Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.)
Abstract
:1. Introduction
2. Bioactive Compounds of Garlic
3. Biological functions of Garlic
3.1. Antioxidant Activity
3.2. Anti-Inflammatory Activity
3.3. Antimicrobial Activity
3.4. Modulating Immune System
3.5. Cardiovascular Protection
3.5.1. Antihypertensive Activity
3.5.2. Anti-hyperlipidemic Activity
3.5.3. Heart Protection
3.5.4. Other Cardiovascular Protective effects
3.6. Anticancer Activity
3.6.1. Regulating Metabolism of Carcinogenic Substances
3.6.2. Suppressing Cell Growth and Proliferation
3.6.3. Inducing Apoptosis
3.6.4. Suppressing Angiogenesis
3.6.5. Inhibiting Invasion and Migration
3.6.6. Alleviating the Adverse Effects of Anticancer Therapies
3.6.7. Other Anti-Cancer Actions
3.7. Hepatoprotective Activity
3.8. Digestive System Protection
3.9. Anti-Diabetic Activity
3.10. Anti-Obesity Activity
3.11. Neuroprotection
3.12. Renal Protection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bose, S.; Laha, B.; Banerjee, S. Quantification of allicin by high performance liquid chromatography-ultraviolet analysis with effect of post-ultrasonic sound and microwave radiation on fresh garlic cloves. Pharmacogn. Mag. 2014, 10, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Diretto, G.; Rubio-Moraga, A.; Argandona, J.; Castillo, P.; Gomez-Gomez, L.; Ahrazem, O. Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules 2017, 22, 1359. [Google Scholar] [CrossRef] [PubMed]
- Szychowski, K.A.; Rybczynska-Tkaczyk, K.; Gawel-Beben, K.; Swieca, M.; Karas, M.; Jakubczyk, A.; Matysiak, M.; Binduga, U.E.; Gminski, J. Characterization of active compounds of different garlic (Allium sativum L.) cultivars. Pol. J. Food Nutr. Sci. 2018, 68, 73–81. [Google Scholar] [CrossRef]
- Jacob, B.; Narendhirakannan, R.T. Role of medicinal plants in the management of diabetes mellitus: A review. 3 Biotechnol. 2019, 9, 4. [Google Scholar]
- Boonpeng, S.; Siripongvutikorn, S.; Sae-Wong, C.; Sutthirak, P. The antioxidant and anti-cadmium toxicity properties of garlic extracts. Food Sci. Nutr. 2014, 2, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Li, H.; Lim, H.J.; Lee, H.J.; Jeon, R.; Ryu, J.-H. Anti-inflammatory activity of sulfur-containing compounds from garlic. J. Med. Food. 2012, 15, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Cheng, Z.; Ahmad, H.; Ali, M.; Chen, X.; Wang, M. Garlic, from remedy to stimulant: Evaluation of antifungal potential reveals diversity in phytoalexin allicin content among garlic cultivars; allicin containing aqueous garlic extracts trigger antioxidants. Front. Plant Sci. 2016, 7, 1235. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.S. Aged garlic extract modifies human immunity. J. Nutr. 2016, 146, 433S–436S. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lim, W.C.; Lee, S.J.; Lee, S.H.; Lee, J.H.; Cho, H.Y. Antiobesity effect of garlic extract fermented by lactobacillus plantarum bl2 in diet-induced obese mice. J. Med. Food 2016, 19, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Seckiner, I.; Bayrak, O.; Can, M.; Mungan, A.G.; Mungan, N.A. Garlic supplemented diet attenuates gentamicin nephrotoxicity in rats. Int. Braz. J. Urol. 2014, 40, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.M.; Ban, J.O.; Park, K.R.; Lee, C.K.; Jeong, H.S.; Han, S.B.; Hong, J.T. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther. 2014, 142, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Tung, Y.C.; Pan, M.H.; Su, N.W.; Lai, Y.J.; Cheng, K.C. Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal. 2017, 25, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, J.M.; Organ, C.L.; Lefer, D.J. Garlic-derived organic polysulfides and myocardial protection. J. Nutr. 2016, 146, 403S–409S. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Guan, M.; Zhao, X.; Li, X.L. Effects of garlic polysaccharide on alcoholic liver fibrosis and intestinal microflora in mice. Pharm. Biol. 2018, 56, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.Y.; Kim, W.; Nam, S.M.; Yoo, M.; Lee, S.; Yoon, Y.S.; Won, M.H.; Hwang, I.K.; Choi, J.H. Neuroprotective effects of Z-ajoene, an organosulfur compound derived from oil-macerated garlic, in the gerbil hippocampal CA1 region after transient forebrain ischemia. Food Chem. Toxicol. 2014, 72, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kodera, Y.; Ushijima, M.; Amano, H.; Suzuki, J.; Matsutomo, T. Chemical and biological properties of S-1-propenyl-l-cysteine in aged garlic extract. Molecules 2017, 22, 570. [Google Scholar] [CrossRef]
- Yoo, M.; Lee, S.; Kim, S.; Hwang, J.B.; Choe, J.; Shin, D. Composition of organosulfur compounds from cool- and warm-type garlic (Allium sativum L.) in Korea. Food Sci. Biotechnol. 2014, 23, 337–344. [Google Scholar] [CrossRef]
- Mansingh, D.P.; Dalpati, N.; Sali, V.K.; Vasanthi, A.H.R. Alliin the precursor of allicin in garlic extract mitigates proliferation of gastric adenocarcinoma cells by modulating apoptosis. Pharmacogn. Mag. 2018, 14, S84–S91. [Google Scholar]
- Torres-Palazzolo, C.; Ramirez, D.; Locatelli, D.; Manucha, W.; Castro, C.; Camargo, A. Bioaccessibility and permeability of bioactive compounds in raw and cooked garlic. J. Food Compos. Anal. 2018, 70, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Lanzotti, V.; Bonanomi, G.; Scala, F. What makes allium species effective against pathogenic microbes? Phytochem. Rev. 2013, 12, 751–772. [Google Scholar] [CrossRef]
- Liu, J.; Ji, F.; Chen, F.M.; Guo, W.; Yang, M.L.; Huang, S.X.; Zhang, F.; Liu, Y.S. Determination of garlic phenolic compounds using supercritical fluid extraction coupled to supercritical fluid chromatography/tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 159, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Nagella, P.; Thiruvengadam, M.; Ahmad, A.; Yoon, J.Y.; Chung, I.M. Composition of polyphenols and antioxidant activity of garlic bulbs collected from different locations of Korea. Asian J. Chem. 2014, 26, 897–902. [Google Scholar] [CrossRef]
- Hang, X. Isolation and identification of garlic polysaccharide. Food Sci. 2005, 26, 48–51. [Google Scholar]
- Liang, T.F.; Wei, F.F.; Lu, Y.; Kodani, Y.; Nakada, M.; Miyakawa, T.; Tanokura, M. Comprehensive nmr analysis of compositional changes of black garlic during thermal processing. J. Agric. Food Chem. 2015, 63, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.M.; Li, N.Y.; Qiao, X.G.; Qiu, Z.C.; Liu, P.L. Effects of thermal treatment on polysaccharide degradation during black garlic processing. Lwt-Food Sci. Technol. 2018, 95, 223–229. [Google Scholar] [CrossRef]
- Sun, Y.E.; Wang, W.D. Changes in nutritional and bio-functional compounds and antioxidant capacity during black garlic processing. J. Food Sci. Technol. 2018, 55, 479–488. [Google Scholar] [CrossRef]
- Kim, J.S.; Kang, O.J.; Gweon, O.C. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J. Funct. Foods 2013, 5, 80–86. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.J.; Xu, D.P.; Zhou, T.; Zhou, Y.; Li, S.; Li, H.B. Bioactivities and health benefits ofwild fruits. Int. J. Mol. Sci. 2016, 17, 1258. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Guo, Y.J.; Deng, G.F.; Xu, X.R.; Wu, S.; Li, S.; Xia, E.Q.; Li, F.; Chen, F.; Ling, W.H.; Li, H.B. Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi. Food Funct. 2012, 3, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Xu, X.R.; Guo, Y.J.; Xia, E.Q.; Li, S.; Wu, S.; Chen, F.; Ling, W.H.; Li, H.B. Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. J. Funct. Foods 2012, 4, 906–914. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Li, Y.; Xu, D.P.; Li, H.B. Optimization of ultrasound-assisted extraction of natural antioxidants from the osmanthus fragrans flower. Molecules 2016, 21, 218. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tang, G.Y.; Zhao, C.N.; Feng, X.L.; Xu, X.Y.; Cao, S.Y.; Meng, X.; Li, S.; Gan, R.Y.; Li, H.B. Comparison of antioxidant activities of different grape varieties. Molecules 2018, 23, 2432. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, D.A.; Nazareno, M.A.; Fusari, C.M.; Camargo, A.B. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chem. 2017, 220, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Zakarova, A.; Seo, J.Y.; Kim, H.Y.; Kim, J.H.; Shin, J.H.; Cho, K.M.; Lee, C.H.; Kim, J.S. Garlic sprouting is associated with increased antioxidant activity and concomitant changes in the metabolite profile. J. Agric. Food Chem. 2014, 62, 1875–1880. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Lee, H.J.; Yoon, D.K.; Ji, D.S.; Kim, J.H.; Lee, C.H. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol. 2018, 27, 219–225. [Google Scholar] [CrossRef]
- Naji, K.M.; Al-Shaibani, E.S.; Alhadi, F.A.; Al-Soudi, S.A.; D’Souza, M.R. Hepatoprotective and antioxidant effects of single clove garlic against ccl4-induced hepatic damage in rabbits. BMC Complement. Altern. Med. 2017, 17, 411. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Lei, M.M.; Liu, R.; Gao, Y.F.; Xu, M.Y.; Zhang, M. Evaluation of alliin, saccharide contents and antioxidant activities of black garlic during thermal processing. J. Food Biochem. 2015, 39, 39–47. [Google Scholar] [CrossRef]
- Choi, I.S.; Cha, H.S.; Lee, Y.S. Physicochemical and antioxidant properties of black garlic. Molecules. 2014, 19, 16811–16823. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Tsuneyoshi, T.; Ogawa, T.; Morihara, N. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells. Nutr. Res. 2016, 36, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Unni, L.E.; Chauhan, O.P.; Raju, P.S. High pressure processing of garlic paste: Effect on the quality attributes. Int. J. Food Sci. Technol. 2014, 49, 1579–1585. [Google Scholar] [CrossRef]
- Liu, J.; Guo, W.; Yang, M.L.; Liu, L.X.; Huang, S.X.; Tao, L.; Zhang, F.; Liu, Y.S. Investigation of the dynamic changes in the chemical constituents of chinese “laba” garlic during traditional processing. Rsc Adv. 2018, 8, 41872–41883. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, S.O.; Kim, G.Y.; Hwang, H.J.; Kim, B.W.; Chang, Y.C.; Kim, W.J.; Kim, C.M.; Yoo, Y.H.; Choi, Y.H. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts. Int. J. Mol. Med. 2016, 37, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Seetharaman, R.; Ko, M.J.; Kim, D.Y.; Kim, T.H.; Yoon, M.K.; Kwak, J.H.; Lee, S.J.; Bae, Y.S.; Choi, Y.W. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW 264.7 cells. Int. Immunopharmacol. 2014, 19, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Rabe, S.Z.T.; Ghazanfari, T.; Siadat, Z.; Rastin, M.; Rabe, S.Z.T.; Mahmoudi, M. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages. Immunopharmacol. Immunotoxicol. 2015, 37, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Morihara, N.; Hino, A.; Miki, S.; Takashima, M.; Suzuki, J. Aged garlic extract suppresses inflammation in apolipoprotein E-knockout mice. Mol. Nutr. Food Res. 2017, 61, 1700308. [Google Scholar] [CrossRef] [PubMed]
- Metwally, D.M.; Al-Olayan, E.M.; Alanazi, M.; Alzahrany, S.B.; Semlali, A. Antischistosomal and anti-inflammatory activity of garlic and allicin compared with that of praziquantel in vivo. BMC Complement. Altern. Med. 2018, 18, 135. [Google Scholar] [CrossRef]
- Dehghani, S.; Alipoor, E.; Salimzadeh, A.; Yaseri, M.; Hosseini, M.; Feinle-Bisset, C.; Hosseinzadeh-Attar, M.J. The effect of a garlic supplement on the pro-inflammatory adipocytokines, resistin and tumor necrosis factor-α, and on pain severity, in overweight or obese women with knee osteoarthritis. Phytomedicine 2018, 48, 70–75. [Google Scholar] [CrossRef]
- Guo, Y.J. Experimental study on the optimization of extraction process of garlic oil and its antibacterial effects. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 411–414. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.N.; Tang, G.Y.; Li, S.; Gan, R.Y.; Li, H.B. Natural products for the prevention and management of Helicobacter pylori infection. Compr. Rev. Food Sci. F. 2018, 17, 937–952. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.N.; Tang, G.Y.; Li, H.B. Antibacterial and antifungal activities of spices. Int. J. Mol. Sci. 2017, 18, 1283. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Riccardi, R.; Spigno, P.; Ombra, M.N.; Cozzolino, A.; Tremonte, P.; Coppola, R.; Nazzaro, F. Biochemical characterization and antimicrobial and antifungal activity of two endemic varieties of garlic (Allium sativum L.) of the campania region, southern Italy. J. Med. Food. 2016, 19, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.W.; Campopiano, D.J. Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS ONE 2014, 9, e112726. [Google Scholar] [CrossRef] [PubMed]
- Li, W.R.; Shi, Q.S.; Liang, Q.; Huang, X.M.; Chen, Y.B. Antifungal effect and mechanism of garlic oil on penicillium funiculosum. Appl. Microbiol. Biot. 2014, 98, 8337–8346. [Google Scholar] [CrossRef] [PubMed]
- Li, W.R.; Shi, Q.S.; Dai, H.Q.; Liang, Q.; Xie, X.B.; Huang, X.M.; Zhao, G.Z.; Zhang, L.X. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Sci. Rep. 2016, 6, 22805. [Google Scholar] [CrossRef] [PubMed]
- Zardast, M.; Namakin, K.; Kaho, J.E.; Hashemi, S.S. Assessment of antibacterial effect of garlic in patients infected with Helicobacter pylori using urease breath test. Avicenna J. Phytomed. 2016, 6, 495–501. [Google Scholar] [PubMed]
- Li, M.; Yan, Y.X.; Yu, Q.T.; Deng, Y.; Wu, D.T.; Wang, Y.; Ge, Y.Z.; Li, S.P.; Zhao, J. Comparison of immunomodulatory effects of fresh garlic and black garlic polysaccharides on RAW 264.7 macrophages. J. Food Sci. 2017, 82, 765–771. [Google Scholar] [CrossRef]
- Hassouna, I.; Ibrahim, H.; Gaffar, F.A.; El-Elaimy, I.; Latif, H.A. Simultaneous administration of hesperidin or garlic oil modulates diazinon-induced hemato- and immunotoxicity in rats. Immunopharmacol. Immunotoxicol. 2015, 37, 442–449. [Google Scholar] [CrossRef]
- Mohamed, E.H.; Baiomy, A.A.A.; Ibrahim, Z.S.; Soliman, M.M. Modulatory effects of levamisole and garlic oil on the immune response of wistar rats: Biochemical, immunohistochemical, molecular and immunological study. Mol. Med. Rep. 2016, 14, 2755–2763. [Google Scholar] [CrossRef]
- Qiu, S.L.; Chen, J.; Qin, T.; Hu, Y.L.; Wang, D.Y.; Fan, Q.; Zhang, C.S.; Chen, X.Y.; Chen, X.L.; Liu, C.; et al. Effects of selenylation modification on immune-enhancing activity of garlic polysaccharide. PLoS ONE 2014, 9, e86377. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart disease and stroke statistics-2018 update a report from the American Heart Association. Circulation 2018, 137, E67–E492. [Google Scholar]
- Srinivasan, K. Antioxidant potential of spices and their active constituents. Crit. Rev. Food. Sci. Nutr. 2014, 54, 352–372. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.Y.; Meng, X.; Li, Y.; Zhao, C.N.; Liu, Q.; Li, H.B. Effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients 2017, 9, 857. [Google Scholar] [CrossRef]
- Zhao, C.N.; Meng, X.; Li, Y.; Li, S.; Liu, Q.; Tang, G.Y.; Li, H.B. Fruits for prevention and treatment of cardiovascular diseases. Nutrients 2017, 9, 598. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhou, Y.; Li, S.; Zhang, P.; Zhou, T.; Xu, D.P.; Li, H.B. Effects and mechanisms of fruit and vegetable juices on cardiovascular diseases. Int. J. Mol. Sci. 2017, 18, 555. [Google Scholar] [CrossRef] [PubMed]
- Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A review of potential therapeutic effects. Avicenna. J. Phytomed. 2014, 4, 1–14. [Google Scholar]
- Kwak, J.S.; Kim, J.Y.; Paek, J.E.; Lee, Y.J.; Kim, H.R.; Park, D.S.; Kwon, O. Garlic powder intake and cardiovascular risk factors: A meta-analysis of randomized controlled clinical trials. Nutr. Res. Pract. 2014, 8, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.; Correa-Rotter, R.; Sanchez-Gonzalez, D.J.; Hernandez-Pando, R.; Maldonado, P.D.; Martinez-Martinez, C.M.; Medina-Campos, O.N.; Tapia, E.; Aguilar, D.; Chirino, Y.I.; et al. Renoprotective and antihypertensive effects of S-allylcysteine in 5/6 nephrectomized rats. Am. J. Physiol. Renal Physiol. 2007, 293, F1691–F1698. [Google Scholar] [CrossRef]
- Fasolino, I.; Izzo, A.A.; Clavel, T.; Romano, B.; Haller, D.; Borrelli, F. Orally administered allyl sulfides from garlic ameliorate murine colitis. Mol. Nutr. Food Res. 2015, 59, 434–442. [Google Scholar] [CrossRef]
- Takashima, M.; Kanamori, Y.; Kodera, Y.; Morihara, N.; Tamura, K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytomedicine 2017, 24, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Asdaq, S.M.; Inamdar, M.N. Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine 2010, 17, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Sausbier, M.; Schubert, R.; Voigt, V.; Hirneiss, C.; Pfeifer, A.; Korth, M.; Kleppisch, T.; Ruth, P.; Hofmann, F. Mechanisms of NO/cGMP-dependent vasorelaxation. Circ. Res. 2000, 87, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kim, H.Y.; Cui, H.Z.; Cho, K.W.; Kang, D.G.; Lee, H.S. Water extract of zanthoxylum piperitum induces vascular relaxation via endothelium-dependent NO-cGMP signaling. J. Ethnopharmacol. 2010, 129, 197–202. [Google Scholar] [CrossRef]
- Ushijima, M.; Takashima, M.; Kunimura, K.; Kodera, Y.; Morihara, N.; Tamura, K. Effects of S-1-propenylcysteine, a sulfur compound in aged garlic extract, on blood pressure and peripheral circulation in spontaneously hypertensive rats. J. Pharm. Pharmacol. 2018, 70, 559–565. [Google Scholar] [CrossRef]
- Park, B.M.; Cha, S.A.; Kim, H.Y.; Kang, D.K.; Yuan, K.; Chun, H.; Chae, S.W.; Kim, S.H. Fermented garlic extract decreases blood pressure through nitrite and sGC-cGMP-PKG pathway in spontaneously hypertensive rats. J. Funct. Foods 2016, 22, 156–165. [Google Scholar] [CrossRef]
- Park, B.M.; Chun, H.; Chae, S.W.; Kim, S.H. Fermented garlic extract ameliorates monocrotaline-induced pulmonary hypertension in rats. J. Funct. Foods 2017, 30, 247–253. [Google Scholar] [CrossRef]
- Han, C.H.; Liu, J.C.; Chen, K.H.; Lin, Y.S.; Chen, C.T.; Fan, C.T.; Lee, H.L.; Liu, D.Z.; Hou, W.C. Antihypertensive activities of processed garlic on spontaneously hypertensive rats and hypertensive humans. Bot. Stud. 2011, 52, 277–283. [Google Scholar]
- Sohn, C.W.; Kim, H.; You, B.R.; Kim, M.J.; Kim, H.J.; Lee, J.Y.; Sok, D.E.; Kim, J.H.; Lee, K.J.; Kim, M.R. High temperature- and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets. J. Med. Food. 2012, 15, 435–440. [Google Scholar] [CrossRef]
- Ha, A.W.; Ying, T.; Kim, W.K. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Nutr. Res. Pract. 2015, 9, 30–36. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Haider, S.; Misbah-ur-Rehman, M.; Perveen, T. Role of herbal formulation of garlic on lipid profile in patients with type 2 diabetes related dyslipidemia. Pak. Heart J. 2016, 49, 146–150. [Google Scholar]
- Ho, X.L.; Tsen, S.Y.; Ng, M.Y.; Lee, W.N.; Low, A.; Loke, W.M. Aged garlic supplement protects against lipid peroxidation in hypercholesterolemic individuals. J. Med. Food 2016, 19, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Khatua, T.N.; Borkar, R.M.; Mohammed, S.A.; Dinda, A.K.; Srinivas, R.; Banerjee, S.K. Novel sulfur metabolites of garlic attenuate cardiac hypertrophy and remodeling through induction of Na+/K+-ATPase expression. Front. Pharmacol. 2017, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M.R.; Bagul, P.K.; Katare, P.B.; Mohammed, S.A.; Padiya, R.; Banerjee, S.K. Garlic activates SIRT-3 to prevent cardiac oxidative stress and mitochondrial dysfunction in diabetes. Life Sci. 2016, 164, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Mukthamba, P.; Srinivasan, K. Hypolipidemic influence of dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) in experimental myocardial infarction. Food Funct. 2015, 6, 3117–3125. [Google Scholar] [CrossRef] [PubMed]
- Supakul, L.; Pintana, H.; Apaijai, N.; Chattipakorn, S.; Shinlapawittayatorn, K.; Chattipakorn, N. Protective effects of garlic extract on cardiac function, heart rate variability, and cardiac mitochondria in obese insulin-resistant rats. Eur. J. Nutr. 2014, 53, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, A.M.S.; Abdelhafez, A.T.; Aamer, H.A. Garlic (Allium sativum) exhibits a cardioprotective effect in experimental chronic renal failure rat model by reducing oxidative stress and controlling cardiac Na+/K+-ATPase activity and Ca2+ levels. Cell Stress Chaperones. 2018, 23, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Avula, P.R.; Asdaq, S.M.; Asad, M. Effect of aged garlic extract and S-allyl cysteine and their interaction with atenolol during isoproterenol induced myocardial toxicity in rats. Indian J. Pharmacol. 2014, 46, 94–99. [Google Scholar]
- Perez-Torres, I.; Torres-Narvaez, J.C.; Pedraza-Chaverri, J.; Rubio-Ruiz, M.E.; Diaz-Diaz, E.; Del Valle-Mondragon, L.; Martinez-Memije, R.; Lopez, E.V.; Guarner-Lans, V. Effect of the aged garlic extract on cardiovascular function in metabolic syndrome rats. Molecules 2016, 21, 1425. [Google Scholar] [CrossRef]
- Garcia-Villalon, A.L.; Amor, S.; Monge, L.; Fernandez, N.; Prodanov, M.; Munoz, M.; Inarejos-Garcia, A.M.; Granado, M. In vitro studies of an aged black garlic extract enriched in S-allylcysteine and polyphenols with cardioprotective effects. J. Funct. Foods 2016, 27, 189–200. [Google Scholar] [CrossRef]
- Morihara, N.; Hino, A.; Yamaguchi, T.; Suzuki, J. Aged garlic extract suppresses the devegopment of atherosclerosis in apollipoprotein E-knockout mice. J. Nutr. 2016, 146, 460S–463S. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.N.; Li, Y.; Meng, X.; Li, S.; Liu, Q.; Tang, G.Y.; Gan, R.Y.; Li, H.B. Insight into the roles of vitamins C and D against cancer: Myth or truth? Cancer Lett. 2018, 431, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr. 2018, 58, 924–941. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Li, Y.; Li, S.; Li, H.B. Plant foods for the prevention and management of colon cancer. J. Funct. Foods 2018, 42, 95–110. [Google Scholar] [CrossRef]
- Xu, X.Y.; Meng, X.; Li, S.; Gan, R.Y.; Li, Y.; Li, H.B. Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients 2018, 10, 1553. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients 2017, 9, 728. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.P.; Li, S.; Li, H.B. Spices for prevention and treatment of cancers. Nutrients 2016, 8, 495. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients 2016, 8, 156. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Z.R.; Chen, P.; Yang, L.; Deng, W.R.; Wang, Y.Q.; Li, H.Y. Effect of the tyrosinase inhibitor (S)-N-trans-feruloyloctopamine from garlic skin on tyrosinase gene expression and melanine accumulation in melanoma cells. Bioorg. Med. Chem. Lett. 2015, 25, 1476–1478. [Google Scholar] [CrossRef] [PubMed]
- Myneni, A.A.; Chang, S.C.; Niu, R.G.; Liu, L.; Swanson, M.K.; Li, J.W.; Su, J.; Giovino, G.A.; Yu, S.Z.; Zhang, Z.F.; et al. Raw garlic consumption and lung cancer in a chinese population. Cancer Epidemiol. Biomarkers Prev. 2016, 25, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.T.; Seo, S.P.; Byun, Y.J.; Kang, H.W.; Kim, Y.J.; Lee, S.C.; Jeong, P.; Seo, Y.; Choe, S.Y.; Kim, D.J.; et al. Garlic extract in bladder cancer prevention: Evidence from T24 bladder cancer cell xenograft model, tissue microarray, and gene network analysis. Int. J. Oncol. 2017, 51, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.X.; Zhu, K.X.; Fan, J.G.; Qiao, L. Garlic-derived allyl sulfides in cancer therapy. Anticancer Agents Med. Chem. 2014, 14, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Kodali, R.T.; Eslick, G.D. Meta-analysis: Does garlic intake reduce risk of gastric cancer? Nutr. Cancer 2015, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bom, J.; Gunutzmann, P.; Hurtado, E.C.P.; Maragno-Correa, J.M.R.; Kleeb, S.R.; Lallo, M.A. Long-term treatment with aqueous garlic and/or tomato suspensions decreases Ehrlich ascites tumors. Evid. Based Complement. Altern. Med. 2014, 2014, 381649. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Guyton, K.Z.; Gibbons, C.F.; Fritz, J.M.; Portier, C.J.; Rusyn, I.; DeMarini, D.M.; Caldwell, J.C.; Kavlock, R.J.; Lambert, P.F.; et al. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ. Health Perspect. 2016, 124, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, H.L.; Ross, S.A.; Milner, J.A. Garlic and onions: Their cancer prevention properties. Cancer Prev. Res. 2015, 8, 181–189. [Google Scholar] [CrossRef]
- Jakszyn, P.; Agudo, A.; Ibanez, R.; Garcia-Closas, R.; Pera, G.; Amiano, P.; Gonzalez, C.A. Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J. Nutr. 2004, 134, 2011–2014. [Google Scholar] [CrossRef]
- Milner, J.A. Mechanisms by which garlic and allyl sulfur compounds suppress carcinogen bioactivation—Garlic and carcinogenesis. Adv. Exp. Med. Biol. 2001, 492, 69–81. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Bagul, M.; Kakumanu, S.; Wilson, T.A. Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J. Med. Food 2015, 18, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.S.; Song, J.H.; Hwang, B.; Noh, D.H.; Park, S.L.; Kim, W.T.; Park, S.S.; Kim, W.J.; Moon, S.K. HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated mmp-9 regulation. PLoS ONE 2017, 12, e0171860. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Y.; Zhu, X.S.; Huang, W.Z.; Xu, H.Y.; Zhao, Z.X.; Li, S.Y.; Li, S.Z.; Cai, J.H.; Cao, J.M. Garlic-derived organosulfur compound exerts antitumor efficacy via activation of MAPK pathway and modulation of cytokines in SGC-7901 tumor-bearing mice. Int. Immunopharmacol. 2017, 48, 135–145. [Google Scholar] [CrossRef]
- Xu, Y.S.; Feng, J.G.; Zhang, D.; Zhang, B.; Luo, M.; Su, D.; Lin, N.M. S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro. Acta. Pharmacol. Sin. 2014, 35, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cheng, J.W.; Zhu, Y.Z. The JNK signaling pathway is a novel molecular target for S-propargyl-l-cysteine, a naturally-occurring garlic derivatives: Link to its anticancer activity in pancreatic cancer in vitro and in vivo. Curr. Cancer Drug Targets 2015, 15, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xing, F.Y.; Liu, Y.X.; Lv, Y.; Wang, X.G.; Ling, M.T.; Gao, H.; Ouyang, S.Y.; Yang, M.; Zhu, J.; et al. Garlic-derived compound S-allylmercaptocysteine inhibits hepatocarcinogenesis through targeting LRP6/Wnt pathway. Acta Pharm. Sin. B 2018, 8, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.Y.; Zhang, Z.H.; Bian, H.L.; Lin, G. Garlic-derived compound S-allylmercaptocysteine inhibits cell growth and induces apoptosis via the JNK and p38 pathways in human colorectal carcinoma cells. Oncol. Lett. 2014, 8, 2591–2596. [Google Scholar] [CrossRef]
- Jung, Y.; Park, H.; Zhao, H.Y.; Jeon, R.; Ryu, J.H.; Kim, W.Y. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent. Mol. Cells. 2014, 37, 547–553. [Google Scholar] [CrossRef]
- Kaschula, C.H.; Hunter, R.; Cotton, J.; Tuveri, R.; Ngarande, E.; Dzobo, K.; Schafer, G.; Siyo, V.; Lang, D.; Kusza, D.A.; et al. The garlic compound ajoene targets protein folding in the endoplasmic reticulum of cancer cells. Mol. Carcinog. 2016, 55, 1213–1228. [Google Scholar] [CrossRef]
- Jikihara, H.; Qi, G.Y.; Nozoe, K.; Hirokawa, M.; Sato, H.; Sugihara, Y.; Shimamoto, F. Aged garlic extract inhibits 1,2-dimethylhydrazine-induced colon tumor development by suppressing cell proliferation. Oncol. Rep. 2015, 33, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, V.; Nepal, A.; Olaisen, C.; Bachke, S.; Hira, J.; Sogaard, C.K.; Rost, L.M.; Misund, K.; Andreassen, T.; Melo, T.M.; et al. Anti-cancer potential of homemade fresh garlic extract is related to increased endoplasmic reticulum stress. Nutrients 2018, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Charron, C.S.; Dawson, H.D.; Albaugh, G.P.; Solverson, P.M.; Vinyard, B.T.; Solano-Aguilar, G.I.; Molokin, A.; Novotny, J.A. A single meal containing raw, crushed garlic influences expression of immunity- and cancer-related genes in whole blood of humans. J. Nutr. 2015, 145, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, N.; Miyamae, Y.; Yamane, K.; Nagao, Y.; Hamada, Y.; Kawaguchi, N.; Katsuki, T.; Hirata, K.; Sumi, S.I.; Ishikawa, H. Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells(1–3). J. Nutr. 2006, 136, 842S–846S. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.H.; Shan, Y.L.; Tao, L.; Liu, Y.P.; Zhu, Z.J.; Liu, Z.G.; Wu, Y.Y.; Chen, W.X.; Wang, A.Y.; Lu, Y. Diallyl trisulfides, a natural histone deacetylase inhibitor, attenuate HIF-1 synthesis, and decreases breast cancer metastasis. Mol. Carcinog. 2017, 56, 2317–2331. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H. Consumption of garlic and lemon aqueous extracts combination reduces tumor burden by angiogenesis inhibition, apoptosis induction, and immune system modulation. Nutrition 2017, 43, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Raisuddin, S.; Ahmad, S.; Fatima, M.; Dabeer, S. Toxicity of anticancer drugs and its prevention with special reference to role of garlic constituents. Ann. Phytomed. 2018, 7, 13–26. [Google Scholar] [CrossRef]
- Nasr, A.Y.; Saleh, H.A.M. Aged garlic extract protects against oxidative stress and renal changes in cisplatin-treated adult male rats. Cancer Cell Int. 2014, 14, 92. [Google Scholar] [CrossRef]
- Suddek, G.M. Allicin enhances chemotherapeutic response and ameliorates tamoxifen- induced liver injury in experimental animals. Pharm. Biol. 2014, 52, 1009–1014. [Google Scholar] [CrossRef]
- Gatt, M.E.; Strahilevitz, J.; Sharon, N.; Lavie, D.; Goldschmidt, N.; Kalish, Y.; Gural, A.; Paltiel, O.B. A randomized controlled study to determine the efficacy of garlic compounds in patients with hematological malignancies at risk for chemotherapy-related febrile neutropenia. Integr. Cancer Ther. 2015, 14, 428–435. [Google Scholar] [CrossRef]
- Tabari, M.A.; Ebrahimpour, S. Effect of aged garlic extract on immune responses to experimental fibrosarcoma tumor in BALB/c mice. Indian J. Cancer 2014, 51, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Saud, S.M.; Li, W.D.; Gray, Z.; Matter, M.S.; Colburn, N.H.; Young, M.R.; Kim, Y.S. Diallyl disulfide (DADS), a constituent of garlic, inactivates NF-κB and prevents colitis-induced colorectal cancer by inhibiting GSK-3β. Cancer Prev. Res. 2016, 9, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Qamar, A.; Siddiqui, A.; Kumar, H. Fresh garlic amelioration of high-fat-diet induced fatty liver in albino rats. J. Pak. Med. Assoc. 2015, 65, 1102–1107. [Google Scholar] [PubMed]
- Meng, X.; Li, Y.; Li, S.; Gan, R.Y.; Li, H.B. Natural products for prevention and treatment of chemical-induced liver injuries. Compr. Rev. Food Sci. Food Saf. 2018, 17, 472–495. [Google Scholar] [CrossRef]
- Meng, X.; Li, S.; Li, Y.; Gan, R.Y.; Li, H.B. Gut microbiota’s relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics. Nutrients 2018, 10, 1457. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Teng, C.C.; Shen, C.H.; Huang, W.S.; Lu, C.C.; Kuo, H.C.; Tung, S.Y. Protective effect of black garlic extracts on tert-Butyl hydroperoxide-induced injury in hepatocytes via a c-Jun N-terminal kinase-dependent mechanism. Exp. Ther. Med. 2018, 15, 2468–2474. [Google Scholar] [CrossRef] [PubMed]
- Aprioku, J.S.; Amah-Tariah, F.S. Garlic (Allium sativum L.) protects hepatic and renal toxicity of alloxan in rats. Br. J. Pharm. Res. 2017, 17, 34909. [Google Scholar] [CrossRef]
- Kaur, S.; Sharma, S. A histometric study to assess preventive action of ascorbic acid and garlic on cadmium induced hepatotoxicity in albino mice. Int. J. Pharm. Phytopharmacol. Res. 2015, 5, 398. [Google Scholar]
- Ko, J.W.; Park, S.H.; Lee, I.C.; Lee, S.M.; Shin, I.S.; Kang, S.S.; Moon, C.; Kim, S.H.; Heo, J.D.; Kim, J.C. Protective effects of garlic oil against 1,3-dichloro-2-propanol-induced hepatotoxicity: Role of CYP2E1 and MAPKs. Mol. Cell. Toxicol. 2016, 12, 185–195. [Google Scholar] [CrossRef]
- Guan, M.J.; Zhao, N.; Xie, K.Q.; Zeng, T. Hepatoprotective effects of garlic against ethanol-induced liver injury: A mini-review. Food Chem. Toxicol. 2018, 111, 467–473. [Google Scholar] [CrossRef]
- Lai, Y.S.; Chen, W.C.; Ho, C.T.; Lu, K.H.; Lin, S.H.; Tseng, H.C.; Lin, S.Y.; Sheen, L.Y. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J. Agric. Food Chem. 2014, 62, 5897–5906. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, S.J.; Yu, H.J.; Lee, J.H.; Cho, H.Y. Fermentation with Lactobacillus enhances the preventive effect of garlic extract on high fat diet-induced hepatic steatosis in mice. J. Funct. Foods 2017, 30, 125–133. [Google Scholar] [CrossRef]
- Lee, H.S.; Lim, W.C.; Lee, S.J.; Lee, S.H.; Yu, H.J.; Lee, J.H.; Cho, H.Y. Hepatoprotective effects of lactic acid-fermented garlic extract against acetaminophen-induced acute liver injury in rats. Food Sci. Biotechnol. 2016, 25, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Kang, S.G.; Roh, Y.K.; Choi, M.K.; Song, S.W. Efficacy and safety of fermented garlic extract on hepatic function in adults with elevated serum gamma-glutamyl transpeptidase levels: A double-blind, randomized, placebo-controlled trial. Eur. J. Nutr. 2017, 56, 1993–2002. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.; Iqbal, J.; Sheikh, M.A. Effects of garlic (Allium sativum) on the weights of liver in albino rats. Pak. J. Med. Health Sci. 2015, 9, 1051–1054. [Google Scholar]
- Chen, Y.A.; Tsai, J.C.; Cheng, K.C.; Liu, K.F.; Chang, C.K.; Hsieh, C.W. Extracts of black garlic exhibits gastrointestinal motility effect. Food Res. Int. 2018, 107, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Ben Hadda, T.; ElSawy, N.A.; Header, E.A.M.; Mabkhot, Y.N.; Mubarak, M.S. Effect of garlic and cabbage on healing of gastric ulcer in experimental rats. Med. Chem. Res. 2014, 23, 5110–5119. [Google Scholar] [CrossRef]
- Badr, G.M.; Al-Mulhim, J.A. The protective effect of aged garlic extract on nonsteroidal anti-inflammatory drug-induced gastric inflammations in male albino rats. Evid. Based Complement. Altern. Med. 2014, 2014, 759642. [Google Scholar] [CrossRef]
- El-Ashmawy, N.E.; Khedr, E.G.; El-Bahrawy, H.A.; Selim, H.M. Gastroprotective effect of garlic in indomethacin induced gastric ulcer in rats. Nutrition 2016, 32, 849–854. [Google Scholar] [CrossRef]
- Shi, L.M.; Lin, Q.L.; Li, X.H.; Nie, Y.; Sun, S.G.; Deng, X.Y.; Wang, L.; Lu, J.; Tang, Y.P.; Luo, F.J. Alliin, a garlic organosulfur compound, ameliorates gut inflammation through MAPK-NF-κB/AP-1/STAT-1 inactivation and PPAR-7 activation. Mol. Nutr. Food Res. 2017, 61, 1601013. [Google Scholar] [CrossRef]
- Kaur, G.; Padiya, R.; Adela, R.; Putcha, U.K.; Reddy, G.S.; Reddy, B.R.; Kumar, K.P.; Chakravarty, S.; Banerjee, S.K. Garlic and resveratrol attenuate diabetic complications, loss of β-cells, pancreatic and hepatic oxidative stress in streptozotocin-induced diabetic rats. Front. Pharmacol. 2016, 7, 360. [Google Scholar] [CrossRef] [PubMed]
- Al-brakati, A.Y. Protective effect of garlic against diabetic retinopathy in adult albino rats. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2748–2759. [Google Scholar]
- Thomson, M.; Al-Qattan, K.K.; Divya, J.S.; Ali, M. Anti-diabetic and anti-oxidant potential of aged garlic extract (AGE) in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med. 2016, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.M.; Lan, H.L.; Wang, W.J. Effect of garlic supplement in the management of type 2 diabetes mellitus (T2DM): A meta-analysis of randomized controlled trials. Food Nutr. Res. 2017, 61, 1377571. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, L.H.; Yang, L.G.; Lu, H.; Wang, S.K.; Sun, G.J. Anti-obesity and hypolipidemic effects of garlic oil and onion oil in rats fed a high-fat diet. Nutr. Metab. 2018, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Kao, T.H.; Tseng, C.Y.; Chang, W.T.; Hsu, C.L. Methanolic extract of black garlic ameliorates diet-induced obesity via regulating adipogenesis, adipokine biosynthesis, and lipolysis. J. Funct. Foods 2014, 9, 98–108. [Google Scholar] [CrossRef]
- Zhou, H.; Qu, Z.; Mossine, V.V.; Nknolise, D.L.; Li, J.L.; Chen, Z.Z.; Cheng, J.L.; Greenlief, C.M.; Mawhinney, T.P.; Brown, P.N.; et al. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells. PLoS ONE 2014, 9, e113531. [Google Scholar] [CrossRef]
- Ho, S.C.; Su, M.S. Evaluating the anti-neuroinflammatory capacity of raw and steamed garlic as well as five organosulfur compounds. Molecules 2014, 19, 17697–17714. [Google Scholar] [CrossRef]
- Ebrahimzadeh-Bideskan, A.R.; Hami, J.; Alipour, F.; Haghir, H.; Fazel, A.R.; Sadeghi, A. Protective effects of ascorbic acid and garlic extract against lead-induced apoptosis in developing rat hippocampus. Metab. Brain Dis. 2016, 31, 1123–1132. [Google Scholar] [CrossRef]
- Cemil, B.; Gokce, E.C.; Kahveci, R.; Gokce, A.; Aksoy, N.; Sargon, M.F.; Erdogan, B.; Kosem, B. Aged garlic extract attenuates neuronal injury in a rat model of spinal cord ischemia/reperfusion injury. J. Med. Food 2016, 19, 601–606. [Google Scholar] [CrossRef]
- Thorajak, P.; Pannangrong, W.; Welbat, J.U.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Effects of aged garlic extract on cholinergic, glutamatergic and gabaergic systems with regard to cognitive impairment in a β-induced rats. Nutrients 2017, 9, 686. [Google Scholar] [CrossRef] [PubMed]
- Semuyaba, I.; Safiriyu, A.A.; Tiyo, E.A.; Niurka, R.F. Memory improvement effect of ethanol garlic (A. Sativum) extract in streptozotocin-nicotinamide induced diabetic wistar rats is mediated through increasing of hippocampal sodium-potassium ATPase, glutamine synthetase, and calcium ATPase activities. Evid. Based Complement. Altern. Med. 2017, 2017, 3720380. [Google Scholar] [CrossRef] [PubMed]
- Nurmasitoh, T.; Sari, D.C.R.; Partadiredja, G. The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate. Drug Chem. Toxicol. 2018, 41, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Zarezadeh, M.; Baluchnejadmojarad, T.; Kiasalari, Z.; Afshin-Majd, S.; Roghani, M. Garlic active constituent S-allyl cysteine protects against lipopolysaccharide-induced cognitive deficits in the rat: Possible involved mechanisms. Eur. J. Pharmacol. 2017, 795, 13–21. [Google Scholar] [CrossRef]
- Nasiri, A.; Ziamajidi, N.; Abbasalipourkabir, R.; Goodarzi, M.T.; Saidijam, M.; Behrouj, H.; Asl, S.S. Beneficial effect of aqueous garlic extract on inflammation and oxidative stress status in the kidneys of type 1 diabetic rats. Indian J. Clin. Biochem. 2017, 32, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Miltonprabu, S.; Sumedha, N.C.; Senthilraja, P. Diallyl trisulfide, a garlic polysulfide protects against as-induced renal oxidative nephrotoxicity, apoptosis and inflammation in rats by activating the Nrf2/ARE signaling pathway. Int. Immunopharmacol. 2017, 50, 107–120. [Google Scholar] [CrossRef] [PubMed]
Product | Compounds | Study Type | Subjects/ Cell Lines | Main Effects | Possible Mechanisms | Ref. |
---|---|---|---|---|---|---|
Antioxidant Activity | ||||||
Aged garlic extract | In vitro | Human endothelial cells | Protecting cells against oxidative stress | Inducing the expression of several antioxidant enzymes, HO-1 and GCLM subunit, through Nrf2- ARE pathway | [43] | |
Saponins | In vitro | Mouse-derived C2C12 myoblasts | Protecting cells against the growth inhibition and DNA damage induced by H2O2 | Scavenging intracellular reactive oxygen species | [44] | |
Anti-inflammatory Activity | ||||||
Ethyl linoleate | In vitro | Lipopolysaccharide-stimulated RAW 264.7 macrophages | Reducing the production of NO and prostaglandin E-2 | Down regulating the expression of iNOS and COX2 | [45] | |
Garlic 14-kDa protein | In vitro | Lipopolysaccharide-stimulated J774A.1 macrophages | Inhibiting the inflammatory mediators such as NO, TNF-α, and IL-1β | Inhibiting the transcription factor NF-κB signaling pathway | [46] | |
Aged garlic extract | In vivo | Apolipoprotein E-knockout mice | Inhibiting inflammation | Reducing the level of TNF-α and interleukin IL-1 receptor-associated kinase 4 Increasing the activity of AMPK in the liver | [47] | |
Allicin | In vivo | BALB/c mice | Protecting against the inflammatory response induced by schistosome infection | [48] | ||
Garlic tablets (equal to 2.5 g fresh garlic daily) | Clinical trial | 40 post-menopausal obese or overweight patients | Alleviating osteoarthritis | Reducing resistin | [49] | |
Antimicrobial Activity | ||||||
Garlic “Rosato” and “Caposele” | In vitro | Aspergillus versicolor, Penicillum citrinum and Penicillium expansum | Inhibiting the growth of bacteria | [53] | ||
Aged garlic extract | Allicin | In vitro | Burkholderia cepacian | Inhibiting the growth of bacteria | [54] | |
Garlic oil | In vitro | Staphylococcus aureus, Escherichia coli and Bacillus subtilis | Inhibiting the growth of bacteria | [50] | ||
In vitro | Penicillium funiculosum | Inhibiting the growth of bacteria | Penetrating into cells and organelles Destroying the cell structure Leading to the leakage of cytoplasm and macromolecules | [55] | ||
In vitro | Candida albicans | Disrupting the normal metabolism of bacteria | Inducing key genes involved in oxidative phosphorylation, the cell cycle, and protein processing in the endoplasmic reticulum | [56] | ||
Raw garlic | Clinical trial | 15 patients with H. pylori infection | Inhibiting Helicobacter pylori in the stomach | [57] | ||
Modulating Immune System | ||||||
Fresh garlic | Polysaccharides/ Fructan | In vitro | RAW 264.7 macrophages | Exerting immunomodulatory effect | Regulating the expressions of IL-6, IL-10, TNF-α, and interferon-γ | [58] |
Garlic oil | In vivo | Wistar rats | Normalizing several immunological parameters of rats, such as the serum total immunoglobulin concentration and T-cell subtype CD4+ Combination of garlic oil and levamisole could balance the T-helper 1/ T-helper 2 response | [59,60] | ||
Selenizing garlic polysaccharides | In vivo | 14-day-old chickens | Promoting lymphocyte proliferation Enhancing interferon-γ and IL-2 Increase the serum antibody titer | [61] | ||
Aged garlic extract | Clinical trial | 56 healthy human participants | Reducing the occurrence and severity of cold and flu Improving the immune system functions | [8] | ||
Cardiovascular Protection | ||||||
Aged garlic extract | In vitro | Isolated rat aortic rings | Leading to endothelial-dependent vasodilation | Stimulating the production of NO | [71] | |
Aged black garlic extract | Polyphenols | In vivo | Isolated hearts of male Sprague–Dawley rats | Relaxing coronary arteries before and after ischemia-reperfusion in rat Preventing the decrease of myocardial contractility | [90] | |
Aged garlic extract | S-1-propylenecysteine | In vivo | Spontaneous hypertension rats | Improving peripheral blood circulation Reducing the systolic blood pressure | [75] | |
Fermented garlic extract by Bacillus subtilis | In vivo | Spontaneous hypertension rats | Reducing the systolic blood pressure | Modulating the sGC-cGMP-PKG pathway | [76] | |
Fermented garlic extract | In vivo | Monocrotaline-induced pulmonary hypertension rats | Alleviating pulmonary hypertension | Decreasing the expression of vascular endothelial cell adhesion molecule-1 and MMP- 9Increasing the expression of PKG and eNOS | [77] | |
Garlic | Alliin | In vivo | Female Wistar albino rats | Increasing the activity of captopril on inhibiting ACE and hypertension | [72] | |
1.5% black garlic extract | In vivo | High-fat diet-fed male Sprague–Dawley rats | Modulating the metabolism of lipid and cholesterol Decreasing the levels of blood total lipids, triglyceride, and cholesterol | Reducing the mRNA expression of sterol regulatory element binding protein-1c | [80] | |
Raw garlic | Allyl methyl sulfide/Allyl methyl sulfoxide | In vivo | Male Sprague–Dawley rats | Reduce cardiac hypertrophy remodeling induced by isoproterenol | Increasing Na+/K+-ATPase protein level | [83] |
Raw garlic | In vivo | Streptomycin-induced diabetic rats | Protecting the heart function Activating sirtuin 3-manganese superoxide dismutase pathway | Deacetylating manganese superoxide dismutase | [84] | |
Garlic extract | In vivo | Insulin-resistant obese rats | Protecting heart rate variability, cardiac dysfunction, and mitochondrial dysfunction | [86] | ||
In vivo | Rat model of gentamicin-induced chronic renal failure | Protecting the heart tissue | Reducing oxidative stress Controlling Na+/K+-ATPase activity and Ca2+ levels | [87] | ||
Aged garlic extract | SAC | In vivo | Rats with myocardial dysfunction induced by isoproterenol | Protecting against cardiotoxicity | [88] | |
Aged garlic extract | In vivo | Apolipoprotein E-knockout mice | Inhibiting inflammatory response to prevent atherosclerosis | Reducing serum level of C-reactive protein and thromboxane B-2, protein level of TNF-α and IL-1 receptor-associated kinase 4 Increasing AMPK activity in the liver | [47] | |
In vivo | Apolipoprotein E-knockout mice | Inhibiting the vascular inflammation and lipid deposition in the early stage of atherosclerosis development | [91] | |||
High temperature and high pressure-processed garlic | In vivo | High-cholesterol diet-fed Sprague–Dawley rats | Reducing the levels of total cholesterol, low-density lipoprotein cholesterol and triglyceride | [79] | ||
Garlic | Cohort study | 30 patients with diabetic dyslipidemia | Decreasing the level of cholesterol and low-density lipoprotein Increase the level of high-density lipoprotein | [81] | ||
Aged garlic | Clinical trial | 41 patients with hypercholesterolemia | Reducing the activity of myeloperoxidase and lipid hydroperoxide in serum Decreasing the concentration of F2-isoprostanes in plasma and urine | [82] | ||
Enzymatic browning processed garlic | Clinical trial | 44 patients with hypertension | Reducing systolic blood pressure and diastolic blood pressure | [78] | ||
Anticancer Activity | ||||||
Garlic extract | In vitro | Bladder cancer EJ cells | Inducing G2/M-phase cell cycle arrest Inhibiting cell growth Inhibiting cell migration and invasion | Activating the ATM pathway and CHK2; Inhibiting the expression of MMP-9 Reducing the binding activity of transcription factors AP-1, specificity protein-1 and NF-κB motifs Increasing the expression of heat shock protein A6 | [113] | |
Aged garlic extract | In vitro | Colorectal cancer cell lines (SW480 and SW620) ECV304 cells and the transformed rat lung endothelial cells | Decreasing invasive activity Inhibiting cell proliferation Decreasing invasive activity Inhibiting the tube formation of endothelial cells | Inhibiting cell motility | [124] | |
In vitro | DLD-1 human colon cancer cells (ATCC CCL-221) | Inhibiting cell proliferation | Down regulating the expression of cyclin B1 and CDK1 Inhibiting of activation of NF-κB | [121] | ||
Crude garlic extract | Lipid bioactive compounds | In vitro | Human liver cancer (Hep-G2) Colon cancer (Caco-2) Prostate cancer (PC-3) Breast cancer (MCF-7) Mouse macrophage cell (TIB-71) lines | Inhibiting the growth rate of Hep-G2, PC-3, MCF-7, and TIB-71 cells by 80%–90% at 72 h (P < 0.05). | Inhibiting cell proliferation Inducing cell cycle arrest Inducing apoptosis | [112] |
Allicin | In vitro | Human gastric adenocarcinoma cell line | Inhibiting cell proliferation | Inducing cell cycle arrest at S-phase | [18] | |
DATS | In vitro | Human gastric carcinoma cell line (SGC-7901) | Inhibiting cell proliferation Blocking cell cycle Increasing apoptotic cell death | Accumulating Bax, p53, and cytochrome C and decreasing the expression of Bcl-2 | [114] | |
In vitro | Human breast cancer cell line (MDA-MB-231) | Inhibiting angiogenesis | [125] | |||
Z-ajoene | In vitro | Glioblastoma multiforme cells | Inhibiting the growth of the cancer stem cells population | [119] | ||
In vitro | Human breast cancer cells (MDA-MB-231) | Inhibiting cell growth Inducing cell apoptosis | Targeting the folding of proteins in the endoplasmic reticulum of cancer cells | [120] | ||
SAC | In vitro | Human epithelial ovarian cancer cell line (A2780) | Inhibiting cell proliferation Inducing G1/S-phase cell cycle arrest Increasing apoptosis Reducing the migration of cells | Decreasing the expression of pro-caspase-3, Parp-1 Bcl-2 and increasing active caspase-3 and Bax Reducing the expression of Wnt5a, phosphorylation protein kinase B and c-Jun proteins | [115] | |
SPRC | In vitro | Human pancreatic ductal adenocarcinoma cells (Panc-1) | Inhibiting cell proliferation Inducing apoptosis | Inducing G2/M-phase cell cycle arrest Regulating the level of JNK protein | [116] | |
SAMC | In vitro | Human colorectal carcinoma cell line (SW620) | Inhibiting cell proliferation Inducing cell apoptosis | Regulating JNK and p38 MAPK pathways | [118] | |
In vitro | Hepatoma cell lines (Hep3B and Huh-7) | Reducing the cell viability Shortening the S phase and increasing the G0/G1 phase | [117] | |||
Alliin | In vitro | Gastric adenocarcinoma cells | Regulating cell apoptosis | Generating reactive oxygen species Decreasing mitochondrial membrane potential by Bax/Bcl-2 Up-regulating cytochrome C | [18] | |
Aged garlic extract | In vivo | Adult male Wister albino rats treated with cisplatin | Improving the renal histological, ultrastructural and biochemical changes, such as hemorrhage, glomerular atrophy, tubular necrosis and degeneration | [128] | ||
In vivo | Fibrosarcoma tumors implanted BALB/c mice | Improving the immune responses of mice to fibrosarcoma Inhibiting tumor growth | Increasing the ratio of CD4+/CD8+ Producing interferon-γ in splenocytes | [131] | ||
Garlic and lemon aqueous extract | In vivo | BALB/c mice xenograft model of breast cancer EMT6/P cells | Reducing tumor size Inhibiting angiogenesis Inducing apoptosis Activating the immune system | Inhibiting the expression of vascular endothelial growth factor Increasing interferon-γ, IL-2, and IL-4 levels | [126] | |
Allicin | In vivo | Female Swiss albino mice | Alleviating liver injury induced by tamoxifen | Changing the decrease of superoxide dismutase, glutathione and total protein and the increase of aspartate aminotransferase, alkaline phosphatase and alanine aminotransferase levels | [129] | |
DADS | In vivo | FVB/N mice | Preventing colorectal tumorigenesis induced by azoxymethane and dextran sulfate | Inhibiting inflammation Inhibiting glycogen-synthase kinase-3β Reducing the nuclear localization of NF-κB | [132] | |
DATS | In vivo | Female BALB/c-nude mouse xenograft model of human gastric carcinoma SGC-7901 cells | Inhibiting tumor growth Promoting tumor apoptosis | Regulating the expressions of MMP-9 and E-cadherin protein | [114] | |
SPRC | In vivo | Xenograft model of pancreatic ductal adenocarcinoma Panc-1 cells | Inhibiting tumor growth | Regulating the level of JNK protein | [116] | |
SAMC | In vivo | Mouse xenograft model of hepatoma Huh-7 cells | Inhibiting tumor growth | Interacting with the Wnt-pathway co-receptor LRP6 on the cell membrane | [117] | |
Raw, crushed garlic | Cohort study | 17 volunteers from Beltsville, Maryland | Up-regulating seven genes including AHR, ARNT, HIF1A, JUN, NFAM1, OSM and REL | [123] | ||
Garlic extract | Cohort study | Patients who received chemotherapy for hematological malignancies | Protective effect on febrile neutropenia in lower-risk subgroup | [130] | ||
Hepatoprotective Activity | ||||||
Black garlic extract | In vitro | Rat clone-9 hepatocytes | Inhibiting apoptosis, lipid peroxidation, oxidative stress, and inflammation | [136] | ||
Garlic extract | In vivo | Wistar rats | Attenuating the liver damage induced by alloxan Improving plasma biochemical factors of hepatic function, such as urea, creatinine, aspartate transaminase, and alanine transaminase | [137] | ||
Single clove garlic extract | In vivo | Male rabbits | Protecting against CCl4-induced acute liver injury | [38] | ||
LAFGE | In vivo | C57/BL6 J mice | Reducing the liver lipid level Ameliorating the hepatic steatosis | [142] | ||
In vivo | rats | Inhibiting liver cell apoptosis Protecting liver from acetaminophen-induced liver injury | Suppressing MAPK phosphorylation Down regulating p53 | [143] | ||
Garlic oil | In vivo | 1,3-Dichloro-2-propanol-treated rats | Protecting liver | Enhancing the activities of hepatic antioxidant enzymes Blocking metabolic activation of 1, 3-dichloro-2-propanol Reducing the apoptosis in liver | [139] | |
DADS | In vivo | Wistar rats | Protecting mice from nonalcoholic fatty liver disease induced by long-term high-fat diet. | Reducing the release of pro-inflammatory cytokines in the liver Increasing antioxidant activity by inhibiting the expression of cytochrome P450 2E1 | [141] | |
LAFGE | Clinical trial | 36 adults with mildly high level of serum gamamyl glutamyl transpeptiase | Improving the levels of gamamyl glutamyl transpeptias and alanine aminotransferase without adverse effects | [144] | ||
Digestive System Protection | ||||||
Black garlic extract | In vitro | Small intestine | Stimulating gastrointestinal peristalsis Promoting gastrointestinal emptying and facilitates defecation. | [146] | ||
DADS DAS | In vitro | Interferon-γ-stimulated intestinal cells | Reducing interferon-inducible protein-10, IL-6 Inhibiting NO and the expression of STAT-1 | [70] | ||
In vivo | Male ICR mice | Improving the colitis induced by dinitrobenzenesulfonic acid | [70] | |||
Garlic and cabbage extract | In vivo | Sprague–Dawley rats | Reducing the length of gastric ulcer, the total gastric acid, gastric juice volume, total bacteria count, and histopathological changes caused by aspirin Improving the pH value of gastric juice | [147] | ||
Aged garlic extract | In vivo | Male albino rats | Healing the gastric mucosal injury induced by indomethacin Reducing the total microbial amount in stomach | [148] | ||
In vivo | Male Wistar rats | Preventing the indomethacin-induced ulcer | Reducing oxidative stress Elevating the level of prostaglandin E-2, glutathione, and NO in gastric tissue | [149] | ||
Allicin | In vivo | Dextran sulfate sodium-induced colitis mice | Alleviating the ulcerative colitis induced by dextran sulfate sodium | Inhibiting the activation of AP-1/NF-κB/signal transducer and activator of transcription-1 Inhibiting the phosphorylation of p38, JNK, and extracellular signal-regulated kinase 1/2 -regulated PPAR-γ | [150] | |
Raw garlic | Clinical trial | 15 patients with H. pylori infection | Decreasing the bacterial urease activity Reducing the residing of Helicobacter pylori in the stomach | [57] | ||
Anti-Diabetic Activity | ||||||
Garlic | In vivo | Diabetic rats | Protecting against diabetic retinopathy Improving weight, blood glucose, and morphological changes of retinal tissue | [152] | ||
Clinical trial | 768 patients with type 2 diabetes mellitus | Reducing fructosamine and glycosylated hemoglobin | [154] | |||
Anti-Obesity Activity | ||||||
LAFGE | In vivo | High-fat diet-fed male C57BL/6J mice | Reducing the weight Reducing the epididymal, retroperitoneal, and mesenteric adipose tissue mass | Inhibiting the lipogenesis by down-regulating the mRNA and protein expression of PPAR-γ, C/EBPα, and lipogenic proteins | [9] | |
Methanolic extract of black garlic | In vivo | High-fat diet-fed male Wistar rats | Reducing the weight Regulating lipid metabolism | Upregulating the expression of AMPK, forkhead box protein O1, perilipin, and adiponectin in the adipose tissue Down-regulating cluster of differentiation 36, plasminogen activator inhibitor 1, resistin, and TNF-α | [156] | |
Garlic oil | In vivo | High-fat diet-fed male Sprague–Dawley rats | Counteracting the influence of high-fat diet on the body weight and adipose tissue weight | [155] | ||
Neuroprotection | ||||||
Aged garlic extract | FruArg | In vitro | Lipopolysaccharide-activated murine BV-2 microglial cells | Alleviating neuroinflammation | Inhibiting the production of NO Regulating the expression of multiple protein targets related to oxidative stress | [157] |
Garlic extract | In vivo | Female Wistar rats | Reducing the concentration of Pb in the blood and brain Preventing the Pb-induced apoptosis of neurons | [159] | ||
Aged garlic extract | In vivo | Adult male Wistar rats | Attenuating the damage of working memory | Improving the loss of cholinergic neurons Increasing the level of vesicular glutamate transporter 1 and glutamate decarboxylase in the hippocampal area | [161] | |
Ethanol extract of garlic | In vivo | Diabetic Wistar rats | Improving memory | Increasing the activity of Na+/K+ ATPase, Ca2+ ATPase, and glutamine synthetase in the hippocampus | [162] | |
Z-ajoene | In vivo | Male gerbils | Preventing I/R-induced delayed neuronal death and gliosis region of the hippocampus | Reducing lipid peroxidation in the CA1 | [15] | |
SAC | In vivo | Male albino Wistar rats | Ameliorating the cognitive impairment | Reducing oxidative stress, neuroinflammation, astrogliosis, and acetylcholinesterase activity | [164] | |
Renal Protection | ||||||
Aqueous extract of garlic | In vivo | Type 1 diabetic rats | Reducing the oxidative stress in the kidneys | [165] | ||
In vivo | Wistar rats | Improving the renal plasma biochemical factors induced by alloxan | [137] | |||
DATS | In vivo | Male albino rats | Protecting the kidney from oxidative stress injury induced by As | Activating the Nrf2-ARE pathway | [166] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. https://doi.org/10.3390/foods8070246
Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, Mavumengwana V, Li H-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods. 2019; 8(7):246. https://doi.org/10.3390/foods8070246
Chicago/Turabian StyleShang, Ao, Shi-Yu Cao, Xiao-Yu Xu, Ren-You Gan, Guo-Yi Tang, Harold Corke, Vuyo Mavumengwana, and Hua-Bin Li. 2019. "Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.)" Foods 8, no. 7: 246. https://doi.org/10.3390/foods8070246
APA StyleShang, A., Cao, S. -Y., Xu, X. -Y., Gan, R. -Y., Tang, G. -Y., Corke, H., Mavumengwana, V., & Li, H. -B. (2019). Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods, 8(7), 246. https://doi.org/10.3390/foods8070246