Elemental Analysis of Coffee with Ion Beam Analytical Techniques
Abstract
:1. Introduction
2. Analytical Techniques
2.1. Ion-Based Techniques
2.2. Neutron Activation Analysis (NAA)
2.3. Inductively Coupled Plasma (ICP)
2.4. Atomic Absorption Spectroscopy (AAS)
3. Results and Discussion
3.1. Ion-Based Techniques
3.1.1. Coffee Matrix
3.1.2. Coffee Beans
3.1.3. Roasted Ground Coffee
3.1.4. Spent and Drinking Coffee
3.2. Other Techniques
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 10 September 2024).
- Food and Agriculture Organization. Intergovernamental Group on Tea, Current Global Market Situation and Medium-Term Outlook. In Proceedings of the Committee on Commodity Problems, Guwahati, India, 31 January–2 February 2024. [Google Scholar]
- International Coffee Association. Available online: https://ico.org/documents/prices/MTS-0324_T1.pdf (accessed on 9 February 2025).
- Jeynes, C.; Webb, R.P.; Lohstroh, A. Ion Beam Analysis: A Century of Exploiting the Electronic and Nuclear Structure of the Atom for Materials Characterisation. Rev. Accel. Sci. Technol. Accel. Appl. Ind. Environ. 2012, 4, 41–82. [Google Scholar] [CrossRef]
- Chu, W.-K.; Mayer, J.W.; Nicolet, M.-A. Backscattering Spectrometry; Academic Press: Cambridge, MA, USA, 1978; ISBN 9780323152051. [Google Scholar]
- Tesmer, J.R.; Nastasi, M. Handbook of Modern Ion Beam Materials Analysis; Materials Research Society: Warrendale, PA, USA, 1995; ISBN 1-55899-254-5. [Google Scholar]
- Johansson, S.A.E.; Campbell, J.L.; Malmqvist, K.G. Particle-Induced X-Ray Emission Spectrometry (PIXE); Wiley: Hoboken, NJ, USA, 1995; ISBN 978-0-471-58944-0. [Google Scholar]
- Tsuboi, S.; Ishii, K.; Matsuyama, S.; Terakawa, A.; Kikuchi, Y.; Fujiwara, M.; Kawamura, Y.; Watanabe, M.; Yamanaka, K.; Arikawa, J.; et al. Pixe Analysis of Umeboshi (Dried Plum). Int. J. PIXE 2008, 18, 267–271. [Google Scholar] [CrossRef]
- Kaizer, J.; Ješkovský, M.; Kvasniak, J.; Zeman, J.; Pánik, J.; Povinec, P.P. Elemental Composition of Organic and Non-Organic Foods Determined by PIXE. J. Radioanal. Nucl. Chem. 2022, 331, 1249–1259. [Google Scholar] [CrossRef]
- Pantelica, A.; Ene, A.; Gugiu, M.; Ciortea, C.; Constantinescu, O. PIXE Analysis of Some Vegetable Species. Rom. Rep. Phys. 2011, 63, 997–1008. [Google Scholar]
- Cloete, K.J.; Šmit, Ž.; Minnis-Ndimba, R.; Vavpetič, P.; du Plessis, A.; le Roux, S.G.; Pelicon, P. Physico-Elemental Analysis of Roasted Organic Coffee Beans from Ethiopia, Colombia, Honduras, and Mexico Using X-Ray Micro-Computed Tomography and External Beam Particle Induced X-Ray Emission. Food Chem. X 2019, 2, 100032. [Google Scholar] [CrossRef]
- Chytry, P.; Souza, G.M.S.; Debastiani, R.; dos Santos, C.E.I.; Antoine, J.M.R.; Banas, A.; Banas, K.; Calcagnile, L.; Chiari, M.; Hajdas, I.; et al. The Potential of Accelerator-Based Techniques as an Analytical Tool for Forensics: The Case of Coffee. Forensic Sci. Int. 2022, 335, 111281. [Google Scholar] [CrossRef] [PubMed]
- Debastiani, R.; Dos Santos, C.E.I.; Yoneama, M.L.; Amaral, L.; Dias, J.F. Ion Beam Analysis of Ground Coffee and Roasted Coffee Beans. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2014, 318, 202–206. [Google Scholar] [CrossRef]
- Vogel-Mikuš, K.; Pelicon, P.; Vavpetič, P.; Kreft, I.; Regvar, M. Elemental Analysis of Edible Grains by Micro-PIXE: Common Buckwheat Case Study. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2009, 267, 2884–2889. [Google Scholar] [CrossRef]
- Medeiros, I.M.M.A.; Zamboni, C.B.; De Medeiros, J.A.G.; De Almeida Rizzutto, M.; Added, N.; Tabacniks, M.H. Multi-elemental Analysis of Genetically Modified Food Using ANAA and PIXE Techniques. Braz. J. Phys. 2005, 35, 814–817. [Google Scholar] [CrossRef]
- da Silveira, V.C.; Oliveira, A.P.d.; Sperotto, R.A.; Espindola, L.S.; Amaral, L.; Dias, J.F.; Cunha, J.B.d.; Fett, J.P. Influence of Iron on Mineral Status of Two Rice (Oryza sativa L.) Cultivars. Braz. J. Plant Physiol. 2007, 19, 127–139. [Google Scholar] [CrossRef]
- Debastiani, R.; Iochims dos Santos, C.E.; Ferraz Dias, J. Elemental Characterization of Sparkling Wine and Cork Stoppers. Curr. Res. Food Sci. 2021, 4, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Debastiani, R.; Iochims dos Santos, C.E.; Maciel Ramos, M.; Sobrosa Souza, V.; Yoneama, M.L.; Amaral, L.; Ferraz Dias, J. Elemental Concentration of Tomato Paste and Respective Packages through Particle-Induced X-Ray Emission. J. Food Compos. Anal. 2021, 97, 103770. [Google Scholar] [CrossRef]
- Debastiani, R.; dos Santos, C.E.I.; Ramos, M.M.; Souza, V.S.; Amaral, L.; Yoneama, M.L.; Dias, J.F. Elemental Analysis of Brazilian Coffee with Ion Beam Techniques: From Ground Coffee to the Final Beverage. Food Res. Int. 2019, 119, 297–304. [Google Scholar] [CrossRef]
- Singh, S.; Oswal, M.; Behera, B.R.; Kumar, A.; Santra, S.; Acharya, R.; Singh, K.P. PIXE Analysis of Green and Roasted Coffee Beans and Filter Coffee Powder for the Inter-Comparison Study of Major, Minor and Trace Elements. In AIP Conference Proceedings; AIP: Melville, NY, USA, 2020. [Google Scholar] [CrossRef]
- Debastiani, R.; Iochims dos Santos, C.E.; Maciel Ramos, M.; Sobrosa Souza, V.; Amaral, L.; Ferraz Dias, J. Variance of Elemental Concentrations of Organic Products: The Case of Brazilian Coffee. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2021, 486, 18–21. [Google Scholar] [CrossRef]
- Debastiani, R.; Amaral, L.; Dias, J.F. Rubidium in the Elemental Composition of Brazilian Coffee. Int. J. PIXE 2018, 28, 35–42. [Google Scholar] [CrossRef]
- Debastiani, R.; Iochims dos Santos, C.E.; Maciel Ramos, M.; Sobrosa Souza, V.; Amaral, L.; Ferraz Dias, J. Elemental Extraction Factor from Ground to Drinking Coffee as a Function of the Water Temperature. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 477, 154–158. [Google Scholar] [CrossRef]
- Jeynes, C.; Bailey, M.J.; Bright, N.J.; Christopher, M.E.; Grime, G.W.; Jones, B.N.; Palitsin, V.V.; Webb, R.P. “Total IBA”—Where Are We? Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2012, 271, 107–118. [Google Scholar] [CrossRef]
- Bird, J.R. Total Analysis by IBA. Nucl. Inst. Methods Phys. Res. B 1990, 45, 514–518. [Google Scholar] [CrossRef]
- Simon, A.; Barradas, N.P.; Jeynes, C.; Romolo, F.S. Addressing Forensic Science Challenges with Nuclear Analytical Techniques—A Review. Forensic Sci. Int. 2024, 358, 111767. [Google Scholar] [CrossRef]
- Traore, A.; Ndiaye, A.; Mtshali, C.B.; Baboucarr, M.; Faye, J.P.L.; Mbodj, D.; Traore, K.; Gueye, T.; Ndao, A.S. Multi-Elemental Analysis and 2D Image Mapping within Roots, Leaves and Seeds from O. glaberrima Rice Plants Using Micro-PIXE Technique. World J. Nucl. Sci. Technol. 2024, 14, 97–106. [Google Scholar] [CrossRef]
- Cvitanich, C.; Przybyłowicz, W.; Mesjasz-Przybyłowicz, J.; Blair, M.W.; Astudillo, C.; Orłowska, E.; Jurkiewicz, A.M.; Jensen, E.O.; Stougaard, J. Micro-PIXE investigation of bean seeds to assist micronutrient biofortification. Nucl. Instrum. Meth. Phys. Res. B 2011, 269, 2297–2302. [Google Scholar] [CrossRef]
- National Electrostatic Corporation. Available online: https://www.pelletron.com (accessed on 19 December 2024).
- High Voltage Engineering Europa. Available online: https://www.highvolteng.com/index_en.html (accessed on 19 December 2024).
- Moretto, P. Nuclear Microprobe: A Microanalytical Technique in Biology. Celular and Molecular Biology. Cell. Mol. Biol. 1996, 42, 16. [Google Scholar]
- Pongrac, P.; Vogel-Mikuš, K.; Regvar, M.; Vavpetič, P.; Pelicon, P.; Kreft, I. Improved Lateral Discrimination in Screening the Elemental Composition of Buckwheat Grain by Micro-PIXE. J. Agric. Food Chem. 2011, 59, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.L.; Boyd, N.I.; Grassi, N.; Bonnick, P.; Maxwell, J.A. The Guelph PIXE Software Package IV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 3356–3363. [Google Scholar] [CrossRef]
- Mayer, M. SIMNRA, a Simulation Program for the Analysis of NRA, RBS and ERDA. In AIP Conference Proceedings; AIP: Melville, NY, USA, 1999; pp. 541–544. [Google Scholar]
- Marmitt, G.G. Metal Oxides of Resistive Memories Investigated by Electron and Ion Backscattering. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2017. Volume 74. p. 30. Available online: https://www.lume.ufrgs.br/bitstream/handle/10183/170451/001053460.pdf (accessed on 4 January 2025).
- Moon, D.W. Recent advances in MEIS. Surf. Interface Anal. 2020, 52, 63. [Google Scholar] [CrossRef]
- Verma, H.R. Atomic and Nuclear Analytical Methods; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 10-3-540-30277-8. [Google Scholar]
- Worsfold, P.J.; Townshend, A.; Poole, C. Encyclopedia of Analytical Science, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 13-978-012761003. [Google Scholar]
- Taylor, H.E. Inductively Coupled Plasma-Mass Spectrometry—Practices and Techniques; Academic Press: Cambridge, MA, USA, 2001; ISBN 0-12-683865-8. [Google Scholar]
- Dean, J.R. Practical Inductively Coupled Plasma Spectrometry; Wiley: Hoboken, NJ, USA, 2019; ISBN 9781119478683. [Google Scholar]
- Hill, S.J. Inductively Coupled Plasma Spectrometry and Its Application; Blackwell: Hoboken, NY, USA, 2007; ISBN 13-978-1-4051-3594-8. [Google Scholar]
- Welz, B.; Sperling, M. Atomic Absorption Spectrometry, 3rd ed.; Wiley-VCH: Weinheim, Germany, 1999; ISBN 13-978-3527285716. [Google Scholar]
- Liu, H.C.; You, C.F.; Chen, C.Y.; Liu, Y.C.; Chung, M.T. Geographic Determination of Coffee Beans Using Multi-Element Analysis and Isotope Ratios of Boron and Strontium. Food Chem. 2014, 142, 439–445. [Google Scholar] [CrossRef]
- Kato, H.; Sato, K.; Takui, T. Analysis of Iodine-like (Chlorine) Flavor-Causing Components in Brazilian Coffee with Rio Flavor. Food Sci. Technol. Res. 2011, 17, 347–352. [Google Scholar] [CrossRef]
- Stelmach, E.; Pohl, P.; Szymczycha-Madeja, A. The Suitability of the Simplified Method of the Analysis of Coffee Infusions on the Content of Ca, Cu, Fe, Mg, Mn and Zn and the Study of the Effect of Preparation Conditions on the Leachability of Elements into the Coffee Brew. Food Chem. 2013, 141, 1956–1961. [Google Scholar] [CrossRef]
- Pan, X.; Yan, W.; Wu, X.; Ye, J.; Liang, Y.; Zhan, G.; Dong, H.; Liao, W.; Yang, X.; He, Q. Replacing traditional coffee appraisers with inductively coupled plasma-Mass spectrometry (ICP-MS): From manual sensory evaluation to scientific analysis. Food Chem. X 2024, 24, 101980. [Google Scholar] [CrossRef]
- Pokorska-Niewiada, K.; Scheffler, A.; Przedpełska, L.; Witczak, A. Tracking Trace Elements Found in Coffee and Infusions of Commercially Available Coffee Products Marketed in Poland. Foods 2024, 13, 2212. [Google Scholar] [CrossRef]
- Vezzulli, F.; Fontanella, M.C.; Lambri, M.; Beone, G.M. Specialty and high-quality coffee: Discrimination through elemental characterization via ICP-OES, ICP-MS, and ICP-MS/MS of origin, species, and variety. J. Sci. Food Agric. 2023, 103, 4303–4316. [Google Scholar] [CrossRef] [PubMed]
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Geographic determination of the growing origins of Jamaican and international coffee using instrumental neutron activation analysis and o other methods. J. Radioanal. Nucl. Chem. 2016, 309, 525–534. [Google Scholar] [CrossRef]
- Messaoudi, M.; Begaa, S.; Hamidatou, L.; Salhi, M.; Ouakouak, H.; Mouzai, M.; Hassani, A. Neutron activation analysis of major and trace elements in Arabica and Robusta coffee beans samples consumed in Algeria. Radiochim. Acta 2018, 106, 525–533. [Google Scholar] [CrossRef]
- Rawat, H.; Bhat, S.A.; Dhanjal, D.S.; Singh, R.; Gandhi, Y.; Mishra, S.K.; Kumar, V.; Shakya, S.K.; Narasimhaji, C.V.; Singh, A.; et al. Emerging Techniques for the Trace Elemental Analysis of Plants and Food-Based Extracts: A Comprehensive Review. Talanta Open 2024, 10, 100341. [Google Scholar] [CrossRef]
- Ibourki, M.; Hallouch, O.; Devkota, K.; Guillaume, D.; Hirich, A.; Gharby, S. Elemental Analysis in Food: An Overview. J. Food Compos. Anal. 2023, 120, 105330. [Google Scholar] [CrossRef]
- Baqueta, M.R.; Costa-Santos, A.C.; Rebellato, A.P.; Luz, G.M.; Pallone, J.A.L.; Marini, F.; Teixeira, A.L.; Rutledge, D.N.; Valderrama, P. Independent Components–Discriminant Analysis for Discrimination of Brazilian Canephora Coffees Based on Their Inorganic Fraction: A Preliminary Chemometric Study. Microchem. J. 2024, 196, 109603. [Google Scholar] [CrossRef]
- Pohl, P.; Stelmach, E.; Welna, M.; Szymczycha-Madeja, A. Determination of the Elemental Composition of Coffee Using Instrumental Methods. Food Anal. Methods 2013, 6, 598–613. [Google Scholar] [CrossRef]
- Fernandes, E.A.D.N.; Tagliaferro, F.S.; Azevedo-Filho, A.; Bode, P. Organic Coffee Discrimination with INAA and Data Mining/KDD Techniques: New Perspectives for Coffee Trade. Accredit. Qual. Assur. 2002, 7, 378–387. [Google Scholar] [CrossRef]
- Cabri, L.J.; Sylvester, P.J.; Tubrett, M.N.; Peregoedova, A.; Laflamme, J.H. Gilles. Comparison of LAM-ICP-MS and micro-PIXE results for palladium and rhodium in selected samples of noril’sk and talnakh sulfides. Can. Mineral. 2003, 41, 321–329. [Google Scholar] [CrossRef]
- Gurlet, L.B.G.; Poupeau, G.; Salomon, J.; Calligaro, T.; Moignard, B.; Dran, J.C.; Barrat, J.A.; Pichon, L. Obsidian provenance studies in archaeology: A comparison between PIXE, ICP-AES and ICP-MS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2005, 240, 583–588. [Google Scholar] [CrossRef]
- Saitoh, K.; Sera, K.; Gotoh, T.; Nakamura, M. Comparison of elemental quantity by PIXE and ICP-MS and/or ICP-AES for NIST standards. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2002, 189, 86–93. [Google Scholar] [CrossRef]
- Satyanarayana, A.V.S.; Rao, M.J.; Mouli, K.C.; Reddy, B.S. Comparison of PIXE technique with chemical analysis and NAA-Geo chemistry of high grade metamorphic charnockite rocks. J. Rad. Nucl. Appl. 2020, 5, 219–226. [Google Scholar] [CrossRef]
- Stedman, J.D.; Spyrou, N.M. A comparison of the techniques of PIXE, PIGE and INAA by reference to the elemental analysis of porcine brain samples. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1994, 353, 436–439. [Google Scholar] [CrossRef]
- Santos, E.J.; Oliveira, E. Determination of mineral nutrients and toxic elements in Brazilian soluble coffee by ICP-AES. J. Food Compos. Anal. 2001, 14, 523–531. [Google Scholar] [CrossRef]
- Grembecka, M.; Malinowska, E.; Szefer, P. Differentiation of market coffee and its infusions in view of their mineral composition. Sci. Total Environ. 2007, 383, 59–69. [Google Scholar] [CrossRef]
- Suseela, B.; Bhalke, S.; Kumar, A.V.; Tripathi, R.M.; Sastry, V.N. Daily intake of trace metals through coffee consumption in India. Food Addit. Contam. 2001, 18, 115–120. [Google Scholar] [CrossRef]
- Pais, I.; Jonnes, J.B. The Handbook of Trace Elements; St Lucie Press: Delray Beach, FL, USA, 1977; ISBN 1-884015-34-4. [Google Scholar]
- Ashu, R.; Chandravanshi, B.S. Concentration levels of metals in commercially available ethiopian roasted coffee powders and their infusions. Bulletim Chem. Soc. Ethiop. 2011, 25, 11–24. [Google Scholar] [CrossRef]
- Ozdestan, O. Evaluation of bioactive amine and mineral levels in Turkish coffee. Food Res. Int. 2014, 61, 167–175. [Google Scholar] [CrossRef]
- Tabliaferro, F.S.; Fernandes, E.A.N.; França, E.J. Elemental composition of commercial Brazilian coffee using neutron activation analysis. In Proceedings of the 3rd International Conference on Isotopes, Vancouver, BC, Canada, 6–10 September 1999; pp. 277–279. [Google Scholar]
- International Atomic Energy Agency (IAEA). Available online: https://nucleus.iaea.org/sites/accelerators/Pages/default.aspx (accessed on 4 January 2025).
- Trindade, G.F.; Rosa, L.L.F.S.; Stori, E.M.; Dos Santos, C.E.L.; Watts, J.F. Surface Mass Spectrometry as a New Approach for the Characterisation of Coffee. Surf. Interface Anal. 2018, 50, 1051–1057. [Google Scholar] [CrossRef]
Coffee Type | Coffee Origin | Technique/Imaging | Quantitative Elemental Analysis | Reference |
---|---|---|---|---|
Green beans | Brazil | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb, Sr | [13] |
Green beans | Brazil | Micro-PIXE/Yes | Cl, K, Ca, Fe | [13] |
Roasted beans | Brazil | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb, Sr | [13] |
Roasted beans | Brazil | Micro-PIXE/Yes | Cl, K, Ca, Fe | [13] |
Roasted beans | Ethiopia Colombia Honduras Mexico | External beam PIXE/Yes | P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr | [11] |
Green beans | NA | PIXE/No | P, S, Cl, K, Ca, Sc, Cr, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Se, Ni | [20] |
Roasted beans | NA | PIXE/No | P, S, Cl, K, Ca, Sc, Cr, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Se, Ni | [20] |
Roasted ground | Brazil | RBS/No | C, O, N | [13,19] |
Roasted ground | Brazil | PIXE/No | Mg, P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Rb, Sr | [13] |
Roasted ground | Brazil | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb | [21] |
Roasted ground | Brazil | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb | [22] |
Roasted ground | Brazil | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb | [23] |
Spent | Brazil | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb | [23] |
Roasted ground | Brazil | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb | [19] |
Spent | Brazil | RBS/No | C, N, O | [19] |
Spent | Brazil | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb | [19] |
Beverage | Brazil | RBS/No | C, N, O | [19] |
Beverage | Brazil | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb | [19] |
Filter | NA | PIXE/No | P, S, Cl, K, Ca, Sc, Cr, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Se, Ni | [20] |
Roasted ground | Brazil Jamaica | PIXE/No | Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr | [12] |
Element | Whole Green Bean (Brazil) | Ground Roasted Bean (Brazil) | Whole Roasted Bean (Brazil) | Whole Roasted Bean (Colombia) | Whole Roasted Bean (Honduras) | Whole Roasted Bean (Mexico) | Whole Roasted Bean (Ethiopia) |
---|---|---|---|---|---|---|---|
P | 627 ± 94 | 1205 ± 121 | 934 ± 343 | 766 ± 521 | 977 ± 665 | 900 ± 319 | 995 ± 643 |
S | 2021 ± 416 | 1209 ± 44 | 1660 ± 295 | 1328 ± 397 | 1934 ± 694 | 1724 ± 401 | 1936 ± 594 |
Cl | 290 ± 245 | 173 ± 25 | 138 ± 61 | 309 ± 175 | 390 ± 270 | 662 ± 184 | 527 ± 111 |
K | 14,011± 4048 | 19,104 ± 562 | 16,372 ± 4643 | 16,543 ± 3632 | 16,805 ± 4503 | 17,577 ± 2265 | 17,315 ± 2610 |
Ca | 3366 ± 2768 | 1633 ± 401 | 2019 ± 1481 | 1686 ± 758 | 1371 ± 391 | 1574 ± 960 | 1205 ± 447 |
Mn | 55 ± 51 | 41 ± 3 | 36 ± 27 | 32 ± 17 | 23 ± 9 | 21 ± 6 | 16 ± 6 |
Element | Green Peaberry | Roasted Peaberry | Green Robusta | Roasted Robusta | Green Arabica | Roasted Arabica |
---|---|---|---|---|---|---|
P | 320 ± 32 | 150 ± 25 | 163 ± 26 | 329 ± 33 | 328 ± 30 | 222 ± 57 |
Cl | 65 ± 5 | 56 ± 5 | 77 ± 4 | 90 ± 6 | 207 ± 6 | 77 ± 5.2 |
K | 22,540 ± 24 | 16,056 ± 24 | 24,170 ± 24 | 25,463 ± 30 | 29,967 ± 27 | 19,548 ± 25 |
Ca | 3167 ± 38 | 1152 ± 29 | 2804 ± 39 | 1599 ± 42 | 3732 ± 48 | 1452 ± 34 |
Fe | 104 ± 1 | 105 ± 2 | 131 ± 2 | 819 ± 4 | 147 ± 1 | 108 ± 2 |
Rb | 18 ± 3 | 12 ± 3 | 28 ± 3 | 28 ± 4 | 26 ± 3 | 16 ± 6 |
Element | Ground Coffee | Spent Coffee | Drinking Coffee |
---|---|---|---|
Mg | 1715 ± 133 | 1018 ± 166 | 97 ± 23 |
P | 1437 ± 138 | 819 ± 212 | 77 ± 18 |
K | 20,970 ± 1104 | 4278 ± 2294 | 1419 ± 297 |
Ca | 1450 ± 187 | 1699 ± 364 | 38 ± 8 |
Ti | 7.4 ± 2.4 | 8.3 ± 6.1 | 0.16 ± 0.06 |
Cu | 19.6 ± 3.9 | 23 ± 4 | 0.13 ± 0.07 |
Zn | 9.9 ± 2.8 | 11.9 ± 3.4 | 0.21 ± 0.05 |
Technique [Ref.] | Sensitivity | Quantifiable Elements | Specificity | Analysis Time | Relative Cost | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
PIXE [7] | ppm | Na-U | High | A few minutes per sample | High | Multi-elemental analysis Non-destructive Complements other IBA techniques Minimal sample preparation (no need for chemical treatment) Allows the analysis of different materials from a study with a single analytical technique Imaging capability with high spatial resolution | High cost Limited access as it requires a particle accelerator Requires solid samples for in-vacuum experiments |
RBS [5] | ppm | B-U | High | 5–30 min per sample | High | Multi-elemental analysis Non-destructive Complements other IBA techniques Minimal sample preparation (no need for chemical treatment) Depth profiling capability for surface analysis Imaging capability with high spatial resolution | High cost Limited access as it requires a particle accelerator Limited sensitivity for trace elements Requires solid samples |
FAAS [51,52] | ppb | Metals and a few metalloids | Moderate to high | A few minutes per element | Low | Affordable Easy access (many facilities around the world) High sensitivity | Single element analysis Sample preparation requires dilution and acid digestion Not suitable for non-metal analysis |
ICP [51,52] | ppb-ppt | Over 70 elements can be detected | Moderate to high | Minutes per sample | Moderate to high | Multi-elemental analysis Isotope detection capability | Can require complex sample preparation Matrix and spectral interferences may lead to inaccuracies |
NAA [51,52,55] | ppm | Over 70 elements can be detected | Very high | Hours to days per sample | High | Multi-elemental analysis Non-destructive Minimal sample preparation Matrix influence is often negligible Target non-homogeneity is negligible Bulk analysis capability | Requires access to a nuclear reactor or high-energy neutron source Post-irradiated samples require extra care due to potential radioactivity |
Element | ICP [Ref.] | FAAS [Ref.] | NAA [Ref.] |
---|---|---|---|
Mg | 2120–4150 [61] | 3400 ± 1070 [62] 2000–3100 [63] | 3207–3846 [49] |
Al | NA | NA | 18–22 [49] |
P | 2230–4100 [61] | 4130 ± 855 [62] | NA |
S | 1480–2060 [61] | NA | NA |
K | 32,500–47,600 [61] | 25,300 ± 5270 [62] 13,600–29,100 [63] | 35,600–38,900 [49] |
Ca | 1060–1890 [61] | 1160 ± 609 [62] 490–971 [63] | 1352–2059 [49] |
Mn | 4–39 [61] | 18 ± 8 [62] 7–13 [63] | NA |
Fe | 14–451 [61] | 34 ± 15 [62] 16–92 [63] | NA |
Cu | 0.5–2.3 [61] | 0.7 ± 0.3 [62] 0.4–16.0 [63] | NA |
Zn | 3–15 [61] | 4.0 ± 3.5 [62] 2–9 [63] | NA |
Element | ICP [Ref.] | FAAS [Ref.] | NAA [Ref.] | PIXE [Ref.] |
---|---|---|---|---|
Na | NA | NA | 56 ± 1 [49] | NA |
Mg | NA | 2100 ± 435 [62] 1964 ± 78 [65] 2097 ± 449 [66] | 2133 ± 4 [49] | 2092 ± 323 [19] |
P | 1394 ± 1 [49] | 2280 ± 496 [62] | NA | 1761 ± 303 [19] |
Cl | NA | NA | NA | 384 ± 79 [19] |
K | NA | 13,690 ± 1020 [62] 14,488 ± 467 [65] 9263 ± 1188 [66] | 21,400 ± 3000 [49] 20,800–22,700 [67] | 22,451 ± 3436 [19] |
Ca | NA | 841 ± 331 [62] 945 ± 65 [65] | 1381 ± 5 [49] 1151–1408 [67] | 1437 ± 303 [19] |
Ti | NA | NA | NA | 8 ± 3 [19] |
Mn | NA | 22 ± 6 [62] 23 ± 1 [65] 49 ± 6 [66] | 29 ± 2 [49] | 32 ± 8 [19] |
Fe | 32 ± 1 [49] | 42 ± 14 [62] 52 ± 4 [65] | 55–250 [67] | 68 ± 23 [19] |
Cu | 19 ± 1 [49] | 16 ± 2 [62] 14 ± 1 [65] | NA | 18 ± 5 [19] |
Zn | 6 ± 1 [49] | 5 ± 3 [62] 15 ± 1 [65] | 6–8 [67] | 9 ± 2 [19] |
Rb | NA | NA | 8 ± 4 [49] 37–57 [67] | 48 ± 20 [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debastiani, R.; da Silva, L.P.; Touguinha, G.C.; dos Santos, C.E.I.; Amaral, L.; Dias, J.F. Elemental Analysis of Coffee with Ion Beam Analytical Techniques. Foods 2025, 14, 585. https://doi.org/10.3390/foods14040585
Debastiani R, da Silva LP, Touguinha GC, dos Santos CEI, Amaral L, Dias JF. Elemental Analysis of Coffee with Ion Beam Analytical Techniques. Foods. 2025; 14(4):585. https://doi.org/10.3390/foods14040585
Chicago/Turabian StyleDebastiani, Rafaela, Leonardo Pessoa da Silva, Gabriela Corati Touguinha, Carla Eliete Iochims dos Santos, Livio Amaral, and Johnny Ferraz Dias. 2025. "Elemental Analysis of Coffee with Ion Beam Analytical Techniques" Foods 14, no. 4: 585. https://doi.org/10.3390/foods14040585
APA StyleDebastiani, R., da Silva, L. P., Touguinha, G. C., dos Santos, C. E. I., Amaral, L., & Dias, J. F. (2025). Elemental Analysis of Coffee with Ion Beam Analytical Techniques. Foods, 14(4), 585. https://doi.org/10.3390/foods14040585