Biocompounds Content Prediction in Ecuadorian Fruits Using a Mathematical Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Sample Preparation
2.3. Physicochemical Analysis
2.3.1. Texture
2.3.2. Maturity Index
- MI: maturity index (dimensionless)
- TSS: total soluble solid content (°Brix)
- TA: titrable acidity (g/100 g)
2.3.3. Internal Color
2.4. Total Anthocyanins Content (TAC)
2.5. Total Carotenoids Content (TCC)
2.6. Total Polyphenols Content (TPC)
2.7. Mathematical Modeling
- bi: partial regression coefficient
- Pij: i-row and j-column of the reverse square sum and cross-product matrix
- S2: estimator for the variance of the standard deviations and residues
- Yc: the content of total antioxidant: anthocyanins, carotenoids and polyphenols
- b1, b2, b3: regression coefficients
- X1, X2, X3: color parameters L*, a* and b*
2.8. ABTS Assay
2.9. DPPH Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Maturity Index
3.2. Internal Color
3.3. Development of the Mathematical Prediction Models
3.4. Total Anthocyanin Content (TAC)
3.5. Total Polyphenol Content
3.6. Total Carotenoid Content
Fruits | TAC = b0 + b1(L*) + b2(a*) + b3(b*) | TCC = b0 + b1(L*) + b2(a*) + b3(b*) | TPC = b0 + b1(L*) + b2(a*) + b3(b*) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b0 | b1 | b2 | b3 | R2 | b0 | b1 | b2 | b3 | R2 | b0 | b1 | b2 | b3 | R2 | |
Blackberry | 1644.47 | −13.53 | −12.56 | 18.42 | 0.82 | N. D | N. D | N. D | N. D | N. D | 8375.00 | −41.15 | −132.30 | 18.79 | 0.82 |
Andean blueberry | −3206.38 | 233.19 | 96.97 | 264.9 | 0.81 | N. D | N. D | N. D | N. D | N. D | 7095.72 | 33.44 | 143.50 | −308.63 | 0.82 |
Naranjilla | N, D | N. D | N. D | N. D | N. D | 129.24 | −1.04 | 1.47 | −0.98 | 0.84 | 1151.18 | −15.69 | −74.94 | −5.58 | 0.84 |
Tamarillo | N. D | N. D | N. D | N. D | N. D | 79.29 | −1.12 | 3.93 | 3.35 | 0.98 | 1247.55 | −5.53 | 53.00 | −11.51 | 0.75 |
Goldenberry | N. D | N. D | N. D | N. D | N. D | −24.31 | 2.19 | 2.41 | −0.23 | 0.85 | −142.76 | 9.85 | 10.09 | −1.91 | 0.88 |
Araza | N. D | N. D | N. D | N. D | N. D | 83.52 | −0.84 | −5.88 | 0.7 | 0.93 | −4974.64 | 381.95 | 932.80 | −450.89 | 0.88 |
Fruit | Antioxidant Compounds | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
* (TAC) | * (TCC) | * (TPC) | |||||||||||||
(mg cyanidin 3-glucoside chloride/100 g) | (µg β-carotene/g) | (mg GAE/100 g) | |||||||||||||
Experimental | Predicted | Bibliographic | Experimental | Predicted | Bibliographic | Experimental | Predicted | Bibliographic | |||||||
Mean | CVE | Mean | CVP | Mean | CVE | Mean | CVP | Mean | CVE | Mean | CVP | ||||
Blackberry | 1416.69 | 11.20 | 1413.00 | 0.85 | 637–3000 [27,46] | N. D | 6352.28 | 4.77 | 5995.62 | 3.38 | 2340.24−6300 [27,46,53] | ||||
Andean blueberry | 2682.30 | 2.66 | 2761.24 | 5.74 | 3832.95 [48] | N. D | 7254.62 | 10.86 | 7315.73 | 2.22 | 8104.52−9799.02 [48,54] | ||||
Naranjilla | N. D | 57.93 | 6.05 | 58.42 | 2.36 | 76.59 [55] | 897.58 | 6.32 | 912.50 | 2.02 | 510.72−699.79 [49,50,53] | ||||
Tamarillo | N. D | 123.18 | 4.65 | 133.67 | 1.95 | 117.37 [46] | 1062.77 | 10.26 | 1055.45 | 0.72 | 654,20 [52] | ||||
Goldenberry | N. D | 65.21 | 10.84 | 64.93 | 3.10 | 85.30 [30] | 259.93 | 11.61 | 233.68 | 3.24 | 215.60 [34] | ||||
Araza | N. D | 62.85 | 1.92 | 61.96 | 1.09 | 55.32 [51] | 3507.79 | 13.97 | 3256.33 | 6.94 | [51] |
3.7. Antioxidant Activity Using ABTS and DPPH Methods
Fruit | Antioxidant Activity | |
---|---|---|
(µmoL TE/g Sample) | ||
ABTS Assay | DPPH Assay | |
Araza | 758.22 ± 5.01 a | 392.10 ± 9.67 a |
Tamarillo | 161.04 ± 8.48 b | 47.82 ± 2.94 b |
Naranjilla | 76.40 ± 1.33c | 21.26 ± 1.35 c |
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moldovan, B.; David, L.; Chişbora, C.; Cimpoiu, C. Degradation kinetics of anthocyanins from European cranberrybush (Viburnum opulus L.) fruit extracts. Effects of temperature, pH and storage solvent. Molecules 2012, 17, 11655–11666. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables–The millennium’s health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, J.; Wang, X. Dietary antioxidants: Potential anticancer agents. Nutr. Cancer 2017, 69, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Legua, P.; Forner-Giner, M.Á.; Nuncio-Jáuregui, N.; Hernández, F. Polyphenolic compounds, anthocyanins and antioxidant activity of nineteen pomegranate fruits: A rich source of bioactive compounds. J. Funct. Foods 2016, 23, 628–636. [Google Scholar] [CrossRef]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chem. 2004, 86, 69–77. [Google Scholar] [CrossRef]
- Liang, L.; Wu, X.; Zhao, T.; Zhao, J.; Li, F.; Zou, Y.; Yang, L. In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Res. Int. 2012, 46, 76–82. [Google Scholar] [CrossRef]
- Osorio, C.; Hurtado, N.; Dawid, C.; Hofmann, T.; Heredia-Mira, F.J.; Morales, A.L. Chemical characterisation of anthocyanins in tamarillo (Solanum betaceum Cav.) and Andes berry (Rubus glaucus Benth.) fruits. Food Chem. 2012, 132, 1915–1921. [Google Scholar] [CrossRef]
- Benkeblia, N.; Tennant, D.P.F.; Jawandha, S.K.; Gill, P.S. Preharvest and harvest factors influencing the postharvest quality of tropical and subtropical fruits. In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E., Ed.; Woodhead Publishing: Philadelphia, PA, USA, 2011; pp. 112–142. [Google Scholar]
- Khalifa, I.; Zhu, W.; Li, K.K.; Li, C.M. Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability—A structural review. J. Funct. Foods 2018, 40, 28–43. [Google Scholar] [CrossRef]
- Watanabe, T.; Nakamura, N.; Ota, N.; Shiina, T. Estimation of Changes in Mechanical and Color Properties from the Weight Loss Data of “Shine Muscat” Fruit during Storage. J. Food Quality 2018, 6, 7258029. [Google Scholar] [CrossRef]
- Fratianni, A.; Irano, M.; Panfili, G.; Acquistucci, R. Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements. J. Agric. Food Chem. 2005, 53, 2373–2378. [Google Scholar] [CrossRef]
- Acosta-Montoya, Ó.; Vaillant, F.; Cozzano, S.; Mertz, C.; Pérez, A.M.; Castro, M.V. Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chem. 2010, 119, 1497–1501. [Google Scholar] [CrossRef]
- Almeida, J.; Asís, R.; Molineri, V.N.; Sestari, I.; Lira, B.S.; Carrari, F.; Rossi, M. Fruits from ripening impaired, chlorophyll degraded and jasmonate insensitive tomato mutants have altered tocopherol content and composition. Phytochemistry 2015, 111, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Sdiri, S.; Navarro, P.; Monterde, A.; Benabda, J.; Salvador, A. Effect of postharvest degreening followed by a cold-quarantine treatment on vitamin C, phenolic compounds and antioxidant activity of early-season citrus fruit. Postharvest Biol. Technol. 2012, 65, 13–21. [Google Scholar] [CrossRef]
- Brannan, R.G.; Wang, G. Effect of frozen storage on polyphenol oxidase, antioxidant content, and color of pawpaw (Asimina triloba [L.] Dunal) fruit pulp. J. Food Res. 2017, 6, 93–101. [Google Scholar] [CrossRef]
- Abdullah, M.Z.; Guan, L.C.; Lim, K.C.; Karim, A.A. The applications of computer vision system and tomographic radar imaging for assessing physical properties of food. J. Food Eng. 2004, 61, 125–135. [Google Scholar] [CrossRef]
- Hue, C.; Brat, P.; Gunata, Z.; Samaniego, I.; Servent, A.; Morel, G.; Davrieux, F. Near infra-red characterization of changes in flavan-3-ol derivatives in cocoa (Theobroma cacao L.) as a function of fermentation temperature. J. Agric. Food Chem. 2014, 62, 10136–10142. [Google Scholar] [CrossRef] [PubMed]
- Leon, K.; Mery, D.; Pedreschi, F.; Leon, J. Color measurement in L∗ a∗ b∗ units from RGB digital images. Food Res. Int. 2006, 39, 1084–1091. [Google Scholar] [CrossRef]
- Ferrer, A.; Remón, S.; Negueruela, A.I.; Oria, R. Changes during the ripening of the very late season Spanish peach cultivar Calanda: Feasibility of using CIELAB coordinates as maturity indices. Sci. Hortic. 2005, 105, 435–446. [Google Scholar] [CrossRef]
- Hurtado, N.H.; Morales, A.L.; González-Miret, M.L.; Escudero-Gilete, M.L.; Heredia, F.J. Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chem. 2009, 117, 88–93. [Google Scholar] [CrossRef]
- Abdullah, M.Z.; Guan, L.C.; Azemi, B.M. Stepwise discriminant analysis for colour grading of oil palm using machine vision system. Food Bioprod. Process. 2001, 79, 223–231. [Google Scholar] [CrossRef]
- Cefola, M.; D’Antuono, I.; Pace, B.; Calabrese, N.; Carito, A.; Linsalata, V.; Cardinali, A. Biochemical relationships and browning index for assessing the storage suitability of artichoke genotypes. Food Res. Int. 2012, 48, 397–403. [Google Scholar] [CrossRef]
- Lee, B.; Seo, J.D.; Rhee, J.K.; Kim, C.Y. Heated apple juice supplemented with onion has greatly improved nutritional quality and browning index. Food Chem. 2016, 201, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.N.; Narsaiah, K.; Basediya, A.L.; Sharma, R.; Jaiswal, P.; Kumar, R.; Bhardwaj, R. Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods—A review. J. Food Sci. Technol. 2011, 48, 387–411. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, B.R.; Seasholtz, M.B. Recent developments in multivariate calibration. J. Chemom. 1991, 5, 129–145. [Google Scholar] [CrossRef]
- Memmah, M.M.; Lescourret, F.; Yao, X.; Lavigne, C. Metaheuristics for agricultural land use optimization. A review. Agron. Sustain. Dev. 2015, 35, 975–998. [Google Scholar] [CrossRef] [Green Version]
- Garzón, G.A.; Riedl, K.M.; Schwartz, S.J. Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth). J. Food Sci. 2009, 74, C227–C232. [Google Scholar] [CrossRef] [PubMed]
- Mejía, D.; Maria, C.; Gaviria, A.; Duque, C.; Lucia, A.; Rengifo, R.; Hernan, A. Changes in physicochemical properties of the fruit of lulo (Solanum quitoense Lam.) harvested at three degrees of maturity. Vitae 2012, 19, 157–165. [Google Scholar]
- Gordon, A.; Rodrigues, R.B.; Marx, F.; Papagiannopoulos, M. Antioxidant capacity of tamarillo fruit (Cyphomandra betacea). Utilisation of diversity in land use systems: Sustainable and organic approaches to meet human needs. In Proceedings of the Conference on International Agricultural Research for Development, Witzenhausen, Germany, 9–11 October 2007. [Google Scholar]
- Ramadan, M.F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 2011, 44, 1830–1836. [Google Scholar] [CrossRef]
- Hernández, M.S.; Martínez, O.; Fernández-Trujillo, J.P. Behavior of arazá (Eugenia stipitata Mc Vaugh) fruit quality traits during growth, development and ripening. Sci. Hortic. 2007, 111, 220–227. [Google Scholar] [CrossRef]
- Ribera, A.E.; Reyes-Diaz, M.; Alberdi, M.; Zuñiga, G.E.; Mora, M.L. Antioxidant compounds in skin and pulp of fruits change among genotypes and maturity stages in highbush blueberry (Vaccinium corymbosum L.) grown in southern Chile. J. Soil Sci. Plant Nutr. 2010, 10, 509–536. [Google Scholar] [CrossRef]
- Acosta-Quezada, P.G.; Raigón, M.D.; Riofrío-Cuenca, T.; García-Martínez, M.D.; Plazas, M.; Burneo, J.I.; Prohens, J. Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem. 2015, 169, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Acosta, Ó.; Pérez, A.M.; Vaillant, F. Chemical characterization, antioxidant properties, and volatile constituents of naranjilla (Solanum quitoense Lam.) cultivated in Costa Rica. Archiv. Latinoam. Nutr. 2009, 59, 88. [Google Scholar]
- Fischer, G.; Herrera, A.; Almanza, P.J. Cape gooseberry (Physalis peruviana L.). In Stharvest Biology and Technology of Tropical and Subtropical Fruits. Acai to Citrus; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 374–396. [Google Scholar]
- Tehranifar, A.; Zarei, M.; Nemati, Z.; Esfandiyari, B.; Vazifeshenas, M.R. Investigation of physicochemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Sci. Hortic. 2010, 126, 180–185. [Google Scholar] [CrossRef]
- Rapisarda, P.; Fanella, F.; Maccarone, E. Reliability of analytical methods for determining anthocyanins in blood orange juices. J. Agric. Food Chem. 2000, 48, 2249–2252. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.Y.; Oey, I. Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chem. 2012, 133, 1577–1587. [Google Scholar] [CrossRef]
- Georgé, S.; Brat, P.; Alter, P.; Amiot, M.J. Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 2005, 53, 1370–1373. [Google Scholar] [CrossRef] [PubMed]
- Piñuel, L.; Vilcacundo, E.; Boeri, P.; Barrio, D.A.; Morales, D.; Pinto, A.; Morán, R.; Samaniego, I.; Carrillo, W. Extraction of protein concentrate from red bean (Phaseolus vulgaris L.): Antioxidant activity and inhibition of lipid peroxidation. J. Appl. Pharm. Sci. 2019, 9, 1–14. [Google Scholar]
- Cuellar, F.A.; Ariza, E.; Anzola, C.; Restrepo, P. Research of antioxidant capacity of araza (Eugenia stipitata Mc Vaugh) during the ripening. Rev. Colomb. Quim. 2013, 42, 21–28. [Google Scholar]
- Carvalho, C.P.; Betancur, J.A. Quality characterization of Andean blackberry fruits (Rubus glaucus Benth.) in different maturity stages in Antioquia, Colombia. Agron. Colomb. 2015, 33, 74–83. [Google Scholar] [CrossRef]
- Peña, A.C.; González, M.L.; Hernández, M.S.; Novoa, C.; Quicazán, M.C.; Fernández-Trujillo, J.P. Evaluation of arazá (Eugenia stipitate Mc Vaugh) fruit after wet behavior postharvest conditioning operations. Rev. Colomb. Cien. Hortic. 2007, 1, 182–188. [Google Scholar] [CrossRef]
- Kalt, W.; McRae, K.B.; Hamilton, L.C. Relationship between surface color and other maturity indices in wild lowbush blueberries. Can. J. Plant Sci. 1995, 75, 485–490. [Google Scholar] [CrossRef]
- Mertz, C.; Gancel, A.L.; Gunata, Z.; Alter, P.; Dhuique-Mayer, C.; Vaillant, F.; Brat, P. Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. J. Food Comp. Anal. 2009, 22, 381–387. [Google Scholar] [CrossRef]
- Horwitz, W.; Kamps, L.R.; Boyer, K.W. Quality assurance in the analysis of foods and trace constituents. J. Assoc. Off. Anal. Chem. 1980, 63, 1344–1354. [Google Scholar] [PubMed]
- Vasco, C.; Riihinen, K.; Ruales, J.; Kamal-Eldin, A. Chemical composition and phenolic compound profile of mortiño (Vaccinium floribundum Kunth). J. Agric. Food Chem. 2009, 57, 8274–8281. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Calderón, J.; Calderón-Jaimes, L.; Guerra-Hernández, E.; García-Villanova, B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 2011, 44, 2047–2053. [Google Scholar] [CrossRef]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Laverde-Acurio, L.J. Estudio de las condiciones óptimas para la obtención de jugo clarificado de arazá (Eugenia stipitata), mediante procesos enzimático y membranario. Bachelor’s Thesis, Escuela Politécnica Nacional, Quito, Ecuador, 2010. Available online: https://bibdigital.epn.edu.ec/handle/15000/2558 (accessed on 6 November 2010).
- Torres, N. Determinación del potencial nutritivo y nutracéutico de cuatro cultivares de tomate de árbol (Solanum betaceum Cav.). Bachelor’s Thesis, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 2006. Available online: http://repositorio.iniap.gob.ec/handle/41000/921 (accessed on 1 June 2015).
- Cerón, I.; Higuita, J.; Cardona, C. Antioxidant capacity and total phenolic content of three fruits from Andean region. Vector 2010, 5, 17–26. [Google Scholar]
- Tupuna, D. Obtención de jugo concentrado clarificado de mortiño mediante el uso de tecnología de membranas. Bachelor’s Thesis, Facultad de Ingeniería Agroindustrial, Escuela Politécnica Nacional, Quito, Ecuador, 2012. Available online: https://bibdigital.epn.edu.ec/handle/15000/4947 (accessed on 12 September 2012).
- Espin, S.; González-Manzano, S.; Taco, V.; Poveda, C.; Ayuda-Durán, B.; González-Paramas, A.M.; Santos-Buelga, C. Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chem. 2016, 194, 1073–1080. [Google Scholar] [CrossRef]
- Montalvo, D.A. Evaluación de la calidad postcosecha de las accesiones seleccionadas de mora de castilla (Rubus glaucus Benth) provenientes de las provincias de Tungurahua y Bolívar. Bachelor’s Thesis, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito, Ecuador, 2010. Available online: https://bibdigital.epn.edu.ec/bitstream/15000/2653/1/CD-3336.pdf (accessed on 4 January 2011).
- Do Socorro, M.R.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [Green Version]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant capacity determination in plants and plant-derived products: A review. Oxid. Med. Cell. Longev. 2016. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactive from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Cádiz-Gurrea, M.; Lozano-Sanchez, J.; Contreras-Gámez, M.; Legeai-Mallet, L.; Fernández-Arroyo, S.; Segura-Carretero, A. Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. J. Funct. Foods 2014, 10, 485–498. [Google Scholar] [CrossRef]
- Acquaviva, A.; Jones, A.; Dennis, G.R.; Shalliker, R.A.; Soliven, A. Phenolic profiling of complex tea samples via simultaneous multiplexed detection employing reaction flow HPLC columns and colorimetric post column derivatisation. Microchem. J. 2018, 138, 533–539. [Google Scholar] [CrossRef]
Biocompounds Content | Luminosity | Coordinate Red/Green | Coordinate Yellow/Blue |
---|---|---|---|
(L*) | (a*) | (b*) | |
Y1 | X11 | X12 | X13 |
Y2 | X21 | X22 | X23 |
Yn | Xn1 | Xn2 | Xn3 |
Mean | X1 | X2 | X3 |
Sample | Titrable | Total Soluble Solids * | Maturity | Firmness * |
---|---|---|---|---|
Acidity * | (°Brix) | Index * | (N) | |
(%) | ||||
Araza | 2.40 ± 0.02 | 3.83 ± 1.19 | 1.60 ± 0.45 | 14.42 ± 5.00 |
Blackberry | 2.81 ± 0.07 | 12.69 ± 0.43 | 4.51 ± 0.06 | 3.22 ± 0.49 |
Andean blueberry | 0.96 ± 0.05 | 11.81 ± 0.26 | 12.39 ± 0.72 | 0.69 ± 0.01 |
Naranjilla | 2.58 ± 0.15 | 9.55 ± 0.43 | 3.72 ± 0.32 | 48.05 ± 17.55 |
Tamarillo | 2.09 ± 0.05 | 12.43 ± 0.94 | 5.94 ± 0.37 | 55.80 ± 16.57 |
Goldenberry | 1.42 ± 0.02 | 13.73 ± 1.50 | 9.64 ± 0.62 | 2.65 ± 0.39 |
Fruit | Color Coordinates | |||||||
---|---|---|---|---|---|---|---|---|
Lightness | Red-Green | Blue-Yellow | Chroma | Hue | ||||
L* | CV | a* | CV | b* | CV | C* | °H | |
(%) | (%) | (%) | ||||||
Araza | 49.63 ± 2.94 | 5.91 | −0.89 ± 0.40 | 45.32 | 22.73 ± 2.84 | 12.48 | 92.31 ± 1.20 | 22.75 ± 2.83 |
Blackberry | 10.68 ± 2.23 | 20.88 | 13.80 ± 3.90 | 28.26 | 4.95 ± 1.70 | 34.34 | 19.86 ± 4.94 | 14.71 ± 27.85 |
Andean blueberry | 20.80 ± 1.50 | 7.21 | 3.52 ± 1.10 | 31.25 | 3.16 ± 0.95 | 30.06 | 42.28 ± 13.38 | 4.86 ± 0.87 |
Naranjilla | 40.10 ± 1.92 | 4.79 | −4.25 ± 0.60 | 14.03 | 22.04 ± 2.62 | 11.88 | 100.93 ± 1.05 | 22.45 ± 2.65 |
Tamarillo | 51.75 ± 2.93 | 5.67 | 9.06 ± 0.71 | 7.84 | 32.68 ± 2.83 | 8.65 | 74.45 ± 1.41 | 33.92 ± 2.80 |
Goldenberry | 35.70 ± 2.46 | 6.88 | 7.10 ± 0.51 | 7.25 | 25.39 ± 3.55 | 13.99 | 74.11 ± 2.48 | 26.39 ± 3.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llerena, W.; Samaniego, I.; Angós, I.; Brito, B.; Ortiz, B.; Carrillo, W. Biocompounds Content Prediction in Ecuadorian Fruits Using a Mathematical Model. Foods 2019, 8, 284. https://doi.org/10.3390/foods8080284
Llerena W, Samaniego I, Angós I, Brito B, Ortiz B, Carrillo W. Biocompounds Content Prediction in Ecuadorian Fruits Using a Mathematical Model. Foods. 2019; 8(8):284. https://doi.org/10.3390/foods8080284
Chicago/Turabian StyleLlerena, Wilma, Iván Samaniego, Ignacio Angós, Beatriz Brito, Bladimir Ortiz, and Wilman Carrillo. 2019. "Biocompounds Content Prediction in Ecuadorian Fruits Using a Mathematical Model" Foods 8, no. 8: 284. https://doi.org/10.3390/foods8080284
APA StyleLlerena, W., Samaniego, I., Angós, I., Brito, B., Ortiz, B., & Carrillo, W. (2019). Biocompounds Content Prediction in Ecuadorian Fruits Using a Mathematical Model. Foods, 8(8), 284. https://doi.org/10.3390/foods8080284