Development of an Objective Index for Evaluating New Fining Agents Used in Winemaking: A Case Study of the Cell Wall Material from Red Grape Skin
Abstract
1. Introduction
2. Materials and Methods
2.1. Fining Agents
2.2. Winemaking Process and Fining Treatments
2.3. Analysis of Wine Anthocyanins and Flavonols by HPLC
2.4. Total Phenol and Flavanol Analysis
2.5. Analysis of Turbidity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fining Test with Conventional Agents
3.1.1. The Effect of Fining on Total Phenolic Content
3.1.2. The Effect of Fining on Anthocyanin and Flavonol Content
3.1.3. The Effect of Fining on Flavanol Content
3.1.4. Impact on Wine Turbidity
3.2. Development of Fining Index
- •
- IAi: fining index for each of the fining agents studied;
- •
- ∆Flavanols = %R. Flavax − %R. Flavai;
- •
- ∆Anthocyanins = %R. Anx − %R. Ani;
- •
- ∆Total phenolics = %R. Tpx − %R. Tpi;
- •
- ∆Flavonols = %R. Flavox − %R. Flavoi;
- •
- x = target fining agent;
- •
- i = studied fining agent (bentonite, pea proteins, potato proteins, and gelatine);
- •
- %R. Flava = percentage reduction of flavanols;
- •
- %R. An = percentage reduction of anthocyanins;
- •
- %R. Tp = percentage reduction of total phenolics;
- •
- %R. Flavo = percentage reduction of flavonols.
3.3. A Case Study of the Cell Wall Material from Red Grape Skin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bautista Ortín, A.B.; Fernández Lorenzo, S.; Jiménez Martínez, M.D.; Gómez Plaza, E. Posibilidades Tecnológicas de Los Orujos de Uva Como Agentes de Afinamiento de Los Vinos. Primeros Ensayos. Investig. Cienc. 2015, 98, 46–60. [Google Scholar]
- Baca-Bocanegra, B.; Gonçalves, S.; Nogales-Bueno, J.; Mansinhos, I.; Heredia, F.J.; Hernández-Hierro, J.M.; Romano, A. Influence of Wine PH and Ethanol Content on the Fining Efficacy of Proteins from Winemaking by Products. Foods 2022, 11, 1688. [Google Scholar] [CrossRef]
- Hidalgo Togores, J. Tratado de Enología, 2nd ed.; Mundi-Prensa: Madrid, Spain, 2010; Volume I, ISBN 978-84-8476-415-1. [Google Scholar]
- Jiménez Martínez, M.D. Posibilidades Tecnológicas de las Paredes Celulares de los Orujos de Uva Como Agentes Afinantes Durante la Vinificación; Universidad de Murcia: Murcia, Spain, 2018. [Google Scholar]
- Vernhet, A. Red Wine Clarification and Stabilization. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 237–251. ISBN 9780128144008. [Google Scholar]
- Jiménez-Martínez, M.D.; Gómez-Plaza, E.; Molero, N.; Bautista-Ortín, A.B. Fining of Red Wines with Pomace Cell Wall Materia: Effect on Wine Phenolic Composition. Food Bioprocess Technol. 2017, 10, 1531–1539. [Google Scholar] [CrossRef]
- Jiménez-Martínez, M.D.; Bautista-Ortín, A.B.; Gil-Muñoz, R.; Gómez-Plaza, E. Comparison of Fining Red Wines with Purified Grape Pomace versus Commercial Fining Agents: Effect on Wine Chromatic Characteristics and Phenolic Content. Int. J. Food Sci. Technol. 2019, 54, 1018–1026. [Google Scholar] [CrossRef]
- Gambuti, A.; Rinaldi, A.; Romano, R.; Manzo, N.; Moio, L. Performance of a Protein Extracted from Potatoes for Fining of White Musts. Food Chem. 2016, 190, 237–243. [Google Scholar] [CrossRef] [PubMed]
- González-Neves, G.; Favre, G.; Gil, G. Effect of Fining on the Colour and Pigment Composition of Young Red Wines. Food Chem. 2014, 157, 358–392. [Google Scholar] [CrossRef]
- Ghanem, C.; Taillandier, P.; Rizk, M.; Rizk, Z.; Nehme, N.; Souchard, J.P.; El Rayess, Y. Analysis of the Impact of Fining Agents Types, Oenological Tannins and Mannoproteins and Their Concentrations on the Phenolic Composition of Red Wine. LWT-Food Sci. Technol. 2017, 83, 101–109. [Google Scholar] [CrossRef]
- Castillo-Sánchez, J.X.; García-Falcón, M.S.; Garrido, J.; Martínez-Carballo, E.; Martins-Dias, L.R.; Mejuto, X.C. Phenolic Compounds and Colour Stability of Vinhão Wines: Influence of Wine-Making Protocol and Fining Agents. Food Chem. 2008, 106, 18–26. [Google Scholar] [CrossRef]
- Osete-Alcaraz, A.; Bautista-Ortín, A.B.; Ortega-Regules, A.; Gómez-Plaza, E. Elimination of Suspended Cell Wall Material in Musts Improves the Phenolic Content and Color of Red Wines. Am. J. Enol. Vitic. 2019, 70, 201–204. [Google Scholar] [CrossRef]
- Oberholster, A.; Carstens, L.M.; Du Toit, W.J. Investigation of the Effect of Gelatine, Egg Albumin and Cross-Flow Microfiltration on the Phenolic Composition of Pinotage Wine. Food Chem. 2013, 138, 1275–1281. [Google Scholar] [CrossRef]
- Tschiersch, C.; Nikfardjam, M.P.; Schmidt, O.; Schwack, W. Degree of Hydrolysis of Some Vegetable Proteins Used as Fining Agents and Its Influence on Polyphenol Removal from Red Wine. Eur. Food Res. Technol. 2010, 231, 65–74. [Google Scholar] [CrossRef]
- Escudier, J.L.; Moutounet, M.; Batlle, J.-L.; Boulet, J.C.; Brugirard, A.; Dubernet, M.; Saint-Pierre, B.; Vernhet, A. Vinos. In Enología: Fundamentos Científicos y Tecnológicos; Mundi Prensa Libros: Madrid, Spain, 2000; pp. 558–607. ISBN 84-8476-074-X. [Google Scholar]
- Cosme, F.; Ricardo-Da-Silva, J.M.; Laureano, O. Protein Fining Agents: Characterization and Red Wine Fining Assays. Ital. J. Food Sci. 2007, 19, 39–56. [Google Scholar]
- Maury, C.; Sarni-Manchado, P.; Cheynier, V. Highlighting Protein Fining Residues in a Model Red Wine. Food Chem. 2019, 279, 272–278. [Google Scholar] [CrossRef]
- Marangon, M.; Vincenzi, S.; Curioni, A. Wine Fining with Plant Proteins. Molecules 2019, 24, 2186. [Google Scholar] [CrossRef]
- Gazzola, D.; Vincenzi, S.; Marangon, M.; Pasini, G.; Curioni, A. Grape Seed Extract: The First Protein-Based Fining Agent Endogenous to Grapes. Aust. J. Grape Wine Res. 2017, 23, 215–225. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Effect of Egg Albumin Fining, Progressive Clarification and Cross Flow Microfiltration on the Polysaccharide and Proanthocyanidin Composition of Red Varietal Wines. Food Res. Int. 2017, 96, 235–243. [Google Scholar] [CrossRef]
- Vincenzi, S.; Dinnella, C.; Recchia, A.; Monteleone, E.; Gazzola, D.; Pasini, G.; Curioni, A. Grape Seed Proteins: A New Fining Agent for Astringency Reduction in Red Wine. Aust. J. Grape Wine Res. 2013, 19, 153–160. [Google Scholar] [CrossRef]
- Simonato, B.; De Lazzari, F.; Pasini, G.; Polato, F.; Giannattasio, M.; Gemignani, C.; Peruffo, A.D.B.; Santucci, B.; Plebani, M.; Ni, R.O. IgE Binding to Soluble and Insoluble Wheat Flour Proteins in Atopic and Non-Atopic Patients Suffering from Gastrointestinal Symptoms after Wheat Ingestion. Clin. Exp. Allergy 2001, 31, 1771–1778. [Google Scholar] [CrossRef]
- EFSA EFSA NDA Panel. Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a Request from the Commission Related to a Notification from DWV and VINIFLHOR on Egg Products Used as Fining Agents in Wine Pursuant to Article 6, Paragraph 11 of Directive 2000/13/EC—For Permanent Exemption from Labelling. EFSA J. 2007, 567, 1–8. [Google Scholar] [CrossRef]
- EFSA EFSA NDA Panel. Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a Request from the Commission Related to a Notification from WFA and the AWRI on Albumin (Egg White) Used in the Manufacture of Wine Pursuant to Article 6, Paragraph 11 of Directive. EFSA J. 2007, 566, 1–7. [Google Scholar] [CrossRef]
- Jiménez-Martínez, M.D.; Bautista-Ortín, A.B.; Gil-Muñoz, R.; Gómez-Plaza, E. Fining with Purified Grape Pomace. Effect of Dose, Contact Time and Varietal Origin on the Final Wine Phenolic Composition. Food Chem. 2019, 271, 570–576. [Google Scholar] [CrossRef]
- Kang, W.; Muhlack, R.A.; Bindon, K.A.; Smith, P.A.; Niimi, J.; Bastian, S.E.P. Potato Protein Fining of Phenolic Compounds in Red Wine: A Study of the Kinetics and the Impact of Wine Matrix Components and Physical Factors. Molecules 2019, 24, 4578. [Google Scholar] [CrossRef]
- Segade, S.R.; Paissoni, M.A.; Vilanova, M.; Gerbi, V.; Rolle, L.; Giacosa, S. Phenolic Composition Influences the Effectiveness of Fining Agents in Vegan-Friendly Red Wine Production. Molecules 2020, 25, 120. [Google Scholar] [CrossRef]
- Hernández-Hierro, J.M.; Quijada-Morín, N.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Relationship between Skin Cell Wall Composition and Anthocyanin Extractability of Vitis Vinifera L. Cv. Tempranillo at Different Grape Ripeness Degree. Food Chem. 2014, 146, 41–47. [Google Scholar] [CrossRef]
- Gordillo, B.; Rodríguez-Pulido, F.J.; Mateus, N.; Escudero-Gilete, M.L.; González-Miret, M.L.; Heredia, F.J.; de Freitas, V. Application of LC-MS and Tristimulus Colorimetry to Assess the Ageing Aptitude of Syrah Wine in the Condado de Huelva D.O. (Spain), a Typical Warm Climate Region. Anal. Chim. Acta 2012, 732, 162–171. [Google Scholar] [CrossRef]
- OIV Compendium of International Methods of Wine and Must Analysis; 2025; ISBN 9782850381119.
- García-Marino, M.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Colour and Pigment Composition of Red Wines Obtained from Co-Maceration of Tempranillo and Graciano Varieties. Anal. Chim. Acta 2010, 660, 134–142. [Google Scholar] [CrossRef]
- Hernández-Hierro, J.M.; Nogales-Bueno, J.; Rodríguez-Pulido, F.J.; Heredia, F.J. Feasibility Study on the Use of Near-Infrared Hyperspectral Imaging for the Screening of Anthocyanins in Intact Grapes during Ripening. J. Agric. Food Chem. 2013, 61, 9804–9809. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Vivas, N.; Glories, Y.; Lagune, L.; Saucier, C. Estimation Du Degré de Polymérisation Des Procyanidines Du Raisin et Du Vin Parla Méthode Au P-Dimethylaminocinnamaldéhyde. J. Int. Des Sci. De La Vigne Et Du Vin 1994, 28, 319–336. [Google Scholar]
- Wilmink, F.W.; Uytterschaut, H.T. Cluster Analysis, History, Theory and Applications. In Multivariate Statistical Methods in Physical Anthropology; Springer: Dordrecht, The Netherlands, 1984; pp. 135–175. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S. Artificial Intelligence Techniques: Machine Learning and Deep Learning Algorithms. In Handbook of Artificial Intelligence Techniques in Photovoltaic Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 43–83. [Google Scholar]
- Yang, T.; Ren, M.; Zhou, K. Identifying Household Electricity Consumption Patterns: A Case Study of Kunshan, China. Renew. Sustain. Energy Rev. 2018, 91, 861–868. [Google Scholar] [CrossRef]
- Rokack, L.; Maimon, O. Clustering Methods. In Data Mining and Knowledge Discovery Handbook; Springer: Boston, MA, USA, 2005; pp. 321–352. [Google Scholar]
- Guerrero Vacas, F.J.; González-Miret Martín, M.L.; Gordillo Arrobas, B. Aplicación de Proteínas Vegetales En Enología Para La Mejora Sensorial de Los Vinos Tintos. Proteínas de Subproductos de Vinificación; Universidad de Sevilla: Sevilla, Spain, 2020. [Google Scholar]
- Gordillo, B.; Chamizo-González, F.; González-Miret, M.L.; Heredia, F.J. Impact of Alternative Protein Fining Agents on the Phenolic Composition and Color of Syrah Red Wines from Warm Climate. Food Chem. 2021, 342, 128297. [Google Scholar] [CrossRef]
- Erkan-Koç, B.; Türkyılmaz, M.; Yemis, O.; Özkan, M. Effects of Various Protein-and Polysaccharide-Based Clarification Agents on Antioxidative Compounds and Colour of Pomegranate Juice. Food Chem. 2015, 184, 37–45. [Google Scholar] [CrossRef]
- Gambuti, A.; Rinaldi, A.; Moio, L. Use of Patatin, a Protein Extracted from Potato, as Alternative to Animal Proteins in Fining of Red Wine. Eur. Food Res. Technol. 2012, 235, 753–765. [Google Scholar] [CrossRef]
- Kang, W.; Niimi, J.; Bastian, S.E.P. Reduction of Red Wine Astringency Perception Using Vegetable Protein Fining Agents. Am. J. Enol. Vitic. 2017, 69, 22–31. [Google Scholar] [CrossRef]
- Muhlack, R.A.; Colby, C.B. Reduced Product Loss Associated with Inline Bentonite Treatment of White Wine by Simultaneous Centrifugation with Yeast Lees. Food Bioprod. Process. 2018, 108, 51–57. [Google Scholar] [CrossRef]
- Granato, T.M.; Nasi, A.; Ferranti, P.; Iametti, S.; Bonomi, F. Fining White Wine with Plant Proteins: Effects of Fining on Proanthocyanidins and Aroma Components. Eur. Food Res. Technol. 2014, 238, 265–274. [Google Scholar] [CrossRef]
- Bowyer, P.; Edwards, G.; Eyre, A. NTU vs Wine Filterability Index-What Does It Mean for You? Aust. New Zealand Grapegrow. Winemak. 2012, 585, 76–80. [Google Scholar]




| Fining Agents | Total Phenolic Content (%) | Flavanol Content (%) | Flavonol Content (%) | Anthocyanin Content (%) | 
|---|---|---|---|---|
| Bentonite | 2.28 a,A ± 16.21 | 0.02 a,A ± 35.78 | 0.26 a,A ± 1.32 | 2.31 a,A ± 1.88 | 
| Proveget fine (potato proteins) | 2.92 a,A ± 11.26 | 18.18 ab,B ± 8.48 | 4.22 a,A ± 10.30 | 4.02 a,A ± 5.43 | 
| Proveget 100 (pea proteins) | 6.66 a,A ± 19.71 | 22.91 ab,B ± 6.92 | 0.83 a,AB ± 1.40 | 1.87 a,AB ± 2.81 | 
| Vinigel forte (porcine gelatine) | 13.61 a,A ± 10.77 | 33.80 b,B ± 16.89 | 1.01 a,A ± 5.31 | 2.00 a,A ± 5.14 | 
| Fining Agents | % Turbidity Reduction | 
|---|---|
| Bentonite | 24.30 bc ± 1.55 | 
| Proveget fine (potato proteins) | 5.16 ac ± 0.60 | 
| Proveget 100 (pea proteins) | −6.08 a ± 0.48 | 
| Vinigel Forte (porcine gelatine) | 50.25 b ± 1.24 | 
| Cell Wall Material from Red Grape Skin | Bentonite | Proveget 100 (Pea Proteins) | Proveget Fine (Potato Proteins) | Vinigel Forte (Porcine Gelatine) | 
|---|---|---|---|---|
| Pre-harvest 24º Brix (P24) | 48.7 a ± 11.7 | 60.7 a ± 6.6 | 62.2 a ± 9.1 | 62.4 a ± 3.6 | 
| Harvest 24º Brix (H24) | 34.9 a ± 4.6 | 51.11 b ± 4.4 | 51.0 b ± 4.8 | 56.2 b ± 3.2 | 
| Over-ripening 24º Brix (O24) | 39.9 a ± 1.5 | 54.5 b ± 1.6 | 55.1 b ± 1.7 | 58.3 b ± 1.7 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Pérez, J.; Baca-Bocanegra, B.; González-Miret, M.L.; Hernández-Hierro, J.M.; Nogales-Bueno, J. Development of an Objective Index for Evaluating New Fining Agents Used in Winemaking: A Case Study of the Cell Wall Material from Red Grape Skin. Foods 2025, 14, 3708. https://doi.org/10.3390/foods14213708
Gómez-Pérez J, Baca-Bocanegra B, González-Miret ML, Hernández-Hierro JM, Nogales-Bueno J. Development of an Objective Index for Evaluating New Fining Agents Used in Winemaking: A Case Study of the Cell Wall Material from Red Grape Skin. Foods. 2025; 14(21):3708. https://doi.org/10.3390/foods14213708
Chicago/Turabian StyleGómez-Pérez, Julia, Berta Baca-Bocanegra, M.ª Lourdes González-Miret, José Miguel Hernández-Hierro, and Julio Nogales-Bueno. 2025. "Development of an Objective Index for Evaluating New Fining Agents Used in Winemaking: A Case Study of the Cell Wall Material from Red Grape Skin" Foods 14, no. 21: 3708. https://doi.org/10.3390/foods14213708
APA StyleGómez-Pérez, J., Baca-Bocanegra, B., González-Miret, M. L., Hernández-Hierro, J. M., & Nogales-Bueno, J. (2025). Development of an Objective Index for Evaluating New Fining Agents Used in Winemaking: A Case Study of the Cell Wall Material from Red Grape Skin. Foods, 14(21), 3708. https://doi.org/10.3390/foods14213708
 
        




 
       