Leftover Food as a Sustainable Source of Astaxanthin Through Fermentation Using Phaffia rhodozyma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Raw Material and Its Pretreatment
2.3. Characterization of Raw Material
2.3.1. pH and Moisture
2.3.2. Dietary Fiber, Ash, and Protein
2.3.3. Total Lipids and FAMEs
2.3.4. Reducing Sugars
2.4. Cultivation of Phaffia rhodozyma
2.5. Direct Fermentation
2.5.1. Upstream Processing
2.5.2. Downstream Processing
2.6. Quantification of Astaxanthin Using HPLC
2.7. DPPH Assay
2.8. Statistical Analysis
3. Results
3.1. Characterization of Raw Materials
3.1.1. Physicochemical Properties
3.1.2. Determination of the Fatty Acid Profile
3.2. Trends of Single and Total Reducing Sugars During Fermentation
3.3. Astaxanthin Production
3.4. Antioxidant Activity of the Fermentation Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A Review of Its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Donoso, A.; González-Durán, J.; Muñoz, A.A.; González, P.A.; Agurto-Muñoz, C. Therapeutic Uses of Natural Astaxanthin: An Evidence-Based Review Focused on Human Clinical Trials. Pharmacol. Res. 2021, 166, 105479. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Lim, J.W.; Kim, H. Astaxanthin Inhibits Helicobacter Pylori-Induced Inflammatory and Oncogenic Responses in Gastric Mucosal Tissues of Mice. J. Cancer Prev. 2020, 25, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak, B.; Szulc, P. Astaxanthin for the Food Industry. Molecules 2021, 26, 2666. [Google Scholar] [CrossRef]
- Hamdi, M.; Nasri, R.; Dridi, N.; Li, S.; Nasri, M. Development of Novel High-Selective Extraction Approach of Carotenoproteins from Blue Crab (Portunus segnis) Shells, Contribution to the Qualitative Analysis of Bioactive Compounds by HR-ESI-MS. Food Chem. 2020, 302, 125334. [Google Scholar] [CrossRef]
- Šimat, V.; Rathod, N.B.; Čagalj, M.; Hamed, I.; Generalić Mekinić, I. Astaxanthin from Crustaceans and Their Byproducts: A Bioactive Metabolite Candidate for Therapeutic Application. Mar. Drugs 2022, 20, 206. [Google Scholar] [CrossRef]
- Alesci, A.; Salvo, A.; Lauriano, E.R.; Gervasi, T.; Palombieri, D.; Bruno, M.; Pergolizzi, S.; Cicero, N. Production and Extraction of Astaxanthin from Phaffia rhodozyma and Its Biological Effect on Alcohol-Induced Renal Hypoxia in Carassius auratus. Nat. Prod. Res. 2015, 29, 1122–1126. [Google Scholar] [CrossRef]
- Dong, S.; Huang, Y.; Zhang, R.; Wang, S.; Liu, Y. Four Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis. Sci. World J. 2014, 2014, 694305. [Google Scholar] [CrossRef]
- Tuan Harith, Z.; Mohd Sukri, S.; Remlee, N.F.S.; Mohd Sabir, F.N.; Zakaria, N.N.A. Effects of Dietary Astaxanthin Enrichment on Enhancing the Colour and Growth of Red Tilapia, Oreochromis sp. Aquac. Fish. 2024, 9, 52–56. [Google Scholar] [CrossRef]
- Jiang, G.-L.; Zhou, L.-Y.; Wang, Y.-T.; Zhu, M.-J. Astaxanthin from Jerusalem Artichoke: Production by Fed-Batch Fermentation Using Phaffia rhodozyma and Application in Cosmetics. Process Biochem. 2017, 63, 16–25. [Google Scholar] [CrossRef]
- Ni, H.; Chen, Q.; He, G.; Wu, G.; Yang, Y. Optimization of Acidic Extraction of Astaxanthin from Phaffia rhodozyma. J. Zhejiang Univ. Sci. B 2008, 9, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, Y. Utilization of Meat and Bone Meal for Yeast Fermentation to Produce Astaxanthin. Fermentation 2023, 9, 630. [Google Scholar] [CrossRef]
- United Nations Environment Program. Food Waste Index Report 2021. 2021. Available online: https://www.unep.org/resources/report/unep-food-waste-index-report-2021 (accessed on 29 March 2024).
- Andrews, L.; Kerr, G.; Pearson, D.; Mirosa, M. The attributes of leftovers and higher-order personal values. Br. Food J. 2018, 120, 1965–1979. [Google Scholar] [CrossRef]
- Aloysius, N.; Ananda, J.; Mitsis, A.; Pearson, D. Why People Are Bad at Leftover Food Management? A Systematic Literature Review and a Framework to Analyze Household Leftover Food Waste Generation Behavior. Appetite 2023, 186, 106577. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W.; Latimer, G. AOAC Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists Arlington: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Costa, R.; Beccaria, M.; Grasso, E.; Albergamo, A.; Oteri, M.; Dugo, P.; Fasulo, S.; Mondello, L. Sample Preparation Techniques Coupled to Advanced Chromatographic Methods for Marine Organisms Investigation. Anal. Chim. Acta 2015, 875, 41–53. [Google Scholar] [CrossRef]
- Tardiolo, G.; Nicolò, M.S.; Drago, C.; Genovese, C.; Fava, G.; Gugliandolo, C.; D’Antona, N. Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Nannochloropsis oculata. Molecules 2023, 28, 6846. [Google Scholar] [CrossRef]
- Miller, M.W.; Yoneyama, M.; Soneda, M. Phaffia, a New Yeast Genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bacteriol. 1976, 26, 286–291. [Google Scholar] [CrossRef]
- Guo, X.; Li, X.; Xiao, D. Optimization of Culture Conditions for Production of Astaxanthin by Phaffia rhodozyma. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; IEEE: Chengdu, China, 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Y.; Zhao, C.; Zhou, P.; Yu, L. Analysis and Identification of Astaxanthin and Its Carotenoid Precursors from Xanthophyllomyces dendrorhous by High-Performance Liquid Chromatography. Z. Naturforsch. C 2010, 65, 489–494. [Google Scholar]
- Costa, R.; Albergamo, A.; Pellizzeri, V.; Dugo, G. Phytochemical Screening by LC-MS and LC-PDA of Ethanolic Extracts from the Fruits of Kigelia africana (Lam.) Benth. Nat. Prod. Res. 2017, 31, 1397–1402. [Google Scholar] [CrossRef]
- El-Ghany, M.N.; Hamdi, S.A.; Elbaz, R.M.; Aloufi, A.S.; El Sayed, R.R.; Ghonaim, G.M.; Farahat, M.G. Development of a Microbial-Assisted Process for Enhanced Astaxanthin Recovery from Crab Exoskeleton Waste. Fermentation 2023, 9, 505. [Google Scholar] [CrossRef]
- Cho, K.M.; Lim, H.-J.; Kim, M.-S.; Kim, D.S.; Hwang, C.E.; Nam, S.H.; Joo, O.S.; Lee, B.W.; Kim, J.K.; Shin, E.-C. Time Course Effects of Fermentation on Fatty Acid and Volatile Compound Profiles of Cheonggukjang Using New Soybean Cultivars. J. Food Drug Anal. 2017, 25, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Bramkamp, M. Fluidity Is the Way to Life: Lipid Phase Separation in Bacterial Membranes. EMBO J. 2022, 41, e110737. [Google Scholar] [CrossRef]
- Stoklosa, R.J.; Johnston, D.B.; Nghiem, N.P. Phaffia rhodozyma Cultivation on Structural and Non-Structural Sugars from Sweet Sorghum for Astaxanthin Generation. Process Biochem. 2019, 83, 9–17. [Google Scholar] [CrossRef]
- Naccari, C.; Ginestra, G.; Micale, N.; Palma, E.; Galletta, B.; Costa, R.; Vadala’, R.; Nostro, A.; Cristani, M. Binary Combinations of Essential Oils: Antibacterial Activity Against Staphylococcus Aureus, and Antioxidant and Anti-Inflammatory Properties. Molecules 2025, 30, 438. [Google Scholar] [CrossRef]
- Vadalà, R.; Lo Vecchio, G.; Rando, R.; Leonardi, M.; Cicero, N.; Costa, R. A Sustainable Strategy for the Conversion of Industrial Citrus Fruit Waste into Bioethanol. Sustainability 2023, 15, 9647. [Google Scholar] [CrossRef]
- Joshi, S.M.; Gogate, P.R. Intensifying the Biogas Production from Food Waste Using Ultrasound: Understanding into Effect of Operating Parameters. Ultrason. Sonochem. 2019, 59, 104755. [Google Scholar] [CrossRef] [PubMed]
- Abedi, S.; Khaleghi, M.; Naeimi, A. Enhancing Biogas Production Using Ultrasound-Assisted Thermal Pre-Treatment Technology for Anaerobic Co-Digestion of Sewage Sludge and Microalgae Substrates. Adv. Environ. Technol. 2024, 10, 171–186. [Google Scholar] [CrossRef]
- Akbari, M.; Razavi, S.H.; Khodaiyan, F.; Blesa, J.; Esteve, M.J. Fermented Corn Bran: A by-Product with Improved Total Phenolic Content and Antioxidant Activity. LWT 2023, 184, 115090. [Google Scholar] [CrossRef]
- Dursun, D.; Dalgıç, A.C. Optimization of Astaxanthin Pigment Bioprocessing by Four Different Yeast Species Using Wheat Wastes. Biocatal. Agric. Biotechnol. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Villegas-Méndez, M.Á.; Papadaki, A.; Pateraki, C.; Balagurusamy, N.; Montañez, J.; Koutinas, A.A.; Morales-Oyervides, L. Fed-Batch Bioprocess Development for Astaxanthin Production by Xanthophyllomyces Dendrorhous Based on the Utilization of Prosopis sp. Pods Extract. Biochem. Eng. J. 2021, 166, 107844. [Google Scholar] [CrossRef]
Sample | Physicochemical Properties | ||||||
---|---|---|---|---|---|---|---|
pH | Moisture [%] | Dry Residue | Ashes | Total Lipids [%] | Protein Content | Dietary Fiber | |
LF1 (n = 5) mean ± st. dev | 6.44 ± 0.4 a | 6.91 ± 0.7 a | 3.91 ± 0.04 a | 1.41 ± 0.09 a | 10.1 ± 1.1 a | 11.5 ± 0.9 a | 7.52 ± 0.6 a |
LF2 (n = 5) mean ± st. dev | 5.57 ± 0.8 a | 7.03 ± 0.9 a | 2.97 ± 0.09 a | 1.22 ± 0.05 a | 8.4 ± 0.6 a | 10.8 ± 0.7 a | 5.43 ± 0.6 a |
Fermentation Steps [Hours] | SFA [%] | MUFA [%] | PUFA [%] | |||
---|---|---|---|---|---|---|
LF1 (N = 5) Mean ± St. Dev | LF2 (N = 5) Mean ± St. Dev | LF1 (N = 5) Mean ± St. Dev | LF2 (N = 5) Mean ± St. Dev | LF1 (N = 5) Mean ± St. Dev | LF2 (N = 5) Mean ± St. Dev | |
0 | 20.5 ± 0.91 a | 20.4 ± 1.03 a | 33.7 ± 1.61 a | 33.6 ± 1.81 a | 45.7 ± 0.09 a | 45.7 ± 2.22 a |
48 | 20.4 ± 0.96 a | 20.4 ± 1.03 a | 36.6 ± 1.72 b | 36.4 ± 1.69 b | 43.1 ± 1.13 b | 43.0 ± 2.22 b |
96 | 20.5 ± 0.46 a | 20.4 ± 1.44 a | 39.4 ± 1.62 c | 39.3 ± 1.83 c | 40.6 ± 1.09 c | 40.5 ± 2.22 c |
150 | 20.5 ± 1.61 a | 20.4 ± 2.01 a | 42.3 ± 1.65 d | 42.5 ± 1.86 d | 37.7 ± 0.09 d | 37.6 ± 2.25 d |
168 | 20.5 ± 1.12 a | 20.2 ± 1.18 a | 43.7 ± 1.16 d | 43.6 ± 1.94 d | 36.7 ± 1.21 d | 36.6 ± 2.13 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadalà, R.; Di Salvo, E.; De Maria, L.; Lo Vecchio, G.; Bartolomeo, G.; De Pasquale, R.; Genovese, C.; Cicero, N.; Costa, R. Leftover Food as a Sustainable Source of Astaxanthin Through Fermentation Using Phaffia rhodozyma. Foods 2025, 14, 1232. https://doi.org/10.3390/foods14071232
Vadalà R, Di Salvo E, De Maria L, Lo Vecchio G, Bartolomeo G, De Pasquale R, Genovese C, Cicero N, Costa R. Leftover Food as a Sustainable Source of Astaxanthin Through Fermentation Using Phaffia rhodozyma. Foods. 2025; 14(7):1232. https://doi.org/10.3390/foods14071232
Chicago/Turabian StyleVadalà, Rossella, Eleonora Di Salvo, Laura De Maria, Giovanna Lo Vecchio, Giovanni Bartolomeo, Rita De Pasquale, Claudia Genovese, Nicola Cicero, and Rosaria Costa. 2025. "Leftover Food as a Sustainable Source of Astaxanthin Through Fermentation Using Phaffia rhodozyma" Foods 14, no. 7: 1232. https://doi.org/10.3390/foods14071232
APA StyleVadalà, R., Di Salvo, E., De Maria, L., Lo Vecchio, G., Bartolomeo, G., De Pasquale, R., Genovese, C., Cicero, N., & Costa, R. (2025). Leftover Food as a Sustainable Source of Astaxanthin Through Fermentation Using Phaffia rhodozyma. Foods, 14(7), 1232. https://doi.org/10.3390/foods14071232