Preparation and Characterization of Eel (Anguilla) Bone Collagen Based on Intelligent Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Instruments
2.2. Preparation and Determination of Eel Bone Powder
2.2.1. Preparation of Eel Bone Powder
2.2.2. Determination of the Basic Components, Amino Acids and Calcium Content of Eel Bone Powder
2.3. Preparation of Eel Bone Collagen Protein
2.4. Calculation of the Extraction Rate of Eel Bone Collagen
2.4.1. The Drawing of the Standard Curve of Hydroxyproline
2.4.2. Determination of Hydroxyproline Content and Extraction Rate
2.5. Optimization of Eel Bone Collagen Extraction Process
2.5.1. BP Neural Network Design
2.5.2. GA Genetic Algorithm Optimization
2.6. Characterization of Eel Bone Collagen Protein
2.6.1. Amino Acid Composition Analysis
2.6.2. SDS-PAGE
2.6.3. X-Ray Diffraction Analysis (XRD)
2.6.4. Heat Distortion Temperature Determination
2.6.5. Raman Spectroscopy Analysis
2.6.6. Thermogravimetric Analysis (TGA)
2.6.7. Scanning Electron Microscope Analysis (SEM)
2.6.8. Rheological Analysis
2.7. Data Statistics and Analysis
3. Results and Discussions
3.1. Basic Components and Calcium Content
3.2. Amino Acid Composition
3.3. Optimization of Eel Bone Collagen Extraction Process
3.3.1. Test Data and Training Neural Network
3.3.2. Regression Performance and Optimization Results
3.4. Characterization of Eel Bone Collagen (EBC)
3.4.1. Amino Acid Composition Analysis of EBC
3.4.2. Molecular Weight Analysis by SDS-PAGE of EBC
3.4.3. X-Ray Diffraction Analysis (XRD) of EBC
3.4.4. Differential Scanning Calorimetry (DSC) Thermograms Analysis of EBC
3.4.5. Raman Spectroscopy Analysis of EBC
3.4.6. Thermogravimetric (TGA) and Derivative Thermogravimetry (DTG) Analysis of EBC
3.4.7. Rheological Analysis of EBC
3.4.8. Observation of EBC by SEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Zhang, X.; Liu, D. Collagen peptides and the related synthetic peptides: A review on improving skin health. J. Funct. Foods 2021, 86, 104680. [Google Scholar] [CrossRef]
- Rachmasari, A.; Kartini, R.A.; Alviani, G.; Solihah, I. Healing effect of spray gel collagen extract from channa striata bone on burn in rats. Res. J. Pharm. Dos. Forms Technol. 2019, 11, 275–279. [Google Scholar] [CrossRef]
- Woo, J.; Yu, S.; Cho, S.; Lee, Y.-B.; Kim, S.-B. Extraction optimization and properties of collagen from yellowfin tuna (Thunnus albacares) dorsal skin. Food Hydrocoll. 2007, 22, 879–887. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Chen, L.; Zhou, C.; Hong, P.; Deng, C. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chem. 2021, 340, 128139. [Google Scholar] [CrossRef]
- Aneta, P.; Robert, G.; Pavel, M.; Pavlačková, J. Preparation of Gelatin from Broiler Chicken Stomach Collagen. Foods 2022, 12, 127. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Zhong, M.M.; Pang, S.X.; Liu, P.; Sun, Y.; Liang, Q.; Yu, K.; Wang, J.; Rehman, A.; Rashid, A.; et al. Exploring the potential of ultrasound: Novel approaches to collagen extraction, modifications and polypeptide preparation. Ultrason. Sonochem. 2025, 120, 107504. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Dai, Y.; Gong, Y.; Yuan, Y. Development Status and Trends in the Eel Farming Industry in Asia. N. Am. J. Aquac. 2022, 84, 3–17. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, D.; Wang, Y.; Qin, W. A comparative study of the properties and self-aggregation behavior of collagens from the scales and skin of grass carp (Ctenopharyngodon idella). Int. J. Biol. Macromol. 2018, 106, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Meng, d.; Wei, Q.; Yasuaki, T.; Dai, Z.; Zhang, Y. Structural Properties and Biological Activities of Collagens from Four Main Processing By-Products (Skin, Fin, Cartilage, Notochord) of Sturgeon (Acipenser gueldenstaedti). Waste Biomass Valorization 2023, 14, 3987–4002. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, W.; Lv, W.; Yuan, Q.; Yang, H.; Huang, W.; Zhou, W. Impact of Rearing Duration on Nutritional Composition, Flavor Characteristics, and Physical Properties of Asian Swamp Eel (Monopterus albus). Foods 2025, 14, 1685. [Google Scholar] [CrossRef]
- Zhang, N.; Guo, S.; Zheng, Y.; Li, W. Isolation and Characterisation of Acid Soluble Collagens and Pepsin Soluble Collagens from Eel (Anguilla japonica Temminck et Schlegel) Skin and Bone. Foods 2025, 14, 502. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, Y.; Zhang, K.; Wu, Y. An improved evolution algorithm using population competition genetic algorithm and self-correction BP neural network based on fitness landscape. Soft Comput. 2020, 25, 1751–1776. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhu, Z.Y.; Sha, A.X.; Hao, W. Low cycle fatigue life prediction of titanium alloy using genetic algorithm-optimized BP artificial neural network. Int. J. Fatigue 2023, 172, 107609. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Li, M. Review of development and application of artificial neural network models. Comput. Eng. Appl. 2021, 57, 57–69. [Google Scholar] [CrossRef]
- Dong, S.; Tian, Y.; Xiao, J.; Yuan, C.; Liu, Y. Research status and development trends of intelligent fish processing. J. Fish. China 2024, 48, 14–27. [Google Scholar] [CrossRef]
- Azarmdel, H.; Mohtasebi, S.S.; Jafari, A.; Rosado-Muñoz, A. Developing an orientation and cutting point determination algorithm for a trout fish processing system using machine vision. Comput. Electron. Agric. 2019, 162, 613–629. [Google Scholar] [CrossRef]
- Taheri, A.; Nasiri, A.; Banan, A.; Zhang, Y.-D. Smart deep learning-based approach for non-destructive freshness diagnosis of common carp fish. J. Food Eng. 2020, 278, 109930. [Google Scholar] [CrossRef]
- Bandeira, S.F.; Silva, R.S.G.; Moura, J.M.; Pinto, L.A. Charac-terization and film-forming properties of gelatins from whitemouthcroaker (Micropogonias furnieri) skin and bones. J. Ofaquatic Food Prod. Technol. 2017, 26, 447–456. [Google Scholar] [CrossRef]
- GB/T 5009.3; Determination of Moisture in Food. National Food Safety Standard: Beijing, China, 2016.
- GB/T 5009.4; Determination of Ash in Food. National Food Safety Standard: Beijing, China, 2016.
- GB/T 5009.5; Determination of Protein in Food. National Food Safety Standard: Beijing, China, 2016.
- GB/T 5009.6; Determination of Fat in Food. National Food Safety Standard: Beijing, China, 2016.
- GB/T 5009.124; Determination of Amino Acids in Food. National Food Safety Standard: Beijing, China, 2016.
- GB/T 5009.268; Determination of Multiple Elements in Food. National Food Safety Standard: Beijing, China, 2016.
- Ahmed, R.; Haq, M.; Chun, B.S. Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus). Int. J. Biol. Macromol. Struct. Funct. Interact. 2019, 135, 668–676. [Google Scholar] [CrossRef]
- Tamilmozhi, S.; Veeruraj, A.; Arumugam, M. Isolation and characterization of acid and pepsin-solubilized collagen from the skin of sailfish (Istiophorus platypterus). Food Res. Int. 2013, 54, 1499–1505. [Google Scholar] [CrossRef]
- GB/T 9695.23-2008; Meat and Meat Products. Hydroxyproline Content Determination. China State Standardization Administration; Beijing China Standards Press: Beijing, China, 2008; pp. 1–4.
- Deng, J.; Liu, G.; Wang, L.; Liu, G.; Wu, X. Intelligent optimization design of squeeze casting process parameters based on neural network and improved sparrow search algorithm. J. Ind. Inf. Integr. 2024, 39, 100600. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, X.; Shi, J.; Xue, J.; Lan, Y.; Jia, S. Optimising microwave vacuum puffing for blue honeysuckle snacks. Int. J. Food Sci. Technol. 2010, 45, 506–511. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, M.; Xu, X.; Zhu, S.; Shen, M.; Ma, A.; She, Z.; Shi, S.; Han, X.; Zhang, T. Optimization of ultrasound-assisted extraction of polysaccharides from Akebia Fruit using an artificial neural network model: Characteristics and antioxidant activity. Ultrason. Sonochem. 2025, 120, 107447. [Google Scholar] [CrossRef]
- Sun, L.C.; Du, H.; Wen, J.X.; Zhong, C.; Liu, G.; Miao, S.; Cao, M. Physicochemical properties of acid-soluble collagens from different tissues of large yellow croaker (Larimichthys crocea). Int. J. Food Sci. Technol. 2021, 56, 5371–5381. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Shi, T.; Zhang, X.; Xiong, Z.; Jin, W.; Monto, A.R.; Yuan, L.; Gao, R. Enhancing the nutritional value and caliber of silver carp surimi by adding β-carotene: Insights into the gel characteristics, protein structure, and digestive properties. Food Chem. 2025, 468, 142514. [Google Scholar] [CrossRef]
- Tan, X.; Qi, L.; Fan, F.; Zhang, X.; Xiong, Z.; Jin, W.; Monto, A.R.; Yuan, L.; Gao, R. Analysis of volatile compounds and nutritional properties of enzymatic hydrolysate of protein from cod bone. Food Chem. 2018, 264, 350–357. [Google Scholar] [CrossRef]
- Liaset, B.; Julshamn, K.; Espe, M. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with ProtamexTM. Process Biochem. 2003, 38, 1747–1759. [Google Scholar] [CrossRef]
- Shakila, J.R.; Jeevithan, E.; Varatharajakumar, A.; Jeyasekaran, G.; Sukumar, D. Functional characterization of gelatin extracted from bones of red snapper and grouper in comparison with mammalian gelatin. LWT-Food Sci. Technol. 2012, 48, 30–36. [Google Scholar] [CrossRef]
- Nasim, M.; Alireza, S.; Mohammad, A.Z.; Ghorbani, M.; Kashaninejad, M. Study of antioxidant activity of sheep visceral protein hydrolysate: Optimization using response surface methodology. ARYA Atheroscler. 2014, 10, 179–184. [Google Scholar]
- Abdulkadhim, A.; Abdulameer, N. Experimental and Numerical Study to Prepare Hydroxyapatite Powder from Fish Bones. Trans. Electr. Electron. Mater. 2020, 22, 481–488. [Google Scholar] [CrossRef]
- Qi, L.W.; Wang, K.Y.; Zhou, J.J.; Zhang, H.; Guo, Y.; Zhang, C. Phosphorylation modification of bovine bone collagen peptide enhanced its effect on mineralization of MC3T3-E1 cells via improving calcium-binding capacity. Food Chem. 2023, 433, 137365. [Google Scholar] [CrossRef]
- Nilesh, N.P.; Mithun, R.S.; Nikheel, R.B.; Mudgil, P.; Pati, S.; Bono, G.; Nalinanon, S.; Li, L.; Maqsood, S. Structural characteristic and molecular docking simulation of fish protein-derived peptides: Recent updates on antioxidant, anti-hypertensive and anti-diabetic peptides. Food Chem. 2023, 405, 134737. [Google Scholar] [CrossRef]
- Qin, X.; He, Q.; Zhang, X.; Yang, X. Data Value Assessment in Digital Economy Based on Backpropagation Neural Network Optimized by Genetic Algorithm. Symmetry 2025, 17, 761. [Google Scholar] [CrossRef]
- Limia, G.; Carballo, J.; Rodríguez-González, M.; Martínez, S. Proximate composition and amino acid profile of European eel skin: Influence of body weight. Eur. Food Res. Technol. 2022, 248, 1437–1446. [Google Scholar] [CrossRef]
- Wood, A.; Ogawa, M.; Portier, J.R.; Schexnayder, M.; Shirley, M.; Losso, J.N. Biochemical properties of alligator (Alligator mississippiensis) bone collagen. Comp. Biochem. Physiol. Part B 2008, 151, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, M.; Robinson, S.J.; Durairaj, S.; Jeyasekaran, G. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J. Food Sci. Technol. 2013, 50, 1106–1113. [Google Scholar] [CrossRef]
- Liza, D.; Mala, N.; Nuryani, H.L.; Suhartono, M.T. Chemical and Antioxidant Characteristics of Skin-Derived Collagen Obtained by Acid-Enzymatic Hydrolysis of Bigeye Tuna (Thunnus obesus). Mar. Drugs 2021, 19, 222. [Google Scholar] [CrossRef]
- Soheila, G.N.; Noorahmad, L.; Tayyeb, G.; Forghani, S.F.; Irilouzadian, R.; Amini, N.; Larijani, G.; Hatami, S.; Taghavian, N.; Shahbazi, S.B.; et al. Biochemical and Biological Characterization of Type-I Collagen from Scomberomorus commerson Skin as a Biomaterial for Medical Applications. Int. J. Pept. Res. Ther. 2023, 29, 56. [Google Scholar] [CrossRef]
- George, J.; Manjusha, W.A. Characterization of Purified Collagen from Marine Squid Uroteuthis duvauceli. Int. J. Life Sci. Pharma Res. 2020, 10, L121–L133. [Google Scholar] [CrossRef]
- Chen, J.; Li, L.; Yi, R.; Xu, N.; Gao, R.; Hong, B. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT-Food Sci. Technol. 2016, 66, 453–459. [Google Scholar] [CrossRef]
- Ami, M.; Raghava, J.R.; Nishad, N.F. Electrostatic Forces Mediated by Choline Dihydrogen Phosphate Stabilize Collagen. J. Phys. Chem. B 2015, 119, 12816–12827. [Google Scholar] [CrossRef]
- Maxwell, C.A.; Wess, T.J.; Kennedy, C.J. X-ray Diffraction Study into the Effects of Liming on the Structure of Collagen. Biomacromolecules 2006, 7, 2321–2326. [Google Scholar] [CrossRef]
- Alaa, A.; Aaron, L.; Yoshihiro, I.; Hudson, B.G.; Boudko, S.P.; Forde, N.R. Sequence-dependent mechanics of collagen reflect its structural and functional organization. Biophys. J. 2021, 120, 4013–4028. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Lu, N.; Takebayashi, T.; Zhou, B.; Xie, H.; Li, Y.; Long, X.; Qin, X.; Zhao, H.; et al. Structural and functional analysis of a homotrimeric collagen peptide. Front. Bioeng. Biotechnol. 2025, 13, 1575341. [Google Scholar] [CrossRef]
- Sittichoke, S.; Soottawat, B.; Hideki, K. Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer). Food Chem. 2013, 138, 2435–2441. [Google Scholar] [CrossRef]
- Zhang, J.T.; Liu, Y.; Xu, H.F.; Sui, P.; Liu, T.; Zheng, M.; Shirshin, E.A.; Wei, B.; Xu, C.; Wang, H. The impact of N-terminal modification of PAA with different chain lengths on the structure, thermal stability and pH sensitivity of succinylated collagen. Collagen Leather 2024, 6, 6. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Zhou, D.N.; Kessler, J.L.; Qiu, R.; Yu, S.M.; Li, G.; Qin, Z.; Li, Y. Terminal repeats impact collagen triple-helix stability through hydrogen bonding. Chem. Sci. 2022, 13, 12567–12576. [Google Scholar] [CrossRef] [PubMed]
- Herrero, A.M.; Carmona, P.; Careche, M. Raman Spectroscopic Study of Structural Changes in Hake (Merluccius merluccius L.) Muscle Proteins During Frozen Storage. J. Agric. Food Chem. 2004, 52, 2147–2153. [Google Scholar] [CrossRef]
- Asaduzzaman, A.; Getahwew, T.A.; Cho, Y.; Park, J.-S.; Haq, M.; Chun, B.-S. Characterization of pepsin-solubilised collagen recovered from mackerel (Scomber japonicas) bone and skin using subcritical water hydrolysis. Int. J. Biol. Macromol. Struct. Funct. Interact. 2020, 148, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yu, Z.; Wang, B.B.; Chiou, B.-S. Changes in Structures and Properties of Collagen Fibers during Collagen Casing Film Manufacturing. Foods 2023, 12, 1847. [Google Scholar] [CrossRef]
- Ricky, D.; Natalia, J.; Sivakumar, R.; Suraneni, P.; Pestle, W.J. Use of thermogravimetric analysis to estimate collagen and hydroxyapatite contents in archaeological bone. J. Archaeol. Sci. 2022, 145, 105644. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Li, Z.; Yi, R.; Shi, S.; Wu, K.; Li, Y.; Wu, S. Physicochemical and Functional Properties of Type I Collagens in Red Stingray (Dasyatis akajei) Skin. Mar. Drugs 2019, 17, 558. [Google Scholar] [CrossRef] [PubMed]
- Derkach, S.R.; Voron’ko, N.G.; Kuchina, Y.A.; Kolotova, D.S. Modified Fish Gelatin as an Alternative to Mammalian Gelatin in Modern Food Technologies. Polymers 2020, 12, 3051. [Google Scholar] [CrossRef] [PubMed]



| Enzyme Hydrolysis Time/h | Amount of Enzyme Added/% | Slurry Ratio (g:mL) | Ultrasonic Pretreatment Time/min | Ultrasonic Power/W | |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 20 | 10 | 125 |
| 2 | 2 | 1.5 | 25 | 15 | 250 |
| 3 | 3 | 2 | 30 | 20 | 375 |
| 4 | 4 | 2.5 | 35 | 25 | 500 |
| Basic Composition | Content |
|---|---|
| Moisture | 5.85 ± 0.67% |
| Ash | 1.79 ± 1.06% |
| Crude protein | 75.15 ± 0.95% |
| Crude fat | 4.59 ± 0.62% |
| Calcium | 0.116 ± 0.08 mg/g |
| Amino Acid | Content/% |
|---|---|
| Asp | 5.47 ± 0.63 |
| Thr | 2.68 ± 1.57 |
| Ser | 3.74 ± 0.52 |
| Glu | 9.26 ± 1.80 |
| Gly | 22.44 ± 0.60 |
| Ala | 7.96 ± 0.75 |
| Val | 1.89 ± 1.22 |
| Met | 1.85 ± 1.21 |
| Ile | 1.30 ± 0.84 |
| Leu | 2.82 ± 0.99 |
| Tyr | 0.91 ± 0.69 |
| Phe | 2.29 ± 1.57 |
| His | 2.83 ± 2.16 |
| Lys | 3.94 ± 0.72 |
| Arg | 9.72 ± 0.97 |
| Pro | 11.95 ± 1.08 |
| Hyp | 10.77 ± 1.15 |
| Samples | Enzyme Hydrolysis Time/h | Amount of Enzyme Added/% | Slurry Ratio/(g:mL) | Ultrasonic Pretreatment Time/min | Ultrasonic Power/W | Extraction Rate/% |
|---|---|---|---|---|---|---|
| 1 | 2 | 1.5 | 25 | 15 | 125 | 37.34 ± 3.92 |
| 2 | 2 | 2.5 | 30 | 10 | 375 | 33.30 ± 0.87 |
| 3 | 1 | 1.5 | 30 | 25 | 250 | 30.10 ± 2.81 |
| 4 | 3 | 2 | 30 | 20 | 125 | 33.82 ± 1.23 |
| 5 | 1 | 1 | 20 | 10 | 125 | 28.05 ± 2.10 |
| 6 | 1 | 2.5 | 25 | 20 | 500 | 31.21 ± 0.67 |
| 7 | 3 | 1 | 25 | 25 | 375 | 29.80 ± 2.34 |
| 8 | 1 | 2 | 35 | 15 | 375 | 36.23 ± 0.98 |
| 9 | 4 | 2 | 25 | 10 | 250 | 44.32 ± 4.56 |
| 10 | 2 | 2 | 20 | 25 | 500 | 28.71 ± 1.09 |
| 11 | 3 | 2.5 | 20 | 15 | 250 | 52.78 ± 3.26 |
| 12 | 2 | 1 | 35 | 20 | 250 | 35.78 ± 4.21 |
| 13 | 4 | 1 | 30 | 15 | 500 | 33.15 ± 1.09 |
| 14 | 3 | 1.5 | 35 | 10 | 500 | 30.80 ± 2.01 |
| 15 | 4 | 2.5 | 35 | 25 | 125 | 37.07 ± 3.21 |
| 16 | 4 | 1.5 | 20 | 20 | 375 | 49.59 ± 4.50 |
| 17 | 1 | 1.5 | 30 | 25 | 125 | 29.05 ± 1.04 |
| 18 | 1 | 2.5 | 30 | 20 | 500 | 34.68 ± 1.12 |
| 19 | 1 | 2 | 35 | 15 | 125 | 29.00 ± 3.45 |
| 20 | 1 | 2 | 35 | 10 | 375 | 24.32 ± 2.34 |
| 21 | 2 | 2.5 | 30 | 10 | 125 | 38.30 ± 0.89 |
| 22 | 2 | 2 | 20 | 20 | 250 | 51.87 ± 5.60 |
| 23 | 2 | 1 | 35 | 20 | 500 | 37.60 ± 3.45 |
| 24 | 2 | 1.5 | 25 | 15 | 250 | 50.10 ± 2.30 |
| 25 | 3 | 1 | 35 | 10 | 500 | 31.44 ± 2.12 |
| 26 | 3 | 1.5 | 25 | 25 | 375 | 31.92 ± 4.50 |
| 27 | 3 | 2 | 25 | 20 | 375 | 35.24 ± 4.25 |
| 28 | 3 | 2.5 | 20 | 25 | 125 | 37.38 ± 3.42 |
| 29 | 4 | 2.5 | 30 | 15 | 125 | 33.31 ± 5.64 |
| 30 | 4 | 1.5 | 25 | 20 | 375 | 40.10 ± 4.28 |
| 31 | 4 | 2 | 20 | 25 | 250 | 53.84 ± 2.00 |
| 32 | 4 | 1 | 25 | 20 | 500 | 28.40 ± 3.56 |
| Process Parameters | Parameter Value | Metric Type | Extraction Rate/% | Relative Error/% |
|---|---|---|---|---|
| Enzyme hydrolysis time | 2.65 h | Model optimization value | 56.88 | —— |
| Amount of enzyme added | 2% | |||
| Slurry ratio | 1 g:22 mL | Test value | 57.6 | 0.02 |
| Ultrasonic pretreatment time | 21 min | |||
| Ultrasonic power | 250 W |
| Amino Acid | Content/% |
|---|---|
| Asp | 7.90 ± 0.60 |
| Thr | 3.66 ± 1.04 |
| Ser | 4.57 ± 0.98 |
| Glu | 13.24 ± 1.00 |
| Gly | 24.44 ± 0.99 |
| Ala | 9.49 ± 0.32 |
| Val | 2.93 ± 0.03 |
| Met | 0.74 ± 0.56 |
| Ile | 2.40 ± 0.82 |
| Leu | 4.94 ± 1.02 |
| Tyr | 1.32 ± 0.98 |
| Phe | 3.11 ± 0.76 |
| His | 4.30 ± 1.21 |
| Lys | 6.02 ± 0.23 |
| Arg | 10.95 ± 0.34 |
| Pro | 12.88 ± 0.81 |
| Hyp | 21.17 ± 1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Lu, J.; Jia, Y.; Guo, Z.; Gao, R. Preparation and Characterization of Eel (Anguilla) Bone Collagen Based on Intelligent Algorithm. Foods 2025, 14, 4338. https://doi.org/10.3390/foods14244338
Yuan L, Lu J, Jia Y, Guo Z, Gao R. Preparation and Characterization of Eel (Anguilla) Bone Collagen Based on Intelligent Algorithm. Foods. 2025; 14(24):4338. https://doi.org/10.3390/foods14244338
Chicago/Turabian StyleYuan, Li, Jiayu Lu, Yingxi Jia, Zitao Guo, and Ruichang Gao. 2025. "Preparation and Characterization of Eel (Anguilla) Bone Collagen Based on Intelligent Algorithm" Foods 14, no. 24: 4338. https://doi.org/10.3390/foods14244338
APA StyleYuan, L., Lu, J., Jia, Y., Guo, Z., & Gao, R. (2025). Preparation and Characterization of Eel (Anguilla) Bone Collagen Based on Intelligent Algorithm. Foods, 14(24), 4338. https://doi.org/10.3390/foods14244338

