Impact of Rural Ageing on Non-Grain Agricultural Production in China: An Analysis Based on Food Security Strategy
Abstract
:1. Introduction
2. Analytical Framework
2.1. Food Security Strategy in China
2.2. Analytical Framework for the Impact of Rural Ageing on NGAP
3. Materials and Methods
3.1. Model and Variables
3.1.1. Benchmark Model
3.1.2. Mediation Model
3.2. Data Sources and Profiles
4. Results
4.1. Spatial-Temporal Characteristics
4.2. Empirical Testing
4.2.1. Benchmark Regression
4.2.2. Robustness Test
4.2.3. Heterogeneity Analysis
4.2.4. Mediating Effect Test
5. Discussion
5.1. Rural Ageing and Grain Production in China
5.2. Policy Implications for China’s Food Security
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, P. Delivering food security without increasing pressure on land. Glob. Food Secur. 2013, 2, 18–23. [Google Scholar]
- Floros, J.D.; Newsome, R.; Fisher, W.; Barbosa–Cánovas, G.V.; Chen, H.; Dunne, C.P.; German, J.B.; Hall, R.L.; Heldman, D.R.; Karwe, M.V.; et al. Feeding the world today and tomorrow: The importance of food science and technology: An IFT scientific review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 572–599. [Google Scholar] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar]
- FSIN. Global Network Against Food Crises. In Global Report on Food Crises (GRFC) 2023; FSIN: Rome, Italy, 2023. [Google Scholar]
- United Nations (UN). The Sustainable Development Goals Report 2023; United Nations (UN): New York, NY, USA, 2023. [Google Scholar]
- Aryal, J.P.; Manchanda, N.; Sonobe, T. Expectations for household food security in the coming decades: A global scenario. In Future Foods: Global Trends, Opportunities, and Sustainability Challenges; Bhat, R., Ed.; Academic Press: London, UK, 2021; pp. 107–131. [Google Scholar]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar]
- Li, Y.; Zhang, W.; Ma, L.; Wu, L.; Shen, J.; Davies, W.J.; Oenema, O.; Zhang, F.; Dou, Z. An analysis of China’s grain production: Looking back and looking forward. Food Energy Secur. 2014, 3, 19–32. [Google Scholar]
- Lai, Z.; Chen, M.; Liu, T. Changes in and prospects for cultivated land use since the reform and opening up in China. Land Use Policy 2020, 97, 104781. [Google Scholar]
- Ghose, B. Food security and food self–sufficiency in China: From past to 2050. Food Energy Secur. 2014, 3, 86–95. [Google Scholar]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar]
- Huang, J.; Wei, W.; Qi, C.; Wei, X. The prospects for China’s food security and imports: Will China starve the world via imports? J. Integr. Agric. 2017, 16, 2933–2944. [Google Scholar]
- National Bureau of Statistics of China (NBS). China Statistical Yearbook (2023); China Statistics Press: Beijing, China, 2024.
- Nolte, K.; Ostermeier, M. Labor market effects of large-scale agricultural investment: Conceptual considerations and estimated employment effects. World Dev. 2017, 98, 430–446. [Google Scholar] [CrossRef]
- Charania, I.; Li, X. Smart farming: Agriculture’s shift from a labor intensive to technology native industry. Internet Things 2020, 9, 100142. [Google Scholar] [CrossRef]
- Lu, J.; Guo, F.; Chen, J.; Chen, Y. The institutional design of rural eldercare in the new era: Historical context, realistic dilemma and development path. J. China Agric. Univ. Soc. Sci. 2021, 38, 113–122. [Google Scholar]
- He, C.; Ye, J. Lonely sunsets: Impacts of rural–urban migration on the left–behind elderly in rural China. Popul. Space Place 2014, 20, 352–369. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J. Practices for rural population aging in China: Land-based pension. Habitat Int. 2024, 151, 103136. [Google Scholar] [CrossRef]
- He, Y.; Xie, H.; Peng, C. Analyzing the behavioral mechanism of farmland abandonment in the hilly mountainous areas in China from the perspective of farming household diversity. Land Use Policy 2020, 99, 104826. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Guo, Y. Exploring land system reform for demographic transition in rural China. Land Use Policy 2024, 147, 107355. [Google Scholar] [CrossRef]
- Su, G.; Chen, Z.; Li, W.; Xia, X. Study on the impact of the rural population aging on agricultural total factor productivity in China. Agriculture 2024, 14, 2175. [Google Scholar] [CrossRef]
- Liao, L.; Long, H.; Gao, X.; Ma, E. Effects of land use transitions and rural aging on agricultural production in China’s farming area: A perspective from changing labor employing quantity in the planting industry. Land Use Policy 2019, 88, 104152. [Google Scholar] [CrossRef]
- Qiu, T.; Peng, C. The impact of aging agricultural population on farmland allocation and grain production decision: Evidence from the China Household Finance Survey. China Rural Surv. 2023, 4, 129–150. [Google Scholar]
- Wang, J.; Guo, M.; Ma, Y. Impact of urban–rural income gap and rural population aging on technical efficiency of grain production in China. J. Zhejiang Sci.-Tech. Univ. Soc. Sci. 2021, 46, 1–8. [Google Scholar]
- Han, D. Impact of the ageing of agricultural labor force in the process of urbanization on grain production. Food Econ. Res. 2020, 6, 51–61. [Google Scholar]
- Chen, S.; Zhang, Y.; Zhu, Y.; Ma, L.; Zhao, J. The battle of crops: Unveiling the shift from grain to non–grain use of farmland in China? Int. J. Agric. Sustain. 2023, 21, 2262752. [Google Scholar] [CrossRef]
- Li, H.; Zhou, X.; Tang, M.; Guo, L. Impact of population aging and renewable energy consumption on agricultural green total factor productivity in rural China: Evidence from panel var approach. Agriculture 2022, 12, 715. [Google Scholar] [CrossRef]
- Popescu, A.; Dinu, T.A.; Stoian, E.; Şerban, V. Population occupied in agriculture and agricultural production value in Romania, 2008–2020. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2022, 22, 503–514. [Google Scholar]
- Li, M.; Sicular, T. Aging of the labor force and technical efficiency in crop production: Evidence from Liaoning province, China. China Agric. Econ. Rev. 2013, 5, 342–359. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Hu, Z. Establishing an institutional framework and policy system by giving priority to the development of agriculture and rural areas. Chin. Rural Econ. 2019, 12, 16–28. [Google Scholar] [CrossRef]
- Luo, X.; Lu, X.; Zhang, Z.; Pan, Y. Regional differences and rural public expenditure cyclicality: Evidence from transitory and persistent shocks in China. Ann. Reg. Sci. 2020, 65, 281–318. [Google Scholar] [CrossRef]
- Olen, N.B.; Roger, F.; Brady, M.V.; Larsson, C.; Andersson, G.K.; Ekroos, J.; Caplat, P.; Smith, H.G.; Dänhardt, J.; Clough, Y. Effects of farm type on food production, landscape openness, grassland biodiversity, and greenhouse gas emissions in mixed agricultural–forestry regions. Agric. Syst. 2021, 189, 103071. [Google Scholar] [CrossRef]
- Marx, K. The Critique of The Political Economy; E–artnow: Prague, Czech Republic, 2019. [Google Scholar]
- Sun, M. The old-age agriculture in China’s rural areas and its social function. J. Nanjing Agric. Univ. Soc. Sci. 2020, 3, 79–89. [Google Scholar]
- Xu, D.; Guo, S.; Xie, F.; Liu, S.; Cao, S. The impact of rural laborer migration and household structure on household land use arrangements in mountainous areas of Sichuan Province, China. Habitat Int. 2017, 70, 72–80. [Google Scholar]
- Wang, S.; Bai, X.; Zhang, X.; Reis, S.; Chen, D.; Xu, J.; Gu, B. Urbanization can benefit agricultural production with large–scale farming in China. Nat. Food 2021, 2, 183–191. [Google Scholar] [PubMed]
- Arellano, M. Panel Data Econometrics; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Liu, Y.; Zhang, Z.; Wang, J. Regional differentiation and comprehensive regionalization scheme of modern agriculture in China. Acta Geogr. Sin. 2018, 73, 203–219. [Google Scholar]
- Liang, X.; Jin, X.; Liu, J.; Yin, Y.; Gu, Z.; Zhang, J.; Zhou, Y. Formation mechanism and sustainable productivity impacts of non–grain croplands: Evidence from Sichuan Province, China. Land Degrad. Dev. 2023, 34, 1120–1132. [Google Scholar]
- Guo, Y.; Wang, J. Identifying the determinants of nongrain farming in China and its implications for agricultural development. Land 2021, 10, 902. [Google Scholar] [CrossRef]
- Wang, J.; Dai, C. Identifying the spatial–temporal pattern of cropland’s non-grain production and its effects on food security in China. Foods 2022, 11, 3494. [Google Scholar] [CrossRef]
- Cheng, X.; Tao, Y.; Huang, C.; Yi, J.; Yi, D.; Wang, F.; Tao, H.; Xi, H.; Ou, W. Unraveling the causal mechanisms for non–grain production of cultivated land: An analysis framework applied in Liyang, China. Land 2022, 11, 1888. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, L.; Hou, J.; Liu, Y. Testing and application of the mediating effects. Acta Psychol. Sin. 2004, 36, 614–620. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar]
- Liu, J.; Jin, X.; Xu, W.; Wang, S.; Zhou, Y. Characteristic evolution and trend prediction of cultivated land landscape fragmentation in China from 1990 to 2020. Acta Geogr. Sin. 2023, 78, 2163–2185. [Google Scholar]
- OECD/WHO. Health at a Glance: Asia/Pacific 2020: Measuring Progress Towards Universal Health Coverage; OECD Publishing: Paris, France, 2020. [Google Scholar]
- Huang, Q.; Xie, Y.; Zhang, X. The demographic transition and rural industrialization in China. Econ. Dev. Cult. Change 2024, 72, 1863–1892. [Google Scholar]
- Dou, X.; Liu, Y. Elderly migration in China: Types, patterns, and determinants. J. Appl. Gerontol. 2017, 36, 751–771. [Google Scholar]
- Liu, J.; Fang, Y.; Wang, G.; Liu, B.; Wang, R. The aging of farmers and its challenges for labor–intensive agriculture in China: A perspective on farmland transfer plans for farmers’ retirement. J. Rural Stud. 2023, 100, 103013. [Google Scholar]
- Zou, B.; Mishra, A.K.; Luo, B. Aging population, farm succession, and farmland usage: Evidence from rural China. Land Use Policy 2018, 77, 437–445. [Google Scholar] [CrossRef]
- Chen, T.; Rizwan, M.; Abbas, A. Exploring the role of agricultural services in production efficiency in Chinese agriculture: A case of the socialised agricultural service system. Land 2022, 11, 347. [Google Scholar]
- Ma, L.; Long, H.; Tu, S.; Zhang, Y.; Zheng, Y. Farmland transition in China and its policy implications. Land Use Policy 2020, 92, 104470. [Google Scholar]
- Yang, T.; Chandio, A.A.; Zhang, A.; Liu, Y. Do farm subsidies effectively increase grain production? Evidence from major grain-producing regions of China. Foods 2023, 12, 1435. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Sun, D.; Zhou, Y. Grain subsidy, liquidity constraints and food security—Impact of the grain subsidy program on the grain-sown areas in China. Food Policy 2015, 50, 114–124. [Google Scholar]
- Yu, X.; Liu, C.; Wang, H.; Feil, J.H. The impact of COVID-19 on food prices in China: Evidence of four major food products from Beijing, Shandong and Hubei Provinces. China Agric. Econ. Rev. 2020, 12, 445–458. [Google Scholar]
- Qi, Y.; Chen, X.; Zhang, J.; Li, Y.; Zhu, D. How do rising farmland costs affect fertilizer use efficiency? Evidence from Gansu and Jiangsu, China. Land 2022, 11, 1730. [Google Scholar] [CrossRef]
- Huang, J.; Yang, G. Understanding recent challenges and new food policy in China. Glob. Food Secur. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- Lopez, R.A.; He, X.; De Falcis, E. What drives China’s new agricultural subsidies? World Dev. 2017, 93, 279–292. [Google Scholar] [CrossRef]
- Zhao, H.; Chang, J.; Havlík, P.; van Dijk, M.; Valin, H.; Janssens, C.; Ma, L.; Bai, Z.; Herrero, M.; Smith, P.; et al. China’s future food demand and its implications for trade and environment. Nat. Sustain. 2021, 4, 1042–1051. [Google Scholar] [CrossRef]
- Long, J.; Fan, S. Building a diversified food supply system with a big food approach. Res. Agric. Mod. 2023, 44, 233–243. [Google Scholar]
Variables | Definition | Min | Max | Mean | SD |
---|---|---|---|---|---|
NGAP | Ratio of the sown area of non-grain crops to the total crop sown area (%) | 2.92% | 67.18% | 34.76% | 0.133 |
ageing | Ratio of population aged 65 and over to total population (%) | 5.02% | 26.80% | 11.41% | 0.040 |
depend | Ratio of population aged 65 and over to population aged 15–64 (%) | 7.04% | 45.80% | 16.58% | 0.066 |
urban | Ratio of urban population to regional total population (%) | 20.79% | 89.60% | 54.86% | 0.147 |
econ | Per capita GDP (Yuan/person) | 5052 | 183,980 | 45,415 | 28,990 |
income | Per capita disposable income of rural residents (Yuan/person) | 1877 | 112,950 | 10,387 | 7797 |
edu | Illiterate population aged 15 and over as a share of total population (%) | 2.03% | 47.90% | 9.99% | 0.075 |
traffic | Length of highway per unit area of a region (km/km2) | 0.036 | 2.233 | 0.855 | 0.503 |
labor | Average daily wage of labour (Yuan/day) | 9.8 | 162.9 | 54.7 | 33.0 |
mecha | Total power of agricultural machinery per unit of sown area (kWh/ha) | 2.105 | 24.626 | 6.405 | 3.380 |
frag | Fragmentation index of farmland landscape (-) | 0.318 | 0.538 | 0.438 | 0.052 |
temp | Average annual temperatures (°C) | 2.582 | 25.839 | 13.725 | 5.462 |
rain | Average annual precipitation (m) | 0.001 | 0.006 | 0.003 | 0.001 |
fiscal | Ratio of agricultural expenditure in general fiscal expenditure (%) | 1.60% | 20.38% | 10.61% | 0.037 |
farm | Farmland area per agricultural employee (mu/person) | 2.509 | 49.901 | 9.138 | 6.904 |
Rural ageing | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
0.2451 *** | 0.1988 *** | 0.2169 *** | 0.2060 *** | 0.2136 *** | 0.1769 *** | 0.1312 ** | 0.0885 | 0.1278 ** | |
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | ||
0.1248 ** | 0.1507 ** | 0.1146 * | 0.1436 ** | 0.1135 * | 0.1145 * | 0.1477 ** | 0.1559 ** | ||
NGAP | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
0.1114 * | 0.1389 ** | 0.1757 *** | 0.1784 *** | 0.2117 *** | 0.2105 *** | 0.2037 *** | 0.2120 *** | 0.2087 *** | |
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | ||
0.1913 *** | 0.2008 *** | 0.1901 *** | 0.1979 *** | 0.2067 *** | 0.2078 *** | 0.1886 *** | 0.2128 *** |
Variables | Model (1) OLS | Model (2) OLS | Model (3) RE | Model (4) FE1 | Model (5) FE2 |
---|---|---|---|---|---|
ageing | −0.1448 | −1.0258 *** | −0.3175 *** | −0.3210 *** | −0.4970 *** |
(−1.0046) | (−5.9452) | (−3.5818) | (−3.6123) | (−3.7529) | |
urban | 0.0766 | 0.0697 | 0.0722 | −0.1403 | |
(1.0992) | (0.9386) | (0.9294) | (−1.2985) | ||
lnecon | 0.1375 *** | 0.0838 *** | 0.0752 *** | 0.1207 *** | |
(5.1854) | (5.1068) | (4.5951) | (6.4053) | ||
lnincome | −0.0768 ** | −0.0143 | −0.0087 | −0.0105 | |
(−2.4401) | (−1.0992) | (−0.6755) | (−1.4250) | ||
edu | 0.4793 *** | 0.0503 | 0.0496 | −0.2111 ** | |
(5.6762) | (0.6818) | (0.6649) | (−2.1093) | ||
traffic | −0.0472 ** | −0.0436 *** | −0.0330 ** | −0.0111 | |
(−2.5136) | (−3.1704) | (−2.3243) | (−0.5572) | ||
lnlabor | 0.0196 | −0.0408 *** | −0.0377 *** | −0.0620 *** | |
(0.9267) | (−3.5649) | (−3.2901) | (−4.1998) | ||
frag | 0.3346 ** | −0.5102 *** | −0.9289 *** | −0.9503 *** | |
(2.4944) | (−2.6281) | (−4.2294) | (−3.7463) | ||
lnmecha | −0.0419 *** | 0.0472 *** | 0.0485 *** | 0.0513 *** | |
(−3.2382) | (4.1825) | (4.2703) | (3.9099) | ||
rain | 7.1784 | 3.7927 | 1.5349 | −5.3239 | |
(1.4798) | (1.0753) | (0.4262) | (−1.4101) | ||
lntemp | 0.1617 *** | 0.0688 *** | 0.0114 | −0.0168 | |
(9.9890) | (2.7607) | (0.3696) | (−0.5268) | ||
Constant | 0.3642 *** | −0.9125 *** | −0.2642 * | 0.0851 | 0.2159 |
(20.8886) | (−4.4937) | (−1.6518) | (0.4912) | (0.9421) | |
N | 527 | 527 | 527 | 527 | 527 |
R2 | 0.0019 | 0.4541 | 0.2010 | 0.2129 | 0.9510 |
Variables | Model (1) Depend | Model (2) Lagged Ageing |
---|---|---|
depend | −0.1817 *** | |
(−3.5915) | ||
urban | 0.0897 | 0.0321 |
(1.1328) | (0.3890) | |
lnecon | 0.0746 *** | 0.0851 *** |
(4.5442) | (5.1808) | |
lnincome | −0.0102 | −0.0057 |
(−0.8027) | (−0.4603) | |
edu | 0.0566 | −0.0490 |
(0.7576) | (−0.6180) | |
traffic | −0.0319 ** | −0.0044 |
(−2.2299) | (−0.2163) | |
lnlabor | −0.0381 *** | −0.0459 *** |
(−3.3349) | (−3.9642) | |
frag | −0.9176 *** | −0.9432 *** |
(−4.1886) | (−4.3581) | |
lnmecha | 0.0491 *** | 0.0454 *** |
(4.3284) | (4.0071) | |
rain | 1.6710 | 1.3805 |
(0.4632) | (0.3941) | |
lntemp | 0.0065 | 0.0541 * |
(0.2114) | (1.7439) | |
lagged ageing | −0.4545 *** | |
(−4.5713) | ||
Constant | 0.0959 | −0.0914 |
(0.5525) | (−0.5233) | |
N | 527 | 496 |
R2 | 0.2126 | 0.2268 |
Variables | Model (1) MGPAs | Model (2) PMBAs | Model (3) MGMAs | Model (4) Eastern China | Model (5) Central China | Model (6) Western China |
---|---|---|---|---|---|---|
ageing | −0.4309 *** | −0.1272 | −0.1922 | −0.4366 *** | −0.9331 *** | −0.2378 * |
(−3.6819) | (−0.8884) | (−0.8849) | (−2.8698) | (−5.8140) | (−1.9385) | |
urban | 0.0377 | 0.4663 *** | −0.0127 | −0.2705 ** | 0.2048 | 0.1554 |
(0.3464) | (3.3028) | (−0.0674) | (−2.4095) | (1.6478) | (1.1904) | |
lnecon | 0.0634 *** | 0.0252 | 0.0758 | 0.0519 | 0.0344 | 0.0136 |
(3.2168) | (1.2923) | (1.3873) | (1.6061) | (1.5754) | (0.7763) | |
lnincome | −0.0072 | −0.0666 ** | 0.0457 | 0.0590 | −0.0040 | 0.0200 |
(−0.6700) | (−2.5294) | (0.8019) | (1.4278) | (−0.4233) | (0.8787) | |
edu | 0.1998 | −0.0369 | 0.1830 | 0.1313 | 0.0572 | 0.0208 |
(1.6446) | (−0.5557) | (0.9659) | (0.9061) | (0.4182) | (0.3517) | |
traffic | −0.0364 ** | 0.0406 ** | −0.1308 *** | −0.1138 *** | −0.0302 * | 0.0904 *** |
(−2.2931) | (2.0504) | (−3.2186) | (−4.6368) | (−1.7098) | (5.1259) | |
lnlabor | −0.0279 ** | 0.0058 | −0.0584 | −0.0214 | −0.0141 | −0.0118 |
(−2.3846) | (0.3814) | (−1.6543) | (−0.8596) | (−1.0959) | (−0.9051) | |
frag | −1.3562 *** | −0.1605 | −1.1400 ** | −1.8512 *** | −2.5657 *** | 0.2406 |
(−4.4436) | (−0.6609) | (−2.0462) | (−4.3307) | (−5.8632) | (1.1294) | |
lnmecha | −0.0032 | 0.0419 *** | 0.1921 *** | 0.1524 *** | −0.0013 | −0.0434 ** |
(−0.2335) | (3.0551) | (6.7401) | (7.0910) | (−0.1237) | (−2.5248) | |
rain | 5.7395 | −0.1455 | 2.0210 | −0.2191 | 8.8094 ** | 2.4841 |
(1.4047) | (−0.0262) | (0.2986) | (−0.0412) | (2.2509) | (0.4960) | |
lntemp | −0.0103 | 0.0266 | 0.0037 | 0.0142 | 0.0030 | 0.0081 |
(−0.3692) | (0.6683) | (0.0283) | (0.1724) | (0.1118) | (0.2488) | |
Constant | 0.3835 * | 0.3978 * | −0.2627 | 0.1687 | 1.0106 *** | −0.0609 |
(1.8995) | (1.7642) | (−0.4912) | (0.4818) | (3.9331) | (−0.3032) | |
N | 221 | 187 | 119 | 187 | 136 | 204 |
R2 | 0.4538 | 0.5773 | 0.5253 | 0.5328 | 0.5923 | 0.6282 |
Variables | Per Labourer Farmland Area | Share of Agricultural Expenditure | ||
---|---|---|---|---|
Model (1) | Model (2) | Model (3) | Model (4) | |
lnfarm | NGAP | fiscal | NGAP | |
ageing | 1.1294 | −0.4495 ** | −0.0597 | −0.4929 ** |
(1.6693) | (−2.0811) | (−0.8916) | (−2.1110) | |
urban | 2.1072 *** | −0.0516 | 0.0744 ** | −0.1454 |
(2.9053) | (−0.1955) | (2.1150) | (−0.4924) | |
lnecon | −0.1517 | 0.1143 *** | −0.0302 ** | 0.1228 *** |
(−1.1386) | (3.2808) | (−2.6773) | (3.3271) | |
lnincome | −0.0196 | −0.0114 | 0.0152 ** | −0.0116 |
(−0.5410) | (−0.7402) | (2.6203) | (−0.7505) | |
edu | −0.2184 | −0.2203 | −0.0674 | −0.2064 |
(−0.4371) | (−1.4183) | (−1.3849) | (−1.3117) | |
traffic | −0.0436 | −0.0130 | −0.0303 *** | −0.0090 |
(−0.4126) | (−0.3433) | (−2.8736) | (−0.2185) | |
lnlabor | 0.0150 | −0.0613 * | 0.0065 | −0.0624 * |
(0.1156) | (−1.8815) | (0.7557) | (−2.0372) | |
frag | −1.0406 | −0.9941 ** | −0.4056 *** | −0.9222 * |
(−0.4700) | (−2.0700) | (−2.8771) | (−1.8273) | |
lnmecha | −0.1315 * | 0.0458 | 0.0127 * | 0.0504 |
(−1.8304) | (1.4331) | (1.8685) | (1.5312) | |
rain | 25.3116 ** | −4.2584 | 0.7511 | −5.3761 * |
(2.1191) | (−1.5053) | (0.5121) | (−1.7623) | |
lntemp | 0.0247 | −0.0157 | −0.0031 | −0.0165 |
(0.2205) | (−0.5072) | (−0.2519) | (−0.5119) | |
lnfarm | −0.0421 | |||
(−1.5239) | ||||
fiscal | 0.0695 | |||
(0.3601) | ||||
Constant | 2.8564 | 0.1114 | 0.3630 ** | −0.0341 |
(1.6153) | (0.2786) | (2.2953) | (−0.0803) | |
N | 527 | 527 | 527 | 527 |
R2 | 0.7105 | 0.3473 | 0.7515 | 0.3324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Tian, Y. Impact of Rural Ageing on Non-Grain Agricultural Production in China: An Analysis Based on Food Security Strategy. Foods 2025, 14, 1214. https://doi.org/10.3390/foods14071214
Guo Y, Tian Y. Impact of Rural Ageing on Non-Grain Agricultural Production in China: An Analysis Based on Food Security Strategy. Foods. 2025; 14(7):1214. https://doi.org/10.3390/foods14071214
Chicago/Turabian StyleGuo, Yuanzhi, and Yuan Tian. 2025. "Impact of Rural Ageing on Non-Grain Agricultural Production in China: An Analysis Based on Food Security Strategy" Foods 14, no. 7: 1214. https://doi.org/10.3390/foods14071214
APA StyleGuo, Y., & Tian, Y. (2025). Impact of Rural Ageing on Non-Grain Agricultural Production in China: An Analysis Based on Food Security Strategy. Foods, 14(7), 1214. https://doi.org/10.3390/foods14071214