46 b | 3.87 ± 0.28 c |
Cyanidin-3-hexoside-(epi)cat-(epi)cat | 3.15 | 520 | 1025+ | 15.89 ± 1.41 a | 0.00 | 13.99 ± 1.20 b | 3.89 ± 0.27 e | 14.20 ± 1.23 b | 12.82 ± 1.08 c | 6.54 ± 0.54 d |
Cyanidin-3-galactoside | 3.51 | 516 | 449+ | 1022.30 ± 99.4 a | 0.00 | 942.39 ± 91.2 b | 286.91 ± 13.6 d | 947.64 ± 87.3 b | 921.74 ± 82.9 b | 568.15 ± 46.3 c |
Cyanidin-3-glucoside | 3.81 | 517 | 449+ | 49.76 ± 4.39 a | 0.00 | 45.64 ± 3.98 b | 11.93 ± 1.09 e | 46.79 ± 3.98 b | 41.15 ± 3.76 c | 24.31 ± 2.13 d |
Cyanidin-3-O-arabinoside | 4.03 | 515 | 419+ | 611.64 ± 59.5 a | 0.00 | 515.28 ± 49.4 b | 142.57 ± 13.7 d | 521.14 ± 49.7 b | 498.06 ± 42.9 b | 264.34 ± 24.4 c |
Cyanidin-3-O-xyloside | 4.68 | 515 | 419+ | 89.92 ± 7.94 a | 0.00 | 86.06 ± 7.89 b | 22.47 ± 1.93 e | 85.89 ± 7.53 b | 74.68 ± 6.93 c | 45.58 ± 4.12 d |
Sum | - | - | - | 1813.78 ± 17.3 a | 0.00 | 1624.99 ± 15.7 b | 476.18 ± 3.54 e | 1638.23 ± 15.9 b | 1568.21 ± 13.9 c | 922.83 ± 8.98 d |
Phenolic acids | ||||||||||
Neochlorogenic acid | 2.57 | 323 | 353 | 210.77 ± 20.9 b | 0.00 | 195.44 ± 18.9 b | 74.68 ± 6.98 c | 239.25 ± 22.9 a | 199.19 ± 18,6 b | 184.22 ± 17.3 c |
3-O-p-Coumaroylquinic acid | 3.30 | 310 | 337 | 0.00 | 120.08 ± 11.3 a | 4.56 ± 0.34 b | 1.39 ± 0.09 c | 4.71 ± 0.37 b | 4.43 ± 039 b | 4.41 ± 0.41 b |
Chlorogenic acid | 3.62 | 323 | 353 | 222.81 ± 21.2 b | 50.31 ± 4.21 d | 262.67 ± 24.7 a | 91.79 ± 9.1 c | 269.37 ± 24.9 a | 257.09 ± 23.7 a | 255.61 ± 24.7 a |
Cryptochlorogenic acid | 3.71 | 323 | 353 | 4.83 ± 0.39 c | 1.89 ± 0.09 d | 7.68 ± 0.67 b | 2.54 ± 0.19 d | 11.21 ± 1.08 a | 11.03 ± 1.04 a | 10.74 ± 0.98 a |
Sum | - | - | - | 438.41 ± 41.9 c | 64.28 ± 5.74 e | 470.35 ± 4.24 b | 170.40± 1.56 d | 524.54 ± 51.0 a | 471.74 ± 4.33 b | 454.98 ± 4.31 c |
Flavonols | ||||||||||
Quercetin-dihexoside | 5.23 | 352 | 625 | 5.32 ± 0.46 c | 0.00 | 7.95 ± 0.67 a | 2.18 ± 0.17 d | 5.54 ± 0.46 c | 8.02 ± 0.79 a | 7.47 ± 0.67 a,b |
Quercetin-3-O-vicianoside | 5.52 | 353 | 595 | 6.67 ± 0.61 c | 0.00 | 10.09 ± 0.99 a | 2.84 ± 0.07 d | 7.68 ± 0.65 c | 10.38 ± 0.98 a | 9.77 ± 0.65 a,b |
Quercetin-3-O-robinobioside | 5.84 | 353 | 609 | 10.02 ± 0.99 c | 0.00 | 15.98 ± 1.36 a | 5.01 ± 0.29 d | 13.57 ± 1.21 b | 16.11 ± 1.34 a | 15.76 ± 1.47 a |
Quercetin-3-rutinoside | 6.02 | 353 | 609 | 13.56 ± 1.29 c | 0.00 | 23.97 ± 2.07 a | 7.45 ± 0.69 d | 20.05 ± 19.1 b | 24.21 ± 2.37 a | 23.08 ± 2.24 a |
Quercetin-3-galactoside | 6.09 | 352 | 463 | 17.47 ± 1.46 c | 0.64 ± 0.00 e | 25.64 ± 2.23 a | 8.31 ± 0.76 d | 20.54 ± 1.99 b | 25.97 ± 2.39 a | 25.47 ± 2.13 a |
Quercetin-3-glucoside | 6.22 | 352 | 463 | 19.97 ± 1.53 c | 0.22 ± 0.00 e | 30.12 ± 2.97 a | 9.61 ± 3.98 d | 25.32 ± 2.38 b | 30.66 ± 2.98 a | 29.90 ± 2.56 a |
Sum | - | - | - | 73.01 ± 6.45 b | 0.86 ± 0.00 d | 113.75 ± 10.9 a | 35.40 ± 2.89 c | 92.70 ± 8.97 a,b | 115.35 ± 10.3 a | 111.45 ± 10.5 a |
Flavan-3-ols | ||||||||||
Quercetin-dihexoside | 5.29 | 352 | 625 | 16.31 ± 1.07 c | 0.00 | 21.24 ± 2.03 a | 8.21 ± 0.67 e | 14.79 ± 1.34 d | 21.73 ± 2.02 a | 19.19 ± 1.56 b |
Quercetin-3-O-vicianoside | 5.50 | 353 | 595 | 62.09 ± 5.79 a | 0.00 | 58.44 ± 4.56 b | 16.64 ± 1.43 d | 42.77 ± 4.09 c | 58.64 ± 4.98 b | 57.01 ± 4.64 b |
Quercetin-3-O-robinobioside | 5.87 | 353 | 609 | 30.24 ± 2.98 c | 0.00 | 47.62 ± 3.87 a | 15.75 ± 1.42 d | 39.96 ± 3.24 b | 47.84 ± 4.08 a | 46.61 ± 4.01 a |
Sum | - | - | - | 108.64 ± 9,78 b | 0.00 | 127.30 ± 11.9 a | 40.60 ± 3.78 d | 97.52 ± 8.93 b,c | 128.21 ± 12.3 a | 122.81 ± 11.7 a |
Flavonols and Procyanidins | ||||||||||
Procyanidin B1 | 2.47 | 275 | 577 | 0.00 | 9.62 ± 3.0 a | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
(+)-catechin | 2.81 | 280 | 289 | 0.00 | 10.95 ± 1.1 a | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Procyanidin B2 | 5.47 | 275 | 577 | 0.00 | 71.49 ± 9.0 a | 0.09 ± 0.00 b | 0.00 | 0.03 ± 0.00 b | 0.01 ± 0.00 b | 0.01 ± 0.00 b |
(−)-epicatechin | 5.90 | 280 | 289 | 0.00 | 56.7 7± 4.1 a | 0.07 ± 0.00 b | 0.00 | 0.04 ± 0.00 b | 0.01 ± 0.00 b | 0.00 |
Procyanidin C1 | 5.98 | 280 | 866 | 0.00 | 22.01 ± 2.6 a | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Sum | - | - | - | 0.00 | 170.84 ± 12.4 a | 0.16 ± 0.00 b | 0.0 | 0.07 ± 0.00 b | 0.02 ± 0.00 b | 0.01 ± 0.00 b |
Total of polyphenols | - | - | - | 1542.89 ± 135 b | 235.98± 19.6 d | 2336.55 ± 212 a | 722.58 ± 72.4 c | 2528.61 ± 227 a | 2353.55 ± 231 a | 2257.46 ± 199 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawirska-Olszańska, A.; Pasławska, M.; Stępień, B.; Oziembłowski, M.; Sala, K.; Smorowska, A. Effect of Vacuum Impregnation with Apple-Pear Juice on Content of Bioactive Compounds and Antioxidant Activity of Dried Chokeberry Fruit. Foods 2020, 9, 108. https://doi.org/10.3390/foods9010108
Nawirska-Olszańska A, Pasławska M, Stępień B, Oziembłowski M, Sala K, Smorowska A. Effect of Vacuum Impregnation with Apple-Pear Juice on Content of Bioactive Compounds and Antioxidant Activity of Dried Chokeberry Fruit. Foods. 2020; 9(1):108. https://doi.org/10.3390/foods9010108
Chicago/Turabian StyleNawirska-Olszańska, Agnieszka, Marta Pasławska, Bogdan Stępień, Maciej Oziembłowski, Kinga Sala, and Aleksandra Smorowska. 2020. "Effect of Vacuum Impregnation with Apple-Pear Juice on Content of Bioactive Compounds and Antioxidant Activity of Dried Chokeberry Fruit" Foods 9, no. 1: 108. https://doi.org/10.3390/foods9010108
APA StyleNawirska-Olszańska, A., Pasławska, M., Stępień, B., Oziembłowski, M., Sala, K., & Smorowska, A. (2020). Effect of Vacuum Impregnation with Apple-Pear Juice on Content of Bioactive Compounds and Antioxidant Activity of Dried Chokeberry Fruit. Foods, 9(1), 108. https://doi.org/10.3390/foods9010108