Determinants of Beverage Consumption in Young Adults: A Multicenter Cross-Sectional Study Across Seven Major Geographic Regions of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Recruitment
2.3. Measurements
2.3.1. Beverage Intake Assessment
2.3.2. Demographic and Socioeconomic Characteristics
2.3.3. Lifestyle and Psychological Variables
2.3.4. Environmental Measures
2.4. Quality Control
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Overall Determinants of Beverage Consumption
3.3. Sex-Stratified Analysis
3.4. Age-Stratified Analysis
3.5. Interaction Between Age Group and Gender
4. Discussion
4.1. Principal Findings
4.2. Comparison with Previous Studies and Possible Explanations
4.3. Strengths, Limitations, and Future Directions
4.4. Public Health Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| T2DM | Type 2 Diabetes Mellitus | 
| CVD | Cardiovascular Disease | 
| SSBs | Sugar-Sweetened Beverages | 
| ASB | Artificially Sweetened Beverage | 
| DFI | Daily Fluids Intake | 
| CHNS | China Health and Nutrition Survey | 
| CARDIA | Coronary Artery Risk Development in Young Adults | 
| WHO | World Health Organization | 
| GB/T | Guobiao Standard (National Standard of China) | 
| IRB | Institutional Review Board | 
| ChiCTR | Chinese Clinical Trial Registry | 
| IPAQ | International Physical Activity Questionnaire | 
| PSQI | Pittsburgh Sleep Quality Index | 
| SAS | Self-Rating Anxiety Scale | 
| SDS | Self-Rating Depression Scale | 
| IQR | Interquartile Range | 
| CI | Confidence Interval | 
References
- Global Burden of Disease Collaborative Network. Global Burden of Disease (GBD) 2000–2019. Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 24 October 2025).
- The International Diabetes Federation. IDF Atlas Reports: Diabetes and Kidney Disease. Available online: https://diabetesatlas.org/resources/idf-diabetes-atlas-reports/diabetes-and-kidney-disease/ (accessed on 24 October 2025).
- Pan, X.F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, Q.; Yang, Y.; Zheng, S.; Wang, Y.; Lu, W. The prevalence and increasing trends of overweight, general obesity, and abdominal obesity among Chinese adults: A repeated cross-sectional study. BMC Public Health 2019, 19, 1293. [Google Scholar] [CrossRef]
- Leunissen, R.W.; Kerkhof, G.F.; Stijnen, T.; Hokken-Koelega, A. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA 2009, 301, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Agarwala, A.; Baker-Smith, C.M.; Feinstein, M.J.; Jakubowski, K.; Kaar, J.; Parekh, N.; Patel, K.V.; Stephens, J. Cardiovascular Health in the Transition From Adolescence to Emerging Adulthood: A Scientific Statement From the American Heart Association. J. Am. Heart Assoc. 2025, 14, e039239. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Qiao, Y.; Zhao, M.; Magnussen, C.G.; Xi, B. Global, regional, and national burden of cardiovascular diseases in youths and young adults aged 15–39 years in 204 countries/territories, 1990–2019: A systematic analysis of Global Burden of Disease Study 2019. BMC Med. 2023, 21, 222. [Google Scholar] [CrossRef]
- Pan, F.L.D.; Zhang, T.W.; Mao, W.F.; Liang, D.; Liu, A.D.; Li, J.W. Consumption status of sugar-sweetened beverages and free sugar intake among urban residents aged 3 years and above in China. Chin. J. Food Hyg. 2022, 34, 126–130. [Google Scholar] [CrossRef]
- Jakob, J.; Stalder, O.; Kali, T.; Pruvot, E.; Pletcher, M.J.; Rana, J.S.; Sidney, S.; Auer, R. The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am. J. Med. 2022, 135, 871–878.e814. [Google Scholar] [CrossRef]
- de Oliveira Otto, M.C.; Anderson, C.A.M.; Dearborn, J.L.; Ferranti, E.P.; Mozaffarian, D.; Rao, G.; Wylie-Rosett, J.; Lichtenstein, A.H. Dietary Diversity: Implications for Obesity Prevention in Adult Populations: A Science Advisory From the American Heart Association. Circulation 2018, 138, e160–e168. [Google Scholar] [CrossRef]
- Ma, L.; Hu, Y.; Alperet, D.J.; Liu, G.; Malik, V.; Manson, J.E.; Rimm, E.B.; Hu, F.B.; Sun, Q. Beverage consumption and mortality among adults with type 2 diabetes: Prospective cohort study. BMJ 2023, 381, e073406. [Google Scholar] [CrossRef]
- Di Maso, M.; Boffetta, P.; Negri, E.; La Vecchia, C.; Bravi, F. Caffeinated Coffee Consumption and Health Outcomes in the US Population: A Dose-Response Meta-Analysis and Estimation of Disease Cases and Deaths Avoided. Adv. Nutr. 2021, 12, 1160–1176. [Google Scholar] [CrossRef]
- Salgado, M.V.; Penko, J.; Fernandez, A.; Konfino, J.; Coxson, P.G.; Bibbins-Domingo, K.; Mejia, R. Projected impact of a reduction in sugar-sweetened beverage consumption on diabetes and cardiovascular disease in Argentina: A modeling study. PLoS Med. 2020, 17, e1003224. [Google Scholar] [CrossRef]
- Popkin, B.M.; Hawkes, C. Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. Lancet Diabetes Endocrinol. 2016, 4, 174–186. [Google Scholar] [CrossRef]
- Chen, I.J.; Liu, C.Y.; Chiu, J.P.; Hsu, C.H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016, 35, 592–599. [Google Scholar] [CrossRef]
- Bag, S.; Mondal, A.; Majumder, A.; Banik, A. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chem. 2022, 371, 131098. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.A.-O.; Phung, D.A.-O.; Chu, C. Sociodemographic, lifestyle, behavioral, and parental factors associated with sugar-sweetened beverage consumption in children in China. PLoS ONE 2021, 16, e0261199. [Google Scholar] [CrossRef] [PubMed]
- Paes, V.M.; Hesketh, K.; O’Malley, C.; Moore, H.; Summerbell, C.; Griffin, S. Obes Rev.: Determinants of sugar-sweetened beverage consumption in young children: A systematic review. J. Aust. Tradit.-Med. Soc. 2015, 21, 197–198. [Google Scholar]
- He, P.; Xu, Z.; Chan, D.; Liu, P.; Bai, Y. Rising temperatures increase added sugar intake disproportionately in disadvantaged groups in the USA. Nat. Clim. Change 2025, 15, 963–970. [Google Scholar] [CrossRef]
- Colchero, M.A.; Rivera-Dommarco, J.; Popkin, B.M.; Ng, S.W. In Mexico, Evidence Of Sustained Consumer Response Two Years After Implementing A Sugar-Sweetened Beverage Tax. Health Aff. 2017, 36, 564–571. [Google Scholar] [CrossRef]
- World Bank. Mexico: Population, Total 2017. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=MX (accessed on 24 October 2025).
- Scarborough, P.; Adhikari, V.; Harrington, R.A.; Elhussein, A.; Briggs, A.; Rayner, M.; Adams, J.; Cummins, S.; Penney, T.; White, M. Impact of the announcement and implementation of the UK Soft Drinks Industry Levy on sugar content, price, product size and number of available soft drinks in the UK, 2015–2019: A controlled interrupted time series analysis. PLoS Med. 2020, 17, e1003025. [Google Scholar] [CrossRef]
- World Health Organization. Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 7 September 2025).
- WHO. Guidelines Approved by the Guidelines Review Committee. In Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Council, C.S. National Nutrition Plan (2017–2030). Available online: https://leap.unep.org/en/countries/cn/national-legislation/national-nutrition-plan-2017-2030 (accessed on 6 September 2025).
- Zhang, N.Z.J.; Ma, G.S. Development, validation, and application of the 7-day 24-hour drinking water survey questionnaire. Chin. Food Nutr. 2024, 46, 177–182+191. [Google Scholar] [CrossRef]
- Toponym Group of National Topographical Bureau. Toponym Collections of China-Toponym Indexes of China; Sino Maps Press: Beijing, China, 1983. [Google Scholar]
- Zhang, J.F.Z.N.; He, H.R.; Ma, G.S. Reliability and validity of the 7-day 24-hour drinking water survey questionnaire. Chin. Food Nutr. 2025, 31, 91–94. [Google Scholar] [CrossRef]
- Zhang, N.; Morin, C.; Guelinckx, I.; Moreno, L.A.; Kavouras, S.A.; Gandy, J.; Martinez, H.; Salas-Salvadó, J.; Ma, G. Fluid intake in urban China: Results of the 2016 Liq.In (7) national cross-sectional surveys. Eur. J. Nutr. 2018, 57, 77–88. [Google Scholar] [CrossRef]
- GB/T 10789-2015; General Rules for Beverage. Standardization Administration of the People’s Republic of China: Beijing, China, 2015.
- Chinese Nutrition Society. Chinese Dietary Guidelines (2022); People’s Medical Publishing House: Beijing, China, 2022. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook. Available online: http://www.stats.gov.cn/sj/ndsj/2024/indexeh.htm (accessed on 24 October 2025).
- Huang, Y.; Wei, L.; Liu, G.; Cui, W.; Xie, F.; Deng, X. “Inspiring” Policy Transfer: Analysis of Urban Renewal in Four First-Tier Chinese Cities. Land 2023, 12, 118. [Google Scholar] [CrossRef]
- Ekingen, T.; Sob, C.; Hartmann, C.; Rühli, F.J.; Matthes, K.L.; Staub, K.; Bender, N. Associations between hydration status, body composition, sociodemographic and lifestyle factors in the general population: A cross-sectional study. BMC Public Health 2022, 22, 900. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Shin, D.; Song, W.O. Total Water Intake from Beverages and Foods Is Associated with Energy Intake and Eating Behaviors in Korean Adults. Nutrients 2016, 8, 617. [Google Scholar] [CrossRef]
- Zung, W.W. A rating instrument for anxiety disorders. Psychosomatics 1971, 12, 371–379. [Google Scholar] [CrossRef]
- Zung, W.W. A self-rating depression scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef]
- Gui, Z.-H.; Zhu, Y.-N.; Cai, L.; Sun, F.-H.; Ma, Y.-H.; Jing, J.; Chen, Y.-J. Sugar-sweetened beverage consumption and risks of obesity and hypertension in Chinese children and adolescents: A national cross-sectional analysis. Nutrients 2017, 9, 1302. [Google Scholar] [CrossRef]
- Gillespie, K.M.; Kemps, E.; White, M.J.; Bartlett, S.E. The association of dietary components with depression and anxiety symptoms: Findings from a cross-sectional survey. Front. Nutr. 2025, 12, 1546564. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, J.; Li, M.; Wang, T.; Wang, K.; Cao, Q.; Ding, Y.; Xiang, Y.; Wang, S.; Yang, Q.; et al. Diabetes in China part 1: Epidemiology and risk factors. Lancet Public Health 2024, 9, e1089–e1097. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; McReynolds, A.; Trivedi, Z.B.; Roberts, A.L.; Sy, M.; Hirsch, J. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am. J. Clin. Nutr. 2012, 95, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Dashti, H.S.; Scheer, F.A.; Jacques, P.F.; Lamon-Fava, S.; Ordovás, J.M. Short sleep duration and dietary intake: Epidemiologic evidence, mechanisms, and health implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef]
- Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the U.S. Food Chem. Toxicol. 2014, 63, 136–142. [Google Scholar] [CrossRef]
- Landais, E.; Moskal, A.; Mullee, A.; Nicolas, G.; Gunter, M.J.; Huybrechts, I.; Overvad, K.; Roswall, N.; Affret, A.; Fagherazzi, G.; et al. Coffee and Tea Consumption and the Contribution of Their Added Ingredients to Total Energy and Nutrient Intakes in 10 European Countries: Benchmark Data from the Late 1990s. Nutrients 2018, 10, 725. [Google Scholar] [CrossRef] [PubMed]

| Variable | Overall (N = 3198) | 
|---|---|
| Demographic characteristics | |
| Age (years) | 20.000 (19.000, 20.000) | 
| Ethnicity, n (%) | |
| Han | 2817 (88.1%) | 
| Minority | 361 (11.3%) | 
| Sex, n (%) | |
| Female | 1437 (45.1%) | 
| Male | 1748 (54.9%) | 
| BMI category, n (%) | |
| Underweight | 509 (15.9%) | 
| Normal weight | 2016 (63.0%) | 
| Overweight | 526 (16.4%) | 
| Obesity | 122 (3.8%) | 
| Region, n (%) | |
| Northeast China (Changchun, CC) | 499 (15.6%) | 
| North China (Tianjin, TJ) | 316 (9.9%) | 
| Northwest China (Lanzhou, LZ) | 502 (15.7%) | 
| East China (Shanghai, SH) | 398 (12.4%) | 
| Central China (Changsha, CS) | 498 (15.6%) | 
| Southwest China (Yunnan, YN) | 466 (14.6%) | 
| South China (Haikou, HK) | 519 (16.2%) | 
| Lifestyle factors | |
| Physical activity level, n (%) | |
| Low | 552 (17.3%) | 
| Medium | 1322 (41.3%) | 
| High | 1294 (40.5%) | 
| PSQI score | 6.000 (4.000, 7.000) | 
| Psychological factors | |
| SAS score | 35.000 (32.000, 39.000) | 
| SDS score | 42.000 (38.000, 46.000) | 
| Beverage intake variables | |
| DFI (mL/day) | 1259.910 (938.888, 1593.000) | 
| Plain Water (mL/day) | 1259.910 (938.888, 1593.000) | 
| Coffee Tea (mL/day) | 1050.000 (750.000, 1356.750) | 
| SSBs (mL/day) | 0.000 (0.000, 50.000) | 
| 100% Fruit Juices (mL/day) | 50.000 (0.000, 150.000) | 
| Other Beverages (mL/day) | 0.000 (0.000, 50.000) | 
| Beverage Types | Variables | β (95% CI) | p | 
|---|---|---|---|
| Plain Water (mL/day) | Gender (Female vs. Male) | −112.754 [−147.976, −77.533] | <0.001 | 
| Age(years) | 33.415 [19.92, 46.909] | <0.001 | |
| Ethnicity (non-Han) | −40.664 [−95.027, 13.698] | 0.143 | |
| PA Level (Moderate) | −10.179 [−59.877, 39.519] | 0.688 | |
| PA Level (High) | 25.517 [−24.851, 75.886] | 0.321 | |
| PSQI Score | −5.085 [−12.093, 1.923] | 0.155 | |
| SAS Score | −1.742 [−4.867, 1.383] | 0.274 | |
| SDS Score | 2.115 [−0.924, 5.154] | 0.173 | |
| Region Temperature (°C) | 32.064 [−56.828, 120.956] | 0.259 | |
| Region Temperature (%) | −1.832 [−17.596, 13.933] | 0.663 | |
| Socioeconomical Tier (1.5) | 191.916 [−300.848, 684.68] | 0.235 | |
| Socioeconomical Tier (2) | 359.368 [−177.328, 896.065] | 0.102 | |
| Coffee and Tea (mL/day) | Gender (Female vs. Male) | 5.195 [−3.629, 14.019] | 0.248 | 
| Age(years) | 7.202 [3.829, 10.575] | <0.001 | |
| Ethnicity (non-Han) | 3.554 [−10.06, 17.168] | 0.609 | |
| PA Level (Moderate) | −5.095 [−17.54, 7.349] | 0.422 | |
| PA Level (High) | 3.358 [−9.262, 15.979] | 0.602 | |
| PSQI Score | 1.379 [−0.352, 3.111] | 0.118 | |
| SAS Score | 0.817 [0.035, 1.6] | 0.041 | |
| SDS Score | −0.464 [−1.224, 0.296] | 0.232 | |
| Region Temperature (°C) | 8.715 [−1.303, 18.733] | 0.065 | |
| Region Temperature (%) | −1.371 [−3.167, 0.425] | 0.081 | |
| Socioeconomical Tier (1.5) | 15.23 [−40.036, 70.495] | 0.361 | |
| Socioeconomical Tier (2) | 9.495 [−51.335, 70.325] | 0.569 | |
| 100% Fruit Juices (mL/day) | Gender (Female vs. Male) | 4.665 [−0.214, 9.544] | 0.061 | 
| Age(years) | 0.292 [−1.578, 2.161] | 0.76 | |
| Ethnicity (non-Han) | 3.824 [−3.707, 11.355] | 0.319 | |
| PA Level (Moderate) | −3.012 [−9.897, 3.873] | 0.391 | |
| PA Level (High) | −3.365 [−10.342, 3.613] | 0.344 | |
| PSQI Score | 0.171 [−0.801, 1.143] | 0.73 | |
| SAS Score | 0.369 [−0.064, 0.802] | 0.095 | |
| SDS Score | −0.027 [−0.448, 0.395] | 0.902 | |
| Region Temperature (°C) | −9.54 [−25.794, 6.713] | 0.128 | |
| Region Temperature (%) | 1.904 [−0.975, 4.782] | 0.105 | |
| Socioeconomical Tier (1.5) | −28.878 [−119.073, 61.317] | 0.304 | |
| Socioeconomical Tier (2) | −24.519 [−122.579, 73.541] | 0.396 | |
| SSBs (mL/day) | Gender (Female vs. Male) | −23.588 [−34.603, −12.573] | <0.001 | 
| Age(years) | 0.259 [−3.96, 4.479] | 0.904 | |
| Ethnicity (non-Han) | −11.785 [−28.785, 5.215] | 0.174 | |
| PA Level (Moderate) | −5.125 [−20.666, 10.416] | 0.518 | |
| PA Level (High) | −0.934 [−16.686, 14.818] | 0.907 | |
| PSQI Score | 2.545 [0.355, 4.734] | 0.023 | |
| SAS Score | −0.383 [−1.36, 0.594] | 0.443 | |
| SDS Score | 0.722 [−0.228, 1.673] | 0.136 | |
| Region Temperature (°C) | 12.507 [−11.644, 36.657] | 0.157 | |
| Region Temperature (%) | −2.038 [−6.323, 2.248] | 0.178 | |
| Alcoholic Beverages (mL/day) | Gender (Female vs. Male) | −3.96 [−6.175, −1.744] | <0.001 | 
| Age(years) | 1.761 [0.913, 2.608] | <0.001 | |
| Ethnicity (non-Han) | 4.022 [0.603, 7.44] | 0.021 | |
| PA Level (Moderate) | −0.918 [−4.043, 2.207] | 0.565 | |
| PA Level (High) | −0.077 [−3.246, 3.092] | 0.962 | |
| PSQI Score | −0.109 [−0.546, 0.327] | 0.623 | |
| SAS Score | −0.16 [−0.357, 0.037] | 0.111 | |
| SDS Score | 0.15 [−0.041, 0.341] | 0.124 | |
| Region Temperature (°C) | 0.815 [−2.116, 3.746] | 0.358 | |
| Region Temperature (%) | −0.125 [−0.648, 0.398] | 0.413 | |
| Socioeconomical Tier (1.5) | 1.068 [−15.118, 17.254] | 0.807 | |
| Socioeconomical Tier (2) | 0.217 [−17.541, 17.975] | 0.963 | |
| Other Beverages (mL/day) | Gender (Female vs. Male) | −2.822 [−7.241, 1.598] | 0.211 | 
| Age(years) | 0.447 [−1.247, 2.141] | 0.605 | |
| Ethnicity (non-Han) | −2.222 [−9.044, 4.6] | 0.523 | |
| PA Level (Moderate) | 4.88 [−1.356, 11.117] | 0.125 | |
| PA Level (High) | 7.973 [1.653, 14.294] | 0.013 | |
| PSQI Score | −0.109 [−0.991, 0.772] | 0.808 | |
| SAS Score | 0.084 [−0.308, 0.476] | 0.673 | |
| SDS Score | −0.086 [−0.468, 0.295] | 0.658 | |
| Region Temperature (°C) | −5.805 [−24.77, 13.16] | 0.318 | |
| Region Temperature (%) | 0.607 [−2.75, 3.964] | 0.517 | |
| Socioeconomical Tier (1.5) | −21.089 [−126.385, 84.206] | 0.479 | |
| Socioeconomical Tier (2) | −31.158 [−145.538, 83.222] | 0.361 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Zhang, J.; Shen, X.; Yang, L.; He, J.; Zhang, F.; Ma, G.; Zhang, N. Determinants of Beverage Consumption in Young Adults: A Multicenter Cross-Sectional Study Across Seven Major Geographic Regions of China. Foods 2025, 14, 3687. https://doi.org/10.3390/foods14213687
Zhou S, Zhang J, Shen X, Yang L, He J, Zhang F, Ma G, Zhang N. Determinants of Beverage Consumption in Young Adults: A Multicenter Cross-Sectional Study Across Seven Major Geographic Regions of China. Foods. 2025; 14(21):3687. https://doi.org/10.3390/foods14213687
Chicago/Turabian StyleZhou, Shuyi, Jianfen Zhang, Xiuhua Shen, Lina Yang, Jinsong He, Fan Zhang, Guansheng Ma, and Na Zhang. 2025. "Determinants of Beverage Consumption in Young Adults: A Multicenter Cross-Sectional Study Across Seven Major Geographic Regions of China" Foods 14, no. 21: 3687. https://doi.org/10.3390/foods14213687
APA StyleZhou, S., Zhang, J., Shen, X., Yang, L., He, J., Zhang, F., Ma, G., & Zhang, N. (2025). Determinants of Beverage Consumption in Young Adults: A Multicenter Cross-Sectional Study Across Seven Major Geographic Regions of China. Foods, 14(21), 3687. https://doi.org/10.3390/foods14213687
 
        


 
                         
       