Diversity of Volatile Profiles and Nutritional Traits Among 29 Cucumber Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Physiological Characteristics Measurement
2.3. HS-SPME Analysis
2.4. GC–MS Analysis
2.5. Identification and Quantification of Volatile Compounds
2.6. Statistical Analysis
3. Results and Discussion
3.1. Comparison of Nutrient Contents
3.2. Identification of Volatile Compounds
3.3. Composition and Concentration of Volatile Compounds
3.3.1. Aldehydes
3.3.2. Alcohols
3.3.3. Ketones
3.3.4. Alkenes
3.3.5. Others
3.4. Analysis of Volatile Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, C.; Weng, Y.; Du, X. Sensory profiles of 10 cucumber varieties using a panel trained with chemical references. ACS Food Sci. Technol. 2022, 2, 815–824. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y.; Wang, X.; Dong, X.; Zhang, T.; Yang, Y.; Chen, S. Relationship between key environmental factors and profiling of volatile compounds during cucumber fruit development under protected cultivation. Food Chem. 2019, 290, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hao, N.; Meng, Z.; Li, Y.; Zhao, Z. Identification, comparison and classification of volatile compounds in peels of 40 apple cultivars by HS–SPME with GC–MS. Foods 2021, 10, 1051. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Shang, Z.; Zhang, S.; Li, M.; Zhang, X.; Ren, H.; Hu, X.; Yi, J. Dynamic analysis of flavor properties and microbial communities in Chinese pickled chili pepper (Capsicum frutescens L.): A typical industrial-scale natural fermentation process. Food Res. Int. 2022, 153, 110952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gu, X.; Yan, W.; Lou, L.; Xu, X.; Chen, X. Characterization of differences in the composition and content of volatile compounds in cucumber fruit. Foods 2022, 11, 1101. [Google Scholar] [CrossRef]
- Wei, G.; Tian, P.; Zhang, F.; Qin, H.; Miao, H.; Chen, Q.; Hu, Z.; Cao, L.; Wang, M.; Gu, X.; et al. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into voc diversity in cucumber plants (Cucumis sativus). Plant Physiol. 2016, 172, 603–618. [Google Scholar] [CrossRef]
- Forss, D.; Dunstone, E.; Ramshaw, E.; Stark, W. The flavor of cucumbers. J. Food Sci. 1961, 27, 90–93. [Google Scholar] [CrossRef]
- Galliard, D.; Reynolds, J. The formation of cis-3-nonenal, trans-2-nonenal and hexanal from linoleic acid hydroperoxide isomers by a hydroperoxide cleavage enzyme system in cucumber (Cucumis sativus) fruits. Biochim. Biophys. Acta. 1976, 441, 181–192. [Google Scholar] [CrossRef]
- Jo, H.; Song, K.; Kim, J.; Lee, C. Non-targeted metabolomic analysis for the comparative evaluation of volatile organic compounds in 20 globally representative cucumber lines. Front. Plant Sci. 2022, 13, 1028735. [Google Scholar] [CrossRef]
- Hao, L.; Chen, S.; Wang, C.; Chen, Q.; Wan, X.; Shen, X.; Chen, Z.; Meng, H. Aroma components and their contents in cucumbers from different genotypes. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2013, 41, 139–146. [Google Scholar]
- Amaro, A.; Beaulieu, J.; Grimm, C.; Stein, R.; Almeida, D. Effect of oxygen on aroma volatiles and quality of fresh-cut cantaloupe and honeydew melons. Food Chem. 2012, 130, 49–57. [Google Scholar] [CrossRef]
- Hadi, M.; Ahmed, M.; Zhang, F.; Wu, F.; Zhou, C.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8299. [Google Scholar] [CrossRef]
- Palma-Harris, C.; Mcfeeters, R.; Fleming, H. Solid-phase microextraction (SPME) technique for measurement of generation of fresh cucumber flavor compounds. J. Food Sci. 2001, 49, 4203. [Google Scholar] [CrossRef]
- Ligor, T.; Buszewski, B. Single-drop microextraction and gas chromatography–mass spectrometry for the determination of volatile aldehydes in fresh cucumbers. Anal. Bioanal. Chem. 2008, 391, 2283–2289. [Google Scholar] [CrossRef] [PubMed]
- Shan, N.; Gan, Z.; Nie, J.; Liu, H.; Wang, Z.; Sui, X. Comprehensive characterization of fruit volatiles and nutritional quality of three cucumber (Cucumis sativus L.) genotypes from different geographic groups after bagging treatment. Foods 2020, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Ujita, C.; Fujimoto, S.H.; Wilkinson, J.; Hiatt, B.; Knauf, V.; Kajiwara, T.; Feussner, I. Fatty acid 9- and 13-hydroperoxide lyases from cucumber. FEBS Lett. 2000, 481, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, R.; Hao, L.; Chen, W.; Cheng, S. Profiling of volatile compounds and associated gene expression and enzyme activity during fruit development in two cucumber cultivars. PLoS ONE 2015, 10, e0119444. [Google Scholar] [CrossRef]
- Weng, Y. Cucumis sativus chromosome evolution, domestication, and genetic diversity. Plant Breed. Rev. 2021, 44, 79–111. [Google Scholar]
- Gilbert, J.; Guthart, M.; Gezan, S.; Melissa, P.; Schwieterman, M.; Colquhoun, T.; Bartoshuk, L.; Sims, C.; Clark, D.; Olmstead, J. Identifying breeding priorities for blueberry flavor using biochemical, sensory, and genotype by environment analyses. PLoS ONE 2015, 10, e0138494. [Google Scholar] [CrossRef]
- Spadafora, N.; Cocetta, G.; Cavaiuolo, M.; Bulgari, R.; Dhorajiwala, R.; Ferrante, A.; Spinardi, A.; Rogers, H.; Müller, C. A complex interaction between pre-harvest and post-harvest factors determines fresh-cut melon quality and aroma. Sci. Rep. 2019, 9, 2745. [Google Scholar] [CrossRef]
- Lignou, S.; Parker, J.K.; Baxter, C.; Mottram, D.S. Sensory and instrumental analysis of medium and long shelf-life charentais cantaloupe melons (Cucumis melo L.) harvested at different maturities. Food Chem. 2014, 148, 218–229. [Google Scholar] [CrossRef]
- de Siqueira, A.C.P.; Dutra Sandes, R.D.; Nogueira, J.P.; Araujo, H.C.S.; de Jesus, M.S.; Rajkumar, G.; Leite Neta, M.T.S.; Narain, N. Volatile profiles of murcott and ponkan mandarins obtained by stir bar sorptive extraction technique and their contributions to the fruit aroma. J. Food Sci. 2024, 89, 4823–4838. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, Y.Y.; Choi, Y.S.; Jang, H.W. Headspace stir-bar sorptive extraction combined with gas chromatography–mass spectrometry for trace analysis of volatile organic compounds in Schisandra chinensis Baillon (omija). Food Sci. Nutr. 2023, 11, 7396–7406. [Google Scholar] [CrossRef]
- El-Akad, R.; El-Din, M.; Farag, M. How does Lagenaria siceraria (Bottle Gourd) metabolome compare to Cucumis sativus (Cucumber) f. Cucurbitaceae? A multiplex approach of HR-UPLC/MS/MS and GC/MS using molecular networking and chemometrics. Foods 2023, 12, 771. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Jia, Z.; Zhou, H.; Zhang, D.; Li, G.; Yu, J. Comparative analysis of volatile compounds from four radish microgreen cultivars based on ultrasonic cell disruption and HS-SPME/GC–MS. Int. J. Mol. Sci. 2023, 24, 14988. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wu, H.; Xiong, M.; Chen, Y.; Chen, J.; Zhou, B.; Wang, H.; Li, L.; Fu, X.; Bie, Z.; et al. Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Food Chem. 2020, 316, 126342. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Wu, Y.; Chen, J.; Lou, Q. Identification and comparison of aroma componentsin peel and flesh of cucumber. Acta Agric. Boreali-Occident. Sin. 2021, 30, 1365–1373. [Google Scholar]
- Wei, S.; Xiao, X.; Wei, L.; Li, L.; Li, G.; Liu, F.; Xie, J.; Yu, J.; Zhong, Y. Development and comprehensive HS-SPME/GC–MC analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. Var. Capitata L.) volatile components. Food Chem. 2021, 340, 128166. [Google Scholar]
- Xu, L.; Liu, W.; Pan, Z.; Pang, F.; Zhang, Y.; Liang, J.; Wang, Q.; Wang, J.; Zhao, M.; Qiao, Y.; et al. Characterization and comparative analysis of volatile organic compounds in four aromatic wild strawberry species using HS-SPME-GC-MS. Food Chem. X 2025, 25, 102092. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, S.; Yuan, J.; Wang, C.; Lu, T.; Wang, H.; Yu, C. The formation of fruit quality in Cucumis sativus L. Front. Plant Sci. 2021, 12, 729448. [Google Scholar]
- Zhao, C.; Song, S.; Chen, S.; Wang, C.; Zhang, Y.; Tao, W. Evaluation of cucumber nutritional quality based on grey system theory. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2015, 43, 181–186. [Google Scholar]
- Du, X.; Routray, J.; Williams, C.; Weng, Y. Association of refreshing perception with volatile aroma compounds, organic acids, and soluble solids in freshly consumed cucumber fruit. ACS Food Sci. Technol. 2022, 2, 1495–1506. [Google Scholar] [CrossRef]
- Ali, A.; Ghani, M.I.; Ding, H.; Fan, Y.; Cheng, Z.; Iqbal, M. Co-amended synergistic interactions between arbuscular mycorrhizal fungi and the organic substrate-induced cucumber yield and fruit quality associated with the regulation of the am-fungal community structure under anthropogenic cultivated soil. Int. J. Mol. Sci. 2019, 20, 1539. [Google Scholar] [CrossRef] [PubMed]
- Sotiroudis, G.; Melliou, E.; Sotiroudis, T.G.; Chinou, I. Chemical analysis, antioxidant and antimicrobial activity of three greek cucumber (Cucumis sativus) cultivars. J. Food Biochem. 2010, 34, 61–78. [Google Scholar] [CrossRef]
- Min, K.; Song, K.; Lim, S.; Yi, G.; Jin Lee, E. Cucurbitacin and volatile compound profiling reveals independent domestication of cucumber (Cucumis sativus L.) fruit. Food Chem. 2023, 405, 135006. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, H.; Shao, C.; Kang, S.; Zhang, Y.; Guo, L.; Dai, W.; Tan, J.; Peng, Q.; Lin, Z. Identification of key odorants responsible for chestnut-like aroma quality of green teas. Food Res. Int. 2018, 108, 74–82. [Google Scholar] [CrossRef]
- Schieberle, P.; Ofner, S.; Grosch, W. Evaluation of potent odorants in cucumbers (Cucumis sativus) and muskmelons (Cucumis melo) by aroma extract dilution analysis. J. Food Sci. 1990, 55, 195. [Google Scholar] [CrossRef]
- Aboshi, T.; Musya, S.; Sato, H.; Ohta, T.; Murayama, T. Changes of volatile flavor compounds of watermelon juice by heat treatment. Biosci. Biotechnol. Biochem. 2020, 84, 2157–2159. [Google Scholar] [CrossRef]
- Odeyemi, O.; Burke, C.; Bolch, C.; Stanley, R. Evaluation of spoilage potential and volatile metabolites production by shewanella baltica isolated from modified atmosphere packaged live mussels. Food Res. Int. 2018, 103, 415–425. [Google Scholar] [CrossRef]
- Majithia, D.; Metrani, R.; Dhowlaghar, N.; Crosby, K.; Patil, B. Assessment and classification of volatile profiles in melon breeding lines using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Plants 2021, 10, 2166. [Google Scholar] [CrossRef]
- Aprea, E.; Corollaro, M.L.; Betta, E.; Endrizzi, I.; Demattè, M.L.; Biasioli, F.; Gasperi, F. Sensory and instrumental profiling of 18 apple cultivars to investigate the relation between perceived quality and odour and flavour. Food Res. Int. 2012, 49, 677–686. [Google Scholar] [CrossRef]
- Nakamura, A.; Ono, T.; Yagi, N.; Miyazawa, M. Volatile compounds with characteristic aroma of boiled sweet potato (Ipomoea batatas L. cv Ayamurasaki, I. batatas L. cv Beniazuma and I. batatas L. cv Simon 1). J. Essent. Oil Res. 2013, 25, 497–505. [Google Scholar] [CrossRef]
- Liu, C.; He, W.; Liu, Y. Head-space solid phase microextraction and GC-MS analysis of fragrance of cucumber. Acta Hortic. Sin. 2002, 6, 581–583. [Google Scholar]
- Valverde, M.A.F.; Sánchez-Palomo, E.; Alises, M.O.; Romero, C.C.; González-Viñas, M.A. Volatile and sensory characterization of la mancha trujillo melons over three consecutive harvests. Foods 2021, 10, 1683. [Google Scholar] [CrossRef]
- Metrani, R.; Jayaprakasha, G.K.; Patil, B.S. Optimization of experimental parameters and chemometrics approach to identify potential volatile markers in seven Cucumis melo varieties using HS–SPME–GC–MS. Food Anal. Methods 2021, 15, 607–624. [Google Scholar] [CrossRef]
- Kalivodová, A.; Hron, K.; Filzmoser, P.; Najdekr, L.; Janecková, H.; Adam, T. PLS-DA for compositional data with application to metabolomics. J. Chemom. 2015, 29, 21–28. [Google Scholar] [CrossRef]
- Yu, S.; Huang, X.; Wang, L.; Wang, Y.; Jiao, X.; Chang, X.; Tian, X.; Ren, Y.; Zhang, X. Characterization of the volatile flavor profiles of black garlic using nanomaterial-based colorimetric sensor array, HS-SPME-GC/MS coupled with chemometrics strategies. Food Chem. 2024, 458, 140213. [Google Scholar] [CrossRef]
- Deng, H.; He, R.; Long, M.; Li, Y.; Zheng, Y.; Lin, L.; Liang, D.; Zhang, X.; Liao, M.; Lv, X.; et al. Comparison of the fruit volatile profiles of five muscadine grape cultivars (Vitis rotundifolia Michx.) using HS-SPME-GC/MS combined with multivariate statistical analysis. Front. Plant Sci. 2021, 12, 728891. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.; Park, S.; Kim, Y.; Mani, V.; Lee, K.; Kwon, S.; Park, S.; Kim, J. Metabolite changes in soybean (Glycine max) leaves during the entire growth period. ACS Omega 2023, 8, 41718–41727. [Google Scholar] [CrossRef]




| Name | Amino Acid (mg/kg) | Tannin (mg/kg) | Soluble Protein (mg/g) | SSC (°Brix) | Soluble Sugar (mg/g) | Vc (mg/kg) | Nitrate Nitrogen (mg/kg) |
|---|---|---|---|---|---|---|---|
| C-1 | 593.26 ± 8.39 bcd | 53.77 ± 4.74 lm | 0.86 ± 0.06 fghi | 4.57 ± 0.15 bcd | 25.21 ± 2.32 bc | 71.48 ± 0.98 ijkl | 95.68 ± 3.29 gh |
| C-2 | 527.80 ± 8.00 bcde | 54.34 ± 1.35 klm | 0.78 ± 0.03 hi | 4.3 ± 0.1 def | 25.89 ± 1.78 ab | 69.36 ± 2.22 jkl | 123.75 ± 3.92 de |
| C-3 | 782.02 ± 30.45 a | 76.82 ± 4.37 defg | 0.84 ± 0.04 ghi | 5.17 ± 0.15 a | 18.34 ± 1.11 hijkl | 76.48 ± 4.66 hijk | 97.19 ± 1.03 gh |
| C-4 | 625.58 ± 33.06 b | 93.82 ± 3.67 ab | 0.84 ± 0.03 ghi | 3.97 ± 0.06 fghijk | 22.63 ± 0.83 bcdef | 85.68 ± 2.84 ghi | 92.10 ± 4.29 ghi |
| C-6 | 609.39 ± 47.84 bc | 62.52 ± 5.13 hijkl | 0.86 ± 0.08 fghi | 4.37 ± 0.06 cde | 23.28 ± 0.49 bcdef | 80.04 ± 2.40 hijk | 93.76 ± 6.92 gh |
| C-9 | 487.10 ± 47.52 ef | 79.84 ± 6.38 cdef | 0.72 ± 0.02 hij | 3.97 ± 0.06 fghijk | 21.77 ± 0.15 cdefg | 95.53 ± 6.20 fg | 41.97 ± 3.92 l |
| C-11 | 609.43 ± 63.54 bc | 98.14 ± 4.02 a | 1.22 ± 0.02 bcd | 4.77 ± 0.06 b | 22.65 ± 0.91 bcdef | 69.43 ± 5.91 jkl | 145.80 ± 2.50 cd |
| C-13 | 518.46 ± 2.02 cde | 57.08 ± 3.73 klm | 0.54 ± 0.09 ijk | 3.93 ± 0.06 fghijk | 19.49 ± 0.97 fghij | 65.61 ± 3.40 klm | 88.42 ± 2.61 ghi |
| C-14 | 256.07 ± 64.92 ij | 78.52 ± 5.39 cdef | 0.43 ± 0.02 jk | 3.90 ± 0.10 ghijk | 17.83 ± 0.50 hijkl | 31.14 ± 1.75 q | 58.84 ± 3.53 jkl |
| C-17 | 408.23 ± 18.32 fgh | 63.17 ± 5.21 ghijkl | 0.37 ± 0.01 k | 3.70 ± 0.10 jk | 20.09 ± 1.61 efghi | 51.67 ± 4.46 mno | 89.98 ± 9.56 ghi |
| C-18 | 424.34 ± 11.85 efg | 71.36 ± 4.47 efghij | 0.56 ± 0.04 ijk | 4.53 ± 0.06 bcd | 24.02 ± 1.46 bcd | 58.98 ± 4.61 lmn | 123.43 ± 1.01 def |
| C-27 | 298.36 ± 13.82 ij | 75.64 ± 5.84 defgh | 0.75 ± 0.11 hij | 5.37 ± 0.15 a | 25.22 ± 0.72 bc | 33.03 ± 3.16 pq | 78.42 ± 2.16 hij |
| C-28 | 265.45 ± 35.51 ij | 72.92 ± 5.64 defghi | 1.05 ± 0.08 efgh | 4.73 ± 0.23 bc | 29.06 ± 2.35 a | 41.02 ± 3.25 opq | 100.85 ± 6.99 fgh |
| C-29 | 282.34 ± 30.04 ij | 79.58 ± 5.50 cdef | 0.71 ± 0.39 ij | 4.03 ± 0.06 efghij | 17.29 ± 1.32 hijkl | 49.95 ± 1.05 no | 92.56 ± 10.67 ghi |
| C-30 | 494.31 ± 33.40 def | 55.05 ± 5.49 klm | 0.59 ± 0.01 ijk | 3.60 ± 0.10 k | 18.79 ± 1.19 ghijk | 50.38 ± 2.45 mno | 56.68 ± 4.57 jkl |
| C-32 | 446.48 ± 34.15 efg | 38.39 ± 1.11 n | 0.55 ± 0.04 ijk | 4.23 ± 0.15 defgh | 20.22 ± 0.64 defgh | 41.70 ± 4.18 opq | 60.96 ± 3.00 jkl |
| C-45 | 468.09 ± 6.18 ef | 61.14 ± 5.85 ijklm | 0.65 ± 0.06 ijk | 4.00 ± 0.10 efghij | 17.19 ± 0.86 hijkl | 49.81 ± 4.96 no | 61.47 ± 1.15 jkl |
| C-47 | 451.30 ± 21.62 efg | 91.57 ± 3.76 abc | 0.34 ± 0.01 k | 3.77 ± 0.06 ijk | 19.68 ± 0.77 fghij | 47.12 ± 3.10 nop | 55.63 ± 5.09 kl |
| C-48 | 626.22 ± 36.11 b | 64.47 ± 2.07 ghijkl | 1.18 ± 0.05 def | 4.53 ± 0.15 bcd | 23.74 ± 1.10 bcde | 150.19 ± 5.94 b | 70.19 ± 6.22 ijk |
| CP-2 | 349.86 ± 27.48 ghi | 67.80 ± 6.81 fghijk | 1.36 ± 0.06 bcd | 4.30 ± 0.20 def | 15.26 ± 0.94 klmn | 81.11 ± 6.42 ghij | 198.67 ± 13.93 b |
| CP-3 | 511.60 ± 49.47 cdef | 76.14 ± 2.35 defgh | 2.20 ± 0.15 a | 4.73 ± 0.12 bc | 16.05 ± 1.34 jklm | 132.55 ± 5.90 c | 237.13 ± 5.14 a |
| CP-8 | 300.42 ± 30.41 ij | 85.48 ± 2.56 abcd | 1.46 ± 0.12 bc | 4.20 ± 0.26 defgh | 11.51 ± 1.46 n | 123.22 ± 2.67 cd | 202.94 ± 4.89 b |
| CP-9 | 276.46 ± 5.35 ij | 71.28 ± 2.22 efghij | 1.53 ± 0.03 b | 4.30 ± 0.10 def | 14.75 ± 1.3 lmn | 182.57 ± 8.01 a | 158.24 ± 7.41 c |
| CP-18 | 284.37 ± 22.95 ij | 58.36 ± 3.18 jklm | 1.20 ± 0.15 bcd | 4.20 ± 0.10 defgh | 17.68 ± 0.89 hijkl | 124.43 ± 4.32 cd | 144.82 ± 10.7 cd |
| CP-22 | 272.12 ± 16.28 ij | 47.95 ± 1.77 mn | 1.50 ± 0.16 bc | 3.97 ± 0.12 fghijk | 12.75 ± 0.38 mn | 113.82 ± 7.22 de | 185.12 ± 5.54 b |
| CP-23 | 318.35 ± 12.67 hij | 53.18 ± 5.42 lm | 1.12 ± 0.09 efg | 4.27 ± 0.06 defg | 15.18 ± 0.93 klmn | 115.87 ± 2.32 de | 204.91 ± 5.82 b |
| CP-24 | 255.73 ± 19.64 ij | 80.05 ± 2.45 cdef | 1.48 ± 0.09 bc | 4.3 ± 0.26 def | 12.55 ± 1.32 mn | 103.29 ± 6.99 ef | 125.64 ± 10.35 d |
| CP-31 | 290.10 ± 55.53 ij | 82.45 ± 2.65 bcde | 1.30 ± 0.04 bcd | 4.10 ± 0.10 efghi | 16.32 ± 1.00 ijklm | 88.37 ± 4.66 fgh | 87.60 ± 8.430 ghi |
| CP-44 | 224.54 ± 10.60 j | 78.70 ± 1.38 cdef | 1.29 ± 0.04 bcd | 3.87 ± 0.06 hijk | 17.32 ± 0.58 hijkl | 103.48 ± 9.75 ef | 101.83 ± 17.84 efg |
| Code a | Compounds | CAS b | RT (min) c | Average Content (μg/kg FW) |
|---|---|---|---|---|
| Aldehydes | ||||
| A1 | Butanal, 3-methyl- | 000590-86-3 | 4.568 | 6.01 (0–15.7) |
| A2 | Pentanal | 000110-62-3 | 4.563 | 1.1 (0–9.57) |
| A3 | 2-Butenal | 004170-30-3 | 6.08 | 5.1 (0–15.9) |
| A4 | Hexanal | 000066-25-1 | 7.729 | 55.50 (32.87–85.95) |
| A5 | 2-Pentenal, (E)- | 001576-87-0 | 8.885 | 0.94 (0–8.72) |
| A6 | 2-Pentenal, 2-methyl- | 000623-36-9 | 9.852 | 2.11 (0–9.53) |
| A7 | Heptanal | 000111-71-7 | 11.047 | 1.38 (0–6.65) |
| A8 | 2-Hexenal, (E)- | 006728-26-3 | 11.804 | 49.68 (34.32–76.08) |
| A9 | Nonanal | 000124-19-6 | 17.283 | 60.31 (39.09–142.35) |
| A10 | 5-Ethylcyclopent-1-enecarboxaldehyde | 036431-60-4 | 17.566 | 8.02 (4.13–12.53) |
| A11 | 4-Nonenal, (E)- | 002277-16-9 | 18.488 | 0.44 (0–7.08) |
| A12 | 6-Nonenal, (E)- | 002277-20-5 | 18.718 | 82.20 (0–184.01) |
| A13 | 2,4-Heptadienal, (E,E)- | 004313-03-5 | 19.63 | 60.17 (24.96–91.60) |
| A14 | Benzaldehyde | 000100-52-7 | 20.221 | 15.99 (0–23.01) |
| A15 | 2-Nonenal, (E)- | 018829-56-6 | 20.923 | 200.70 (93.36–380.42) |
| A16 | 2,6-Nonadienal, (E,Z)- | 000557-48-2 | 22.192 | 302.59 (163.06–479.77) |
| A17 | 1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl- | 000432-25-7 | 22.831 | 11.62 (6.04–22.03) |
| A18 | 2,4-Nonadienal, (E,E)- | 005910-87-2 | 24.695 | 13.54 (0–27.94) |
| A19 | Tridecanal | 010486-19-8 | 27.423 | 3.96 (1.64–7.61) |
| A20 | 4-Oxononanal | 1000314-10-4 | 27.564 | 4.99 (0–17.03) |
| A21 | Tetradecanal | 000124-25-4 | 29.638 | 9.04 (3.81–18.59) |
| A22 | Pentadecanal | 002765-11-9 | 31.79 | 51.99 (18.07–108.02) |
| A23 | cis,cis-7,10,-Hexadecadienal | 056829-23-3 | 35.112 | 1.29 (0–4.08) |
| A24 | cis-9-Hexadecenal | 056219-04-6 | 36.147 | 2.51 (0.66–7.01) |
| Alcohols | ||||
| L1 | Ethanol | 000064-17-5 | 3.733 | 3.45 (2.49–6.85) |
| L2 | 1-Hexanol | 000111-27-3 | 16.078 | 13.88 (2.83–32.62) |
| L3 | 3-Hexen-1-ol, (E)- | 000928-97-2 | 16.859 | 1.53 (0–3.24) |
| L4 | 1-Hexanol, 2-ethyl- | 000104-76-7 | 19.752 | 0.48 (0–2.04) |
| L5 | Linalool | 000078-70-6 | 21.221 | 7.64 (0–18.67) |
| L6 | 1-Octanol | 000111-87-5 | 21.518 | 1.22 (0–3.86) |
| L7 | 1-Nonanol | 000143-08-8 | 23.905 | 15.92 (0–44.2) |
| L8 | 3-Nonen-1-ol, (Z)- | 010340-23-5 | 24.407 | 25.84 (17.55–38.05) |
| L9 | (6Z)-Nonen-1-ol | 035854-86-5 | 25.154 | 26.48 (8.42–55.49) |
| L10 | 3,6-Nonadien-1-ol, (E,Z)- | 056805-23-3 | 25.851 | 18.01 (0–42.49) |
| L11 | 2,6-Nonadien-1-ol | 028069-72-9 | 26.222 | 0.42 (0–7.65) |
| L12 | Benzyl alcohol | 000100-51-6 | 28.359 | 0.75 (0–5.19) |
| L13 | 11,11-Dimethyl-4,8-dimethylenebicyclo[7.2.0]undecan-3-ol | 079580-01-1 | 36.557 | 1.03 (0–4.2) |
| Ketones | ||||
| K1 | 2,3-Pentanedione | 000600-14-6 | 6.807 | 0.13 (0–1.9) |
| K2 | 3-Octanone | 000106-68-3 | 13.063 | 6.97 (0–12.07) |
| K3 | 2-Octanone | 000111-13-7 | 13.98 | 1.38 (0.79–2.18) |
| K4 | 5-Hepten-2-one, 6-methyl- | 000110-93-0 | 15.463 | 0.7 (0–3.76) |
| K5 | 3-Octen-2-one | 001669-44-9 | 17.434 | 8.21 (0–15.91) |
| K6 | 3,5-Octadien-2-one | 038284-27-4 | 20.352 | 52.86 (37.61–72.36) |
| K7 | 3,5-Octadien-2-one, (E,E)- | 030086-02-3 | 21.592 | 18.29 (0–46.01) |
| K8 | .alpha.-Ionone | 000127-41-3 | 28.018 | 1.1 (0–2.92) |
| K9 | 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- | 003796-70-1 | 28.125 | 0.07 (0–0.76) |
| K10 | trans-.beta.-Ionone | 000079-77-6 | 29.838 | 11.25 (5.25–19.65) |
| K11 | 3-Buten-2-one, 4-(2,2,6-trimethyl-7-oxabicyclo[4.1.0]hept-1-yl)- | 023267-57-4 | 30.877 | 1.83 (0–3.83) |
| K12 | 2(3H)-Furanone, dihydro-5-pentyl- | 000104-61-0 | 31.492 | 0.15 (0–1.68) |
| Alkenes | ||||
| O1 | 1-Octene | 000111-66-0 | 2.64 | 1.61 (0–2.8) |
| O2 | Decane | 000124-18-5 | 5.28 | 0.13 (0–2.79) |
| O3 | (1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene | 007785-70-8 | 5.651 | 0.96 (0–15.84) |
| O4 | Dodecane | 000112-40-3 | 11.633 | 0.1 (0–1.42) |
| O5 | Tridecane | 000629-50-5 | 14.819 | 0.41 (0–2.51) |
| O6 | 1,6-Dioxaspiro[4.4]nonane, 2-ethyl- | 038401-84-2 | 15.985 | 0.08 (0–1.03) |
| O7 | Tetradecane | 000629-59-4 | 17.737 | 0.3 (0–3.54) |
| O8 | Caryophyllene | 000087-44-5 | 22.446 | 6.03 (0–28.34) |
| O9 | Humulene | 006753-98-6 | 24.051 | 9.63 (0–26.8) |
| O10 | Nonadecane | 000629-92-5 | 29.35 | 1.14 (0–2.12) |
| O11 | Caryophyllene oxide | 001139-30-6 | 30.755 | 5.39 (0–19.7) |
| O12 | (+)-epi-Bicyclosesquiphellandrene | 054274-73-6 | 34.332 | 0.33 (0–1.59) |
| Others | ||||
| E1 | 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl- | 015356-74-8 | 37.22 | 1.07 (0–6.22) |
| E2 | Furan, 2-ethyl- | 003208-16-0 | 3.997 | 7.81 (2.23–16.33) |
| E3 | Furan, 2-pentyl- | 003777-69-3 | 12.306 | 15.38 (2.06–41.29) |
| E4 | cis-2-(2-Pentenyl)furan | 070424-13-4 | 14.409 | 10.36 (0–29.52) |
| E5 | Furan, 2-(2-propenyl)- | 075135-41-0 | 22.636 | 1.3 (0–2.59) |
| E6 | Furan, 2-(1-pentenyl)-, (E)- | 036144-40-8 | 28.769 | 3.13 (0–5.3) |
| NO | Cultivars | Number of Volatile Compounds | Total Content (μg/kg FW) |
|---|---|---|---|
| 1 | CP-3 | 45 | 1187.8 ± 133.89 efgh |
| 2 | CP-8 | 44 | 1047.63 ± 56.3 hi |
| 3 | CP-9 | 46 | 916.15 ± 73.22 ij |
| 4 | CP-22 | 42 | 1146.39 ± 37.35 fgh |
| 5 | CP-23 | 43 | 1116.71 ± 104.9 gh |
| 6 | C-1 | 45 | 1167.1 ± 74.95 efgh |
| 7 | C-2 | 43 | 1236.5 ± 51.64 defg |
| 8 | C-3 | 46 | 1121.65 ± 75.33 gh |
| 9 | C-4 | 38 | 1332.14 ± 28.61 cde |
| 10 | C-6 | 40 | 1142.65 ± 50.04 fgh |
| 11 | C-9 | 45 | 1802.38 ± 53.11 a |
| 12 | C-11 | 47 | 1390.91 ± 42.11 cd |
| 13 | C-13 | 44 | 1172.3 ± 18.71 efgh |
| 14 | C-14 | 38 | 1564.49 ± 112.04 b |
| 15 | C-17 | 48 | 1473.07 ± 155.47 bc |
| 16 | C-18 | 47 | 1571.32 ± 78.57 b |
| 17 | C-27 | 50 | 1296.37 ± 97.21 def |
| 18 | C-28 | 45 | 1630.5 ± 188.25 b |
| 19 | C-29 | 45 | 1086.09 ± 71.26 gh |
| 20 | C-30 | 46 | 1042.61 ± 107.14 hi |
| 21 | C-32 | 49 | 1294.13 ± 98.03 def |
| 22 | C-45 | 48 | 1037.35 ± 105.59 hi |
| 23 | C-47 | 45 | 1562.69 ± 81.07 b |
| 24 | C-48 | 49 | 1099.04 ± 126.96 gh |
| 25 | CP-2 | 40 | 1076.46 ± 111.91 ghi |
| 26 | CP-18 | 47 | 1374.38 ± 61.57 cd |
| 27 | CP-24 | 47 | 1059.67 ± 20.6 hi |
| 28 | CP-31 | 45 | 771.34 ± 66.75 j |
| 29 | CP-44 | 51 | 1125.12 ± 76.06 fgh |
| Cultivars | Aldehydes | Alcohols | Ketones | Alkenes | Others |
|---|---|---|---|---|---|
| C-1 | 895.1 ± 54.65 hijkl | 80.14 ± 10.55 kl | 113.30 ± 12.88 defg | 49.41 ± 1.60 b | 29.17 ± 3.45 efgh |
| C-2 | 1002.69 ± 41.44 gfh | 70.35 ± 1.64 l | 118.88 ± 5.63 cde | 3.93 ± 0.57 ij | 40.65 ± 4.35 bcde |
| C-3 | 860.42 ± 57.35 ijklm | 78.76 ± 4.89 kl | 98.15 ± 8.86 gh | 37.00 ± 1.52 cd | 47.33 ± 3.10 bc |
| C-4 | 1097.62 ± 38.57 def | 86.13 ± 2.46 jkl | 99.72 ± 3.38 fgh | 20.53 ± 21.02 ef | 28.16 ± 9.2 efghi |
| C-6 | 980.68 ± 50.43 fghi | 73.18 ± 0.70 kl | 72.89 ± 2.87 jk | 0.83 ± 0.07 j | 15.08 ± 0.99 ghi |
| C-9 | 1531.18 ± 36.56 a | 99.48 ± 7.18 hij | 104.92 ± 6.8 efgh | 32.76 ± 2.29 d | 34.06 ± 1.59 cdef |
| C-11 | 1094.46 ± 39.67 def | 90.62 ± 5.64 ijk | 125.65 ± 3.73 bcd | 46.45 ± 0.49 b | 33.74 ± 0.50 cdef |
| C-13 | 966.76 ± 16.87 ghij | 68.68 ± 3.70 l | 108.40 ± 2.74 efgh | 3.49 ± 0.12 ij | 24.98 ± 1.61 efghi |
| C-14 | 1312.05 ± 95.82 b | 118.93 ± 2.55 fgh | 66.81 ± 1.79 kl | 23.39 ± 0.95 e | 43.32 ± 13.43 bcd |
| C-17 | 1143.73 ± 113.81 cde | 71.69 ± 3.12 l | 139.37 ± 7.73 ab | 43.76 ± 2.56 bc | 74.52 ± 30.13 a |
| C-18 | 1224.38 ± 60.35 bc | 85.43 ± 6.44 jkl | 134.24 ± 6.55 ab | 73.59 ± 4.37 a | 53.68 ± 4.45 b |
| CP-3 | 955.40 ± 108.83 ghijk | 111.63 ± 10.12 fgh | 77.38 ± 10.12 jk | 23.12 ± 2.78 e | 20.25 ± 2.65 fghi |
| CP-8 | 828.83 ± 45.95 klmno | 119.53 ± 9.39 fgh | 81.21 ± 0.85 ijk | 9.95 ± 0.28 ghi | 8.13 ± 0.1 i |
| CP-9 | 701.32 ± 58.68 p | 108.67 ± 5.28 gh | 78.15 ± 9.06 jk | 12.52 ± 0.71 fgh | 15.47 ± 1.08 ghi |
| CP-22 | 886.13 ± 29.44 hijklm | 122.15 ± 4.57 fgh | 114.17 ± 7.22 def | 12.79 ± 0.49 fgh | 11.14 ± 4.18 hi |
| CP-23 | 892.26 ± 88.23 hijkl | 97.87 ± 5.97 hij | 103.91 ± 9.10 efgh | 7.66 ± 0.90 hij | 15.00 ± 1.26 ghi |
| C-27 | 925.38 ± 60.8 ghijk | 104.86 ± 6.29 ghi | 139.89 ± 8.48 ab | 36.29 ± 3.07 cd | 89.95 ± 22.21 a |
| C-28 | 1201.66 ± 136.22 bcd | 179.85 ± 21.47 bc | 131.08 ± 15.93 abc | 36.77 ± 3.74 cd | 81.15 ± 11.37 a |
| C-29 | 782.44 ± 60.44 lmnop | 112.17 ± 3.86 fgh | 104.69 ± 8.91 efgh | 33.51 ± 1.83 d | 53.27 ± 3.81 b |
| C-30 | 711.16 ± 73.91 op | 190.02 ± 14.81 ab | 84.07 ± 9.19 ij | 23.14 ± 2.51 e | 34.22 ± 7.59 cdef |
| C-32 | 850.30 ± 62.87 jklmn | 202.17 ± 16.08 a | 141.72 ± 9.64 a | 16.85 ± 1.51 efg | 83.09 ± 7.96 a |
| C-45 | 745.79 ± 68.30 nop | 144.67 ± 16.58 e | 77.42 ± 7.76 jk | 24.14 ± 4.39 e | 45.32 ± 9.20 bcd |
| C-47 | 1188.44 ± 55.88 cd | 105.51 ± 5.34 ghi | 119.72 ± 6.72 cde | 70.88 ± 5.73 a | 78.15 ± 7.50 a |
| C-48 | 780.50 ± 84.15 lmnop | 131.27 ± 7.32 ef | 95.14 ± 17.85 hi | 43.42 ± 4.72 bc | 48.73 ± 14.68 bc |
| CP-2 | 886.40 ± 76.29 hijklm | 104.18 ± 23.57 ghi | 56.86 ± 5.22 l | 9.10 ± 2.59 ghij | 19.92 ± 6.38 fghi |
| CP-18 | 1041.32 ± 43.66 efg | 162.39 ± 10.68 d | 104.52 ± 5.24 efgh | 14.30 ± 0.76 fgh | 51.85 ± 2.61 b |
| CP-24 | 759.19 ± 22.22 mnop | 165.94 ± 1.46 cd | 112.88 ± 1.90 defg | 11.83 ± 0.41 ghi | 9.82 ± 1.29 i |
| CP-31 | 548.39 ± 52.23 q | 128.54 ± 4.54 efg | 75.36 ± 6.67 jk | 10.44 ± 0.78 ghi | 8.62 ± 2.86 i |
| CP-44 | 790.52 ± 54.65 lmnop | 170.87 ± 8.07 cd | 105.24 ± 6.26 efgh | 24.87 ± 1.51 e | 33.61 ± 5.69 cdef |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, P.; Wang, C.; Zhang, Y.; Jin, H.; Wu, S.; Ding, X.; Zhang, H. Diversity of Volatile Profiles and Nutritional Traits Among 29 Cucumber Cultivars. Foods 2025, 14, 3878. https://doi.org/10.3390/foods14223878
Lu P, Wang C, Zhang Y, Jin H, Wu S, Ding X, Zhang H. Diversity of Volatile Profiles and Nutritional Traits Among 29 Cucumber Cultivars. Foods. 2025; 14(22):3878. https://doi.org/10.3390/foods14223878
Chicago/Turabian StyleLu, Panling, Chunfang Wang, Yongxue Zhang, Haijun Jin, Shaofang Wu, Xiaotao Ding, and Hongmei Zhang. 2025. "Diversity of Volatile Profiles and Nutritional Traits Among 29 Cucumber Cultivars" Foods 14, no. 22: 3878. https://doi.org/10.3390/foods14223878
APA StyleLu, P., Wang, C., Zhang, Y., Jin, H., Wu, S., Ding, X., & Zhang, H. (2025). Diversity of Volatile Profiles and Nutritional Traits Among 29 Cucumber Cultivars. Foods, 14(22), 3878. https://doi.org/10.3390/foods14223878

