Polyphasic Characterisation of Microbiota Associated with Sant’Agostino Table Olives Flavoured with Foeniculum vulgare
Abstract
1. Introduction
2. Materials and Methods
2.1. Table Olive Processing Method and Sampling
2.2. pH Measurement
2.3. Microbiological Analysis
2.4. Isolation, Phenotypic and Genotypic Characterisation of Lactic Acid Bacteria and Spore-Forming Bacteria
2.5. Isolation, Phenotypic and Molecular Characterisation of Yeasts
2.6. Extraction of the DNA and Preparation of the MiSeq Library
2.7. Illumina Data Analysis and Sequences Identification
2.8. Statistical Analysis
3. Results
3.1. pH Values of Brine Samples
3.2. Microbial Counts
3.3. Phenotypic Grouping and Genetic Identification
3.3.1. Lactic Acid Bacteria
3.3.2. Spore-Forming Bacteria
3.3.3. Yeasts
3.4. Cultivable LAB, Spore-Forming Bacteria and Yeast Species Distribution
3.5. Characterisation of the Illumina Data and Taxonomic Analysis of the Bacterial Community
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Olive Council. Word Table Olive Figures: Production. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2023/12/OT-W901-13-12-2023-P.pdf (accessed on 16 February 2024).
- International Olive Council. EU Table Olive Figures: Production. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2023/12/OT-CE-901-13-12-2023-P.pdf (accessed on 16 February 2024).
- International Olive Council. World Table Olive Figures: Consumptions. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2023/12/OT-W901-13-12-2023-C.pdf (accessed on 16 February 2024).
- Conte, P.; Fadda, C.; Del Caro, A.; Urgeghe, P.P.; Piga, A. Table olives: An overview on effects of processing on nutritional and sensory quality. Foods 2020, 9, 514. [Google Scholar] [CrossRef] [PubMed]
- Bouranta, M.; Papakitsou, K.; Papakitsos, E. Inquiring quality assurance of the table olive products. Glob. Acad. J. Agric. Biosci. 2023, 5, 29–37. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Tsaltas, D. Current status, recent advances, and main challenges on table olive fermentation: The present meets the future. Front. Microbiol. 2022, 12, 797295. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Barba, J.L.; Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; Montaño, A. Microbial and chemical characterization of natural-style green table olives from the Gordal, Hojiblanca and Manzanilla cultivars. Foods 2023, 12, 2386. [Google Scholar] [CrossRef]
- Rokni, Y.; Abouloifa, H.; Bellaouchi, R.; Hasnaoui, I.; Gaamouche, S.; Lamzira, Z.; Salah, R.B.; Saalaoui, E.; Ghabbour, N.; Asehraou, A. Characterization of β-glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 isolated from traditional fermented green olive. J. Genet. Eng. Biotechnol. 2021, 19, 117. [Google Scholar] [CrossRef]
- Ramírez, E.; Lara, E.; Valero, A.; Rodríguez-Gómez, F. Proposal for technological adaptation of small-sized green olives to Spanish-style processing. Food Control 2021, 126, 108067. [Google Scholar] [CrossRef]
- Portilha-Cunha, M.F.; Macedo, A.C.; Malcata, F.X. A review on adventitious lactic acid bacteria from table olives. Foods 2020, 9, 948. [Google Scholar] [CrossRef]
- Perez, R.A.; Navarro, T.; Lorenzo, C.D. HS–SPME analysis of the volatile compounds from spices as a source of flavour in “Campo Real” table olive preparations. Flavour Fragr. J. 2007, 22, 265–273. [Google Scholar] [CrossRef]
- Pires-Cabral, P.; Barros, T.; Mateus, T.; Prata, J.; Quintas, C. The effect of seasoning with herbs on the nutritional, safety and sensory properties of reduced-sodium fermented Cobrançosa cv. table olives. AIMS Agric. Food 2018, 3, 521–534. [Google Scholar] [CrossRef]
- Papapostolou, M.; Mantzouridou, F.T.; Tsimidou, M.Z. Flavored olive oil as a preservation means of reduced salt Spanish style green table olives (Cv. Chalkidiki). Foods 2021, 10, 392. [Google Scholar] [CrossRef]
- Noreen, S.; Tufail, T.; Badar Ul Ain, H.; Awuchi, C.G. Pharmacological, nutraceutical, functional and therapeutic properties of fennel (Foeniculum vulgare). Int. J. Food Prop. 2023, 26, 915–927. [Google Scholar] [CrossRef]
- Gharby, S.; Oubannin, S.; Ait Bouzid, H.; Bijla, L.; Ibourki, M.; Gagour, J.; Koubachi, J.; Sakar, E.H.; Majourhat, K.; Lee, L.-H.; et al. An Overview on the Use of Extracts from Medicinal and Aromatic Plants to Improve Nutritional Value and Oxidative Stability of Vegetable Oils. Foods 2022, 11, 3258. [Google Scholar] [CrossRef]
- Auchtung, J.M.; Hallen-Adams, H.E.; Hutkins, R. Microbial interactions and ecology in fermented food ecosystems. Nat. Rev. Microbiol. 2025, 23, 622–634. [Google Scholar] [CrossRef]
- Gautam, A.; Sharma, R.; Singh, P.; Kumari, S.; Thakur, N.; Kumar, A.; Singh, R. Ecological factors that drive microbial communities in culturally diverse fermented foods. BMC Microbiol. 2025, 25, 655. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kumar, S. Exploring the functionality of microbes in fermented foods: Technological advancements and future directions. Fermentation 2025, 11, 300. [Google Scholar] [CrossRef]
- Moumen, B.E.; Bouzoubaa, A.; Drioiche, A.; Eddahmouny, M.; Al Kamaly, O.; Shahat, A.A.; Touijer, H.; Hadi, N.; Kharchouf, S.; Cherrat, A.; et al. Unveiling the Chemical Composition, Antioxidant, and Antimicrobial Potentials of Foeniculum vulgare Mill: A Combined In Vitro and In Silico Approach. Int. J. Mol. Sci. 2025, 26, 4499. [Google Scholar] [CrossRef] [PubMed]
- Elkiran, O.; Telhuner, O. Chemical profiles and antimicrobial activities of essential oil from different plant parts of Foeniculum vulgare Mill. Food Sci. Nutr. 2025, 13, e70307. [Google Scholar] [CrossRef]
- Tofalo, R.; Schirone, M.; Perpetuini, G.; Angelozzi, G.; Suzzi, G.; Corsetti, A. Microbiological and chemical profiles of naturally fermented table olives and brines from different Italian cultivars. Antonie Van Leeuwenhoek 2012, 102, 121–131. [Google Scholar] [CrossRef]
- Martins, F.; Rodrigues, N.; Pereira, J.A.; Baptista, P.; Ramalhosa, E. Effect of the cleaning and disinfection methods on the hygienic conditions of fermentation tanks of table olives (Olea europaea L.) Negrinha de Freixo cultivar. Food Microbiol. 2024, 119, 104425. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Mari, E.; Guerrini, S.; Granchi, L. Selection of Yeast and Lactic Acid Bacteria Strains, Isolated from Spontaneous Raw Milk Fermentation, for the Production of a Potential Probiotic Fermented Milk. Fermentation 2022, 8, 407. [Google Scholar] [CrossRef]
- Martorana, A.; Alfonzo, A.; Settanni, L.; Corona, O.; La Croce, F.; Caruso, T.; Moschetti, G.; Francesca, N. An innovative method to produce green table olives based on pied de cuve technology. Food Microbiol. 2015, 50, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, C.; Muccilli, S.; Amenta, M.; Perri, E.; Romeo, F.V. Phenolic trend and hygienic quality of green table olives fermented with Lactobacillus plantarum starter culture. Food Chem. 2015, 186, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Manetsberger, J.; Caballero Gómez, N.; Benomar, N.; Christie, G.; Abriouel, H. Characterization of the culturable sporobiota of Spanish olive groves and its tolerance toward environmental challenges. Microbiol. Spectr. 2023, 11, e04013-22. [Google Scholar] [CrossRef] [PubMed]
- Restivo, I.; Sciurba, L.; Indelicato, S.; Allegra, M.; Lino, C.; Garofalo, G.; Bongiorno, D.; Davino, S.; Avellone, G.; Settanni, L. Repurposing olive oil mill wastewater into a valuable ingredient for functional bread production. Foods 2025, 14, 1945. [Google Scholar] [CrossRef]
- Busetta, G.; Garofalo, G.; Barbera, M.; Di Trana, A.; Claps, S.; Lovallo, C.; Franciosi, E.; Gaglio, R.; Settanni, L. Metagenomic, microbiological, chemical and sensory profiling of Caciocavallo Podolico Lucano cheese. Food Res. Int. 2023, 169, 112926. [Google Scholar] [CrossRef]
- Aponte, M.; Ventorino, V.; Blaiotta, G.; Volpe, G.; Farina, V.; Avellone, G.; Lanza, C.M.; Moschetti, G. Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses. Food Microbiol. 2010, 27, 162–170. [Google Scholar] [CrossRef]
- Paray, A.; Singh, M.; Mir, M. Gram staining: A brief review. Int. J. Res. Rev. 2023, 10, 336–341. [Google Scholar] [CrossRef]
- Rahmawati, N.; Syukri, M.; Darmawi, D.; Zachreini, I.; Yusuf, M.; Idroes, R. Identification of lactic acid bacteria from Etawa goat milk Kopelma Darussalam Village, Banda Aceh. IOP Conf. Ser. Earth Environ. Sci. 2021, 667, 012022. [Google Scholar] [CrossRef]
- Gaglio, R.; Cirlincione, F.; Di Miceli, G.; Franciosi, E.; Di Gerlando, R.; Francesca, N.; Settanni, L.; Moschetti, G. Microbial dynamics in durum wheat kernels during aging. Int. J. Food Microbiol. 2020, 324, 108631. [Google Scholar] [CrossRef]
- Vashist, H.; Sharma, D.; Gupta, A. A review on commonly used biochemical test for bacteria. Innovare J. Life Sci. 2013, 1, 1–7. [Google Scholar]
- Fancello, F.; Multineddu, C.; Santona, M.; Deiana, P.; Zara, G.; Mannazzu, I.; Budroni, M.; Dettori, S.; Zara, S. Bacterial biodiversity of extra virgin olive oils and their potential biotechnological exploitation. Microorganisms 2020, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, R.; Francesca, N.; Di Gerlando, R.; Mahony, J.; De Martino, S.; Stucchi, C.; Moschetti, G.; Settanni, L. Enteric bacteria of food ice and their survival in alcoholic beverages and soft drinks. Food Microbiol. 2017, 67, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Zotta, T.; Giavalisco, M.; Parente, E.; Picariello, G.; Siano, F.; Ricciardi, A. Selection of Lactiplantibacillus strains for the production of fermented table olives. Microorganisms 2022, 10, 625. [Google Scholar] [CrossRef] [PubMed]
- Alfonzo, A.; Francesca, N.; Naselli, V.; Gaglio, R.; Corona, O.; Seminerio, V.; Settanni, L.; La Croce, F.; Moschetti, G. Effect of glucose and inactivated yeast additions on the fermentation performances of Lactiplantibacillus pentosus OM13 during the production of Nocellara del Belice table olives. Fermentation 2023, 9, 634. [Google Scholar] [CrossRef]
- Allioui, N.; Driss, F.; Dhouib, H.; Jlail, L.; Tounsi, S.; Frikha-Gargouri, O. Two novel Bacillus strains (subtilis and simplex species) with promising potential for the biocontrol of Zymoseptoria tritici, the causal agent of septoria tritici blotch of wheat. BioMed Res. Int. 2021, 2021, 6611657. [Google Scholar] [CrossRef]
- Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 2001, 67, 3450–3454. [Google Scholar] [CrossRef]
- Alfonzo, A.; Sicard, D.; Di Miceli, G.; Guezenec, S.; Settanni, L. Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Food Microbiol. 2021, 94, 103666. [Google Scholar] [CrossRef]
- Cavazza, A.; Grando, M.S.; Zini, C. Rilevazione della flora microbica di mosti e vini. Vignevini 1992, 9, 17–20. [Google Scholar]
- Pallmann, C.L.; Brown, J.A.; Olineka, T.L.; Cocolin, L.; Mills, D.A.; Bisson, L.F. Use of WL medium to profile native flora fermentations. Am. J. Enol. Vitic. 2001, 52, 198–203. [Google Scholar] [CrossRef]
- Parafati, L.; Palmeri, R.; Pitino, I.; Restuccia, C. Killer yeasts isolated from olive brines: Technological and probiotic aptitudes. Food Microbiol. 2022, 103, 103950. [Google Scholar] [CrossRef]
- Sinacori, M.; Francesca, N.; Alfonzo, A.; Cruciata, M.; Sannino, C.; Settanni, L.; Moschetti, G. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiol. 2014, 38, 284–294. [Google Scholar] [CrossRef]
- Alfonzo, A.; Alongi, D.; Prestianni, R.; Pirrone, A.; Naselli, V.; Viola, E.; De Pasquale, C.; La Croce, F.; Gaglio, R.; Settanni, L.; et al. Enhancing the quality and safety of Nocellara del Belice green table olives produced using the Castelvetrano method. Food Microbiol. 2024, 120, 104477. [Google Scholar] [CrossRef]
- Porru, C.; Rodríguez-Gómez, F.; Benítez-Cabello, A.; Jiménez-Díaz, R.; Zara, G.; Budroni, M.; Mannazzu, I.; Arroyo-López, F.N. Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiol. 2018, 69, 33–42. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef]
- Baker, G.C.; Smith, J.J.; Cowan, D.A. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 2003, 55, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.J.; Wang, Q.; O’Sullivan, O.; Greene-Diniz, R.; Cole, J.R.; Ross, R.P.; O’Toole, P.W. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010, 38, e200. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Licata, A.G.; Zoppi, M.; Dossena, C.; Rossignoli, F.; Rizzo, D.; Marra, M.; Gargari, G.; Mantegazza, G.; Guglielmetti, S.; Bergamaschi, L.; et al. QIIME2 enhances multi-amplicon sequencing data analysis: A standardized and validated open-source pipeline for comprehensive 16S rRNA gene profiling. Microbiol. Spectr. 2025, 13, e01673-25. [Google Scholar] [CrossRef]
- Mougiou, N.; Tsoureki, A.; Didos, S.; Bouzouka, I.; Michailidou, S.; Argiriou, A. Microbial and biochemical profile of different types of Greek table olives. Foods 2023, 12, 1527. [Google Scholar] [CrossRef]
- Speranza, B.; Sinigaglia, M.; Corbo, M.R.; D’Errico, N.; Bevilacqua, A. A preliminary approach to define the microbiological profile of naturally fermented Peranzana Alta Daunia table olives. Foods 2022, 11, 2100. [Google Scholar] [CrossRef]
- Kamilari, E.; Anagnostopoulos, D.A.; Tsaltas, D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front. Microbiol. 2023, 13, 1101515. [Google Scholar] [CrossRef]
- Lucena-Padrós, H.; Ruiz-Barba, J.L. Microbial biogeography of Spanish-style green olive fermentations in the province of Seville, Spain. Food Microbiol. 2019, 82, 259–268. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Delgado, A.M.; Quintas, C. Main challenges expected from the impact of climate change on microbial biodiversity of table olives: Current status and trends. Foods 2023, 12, 3712. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Barba, J.L.; Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; Montaño, A. Microbial community and volatilome changes in brines along the spontaneous fermentation of Spanish-style and natural-style green table olives (Manzanilla cultivar). Food Microbiol. 2023, 113, 104286. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, E.; Lorusso, G.; Lamparelli, F. A study of floral biology and the technological features of seven olive cultivars of different origins. Acta Hortic. 1999, 474, 279–284. [Google Scholar] [CrossRef]
- Comunian, R.; Ferrocino, I.; Paba, A.; Daga, E.; Campus, M.; Di Salvo, R.; Cauli, E.; Piras, F.; Zurru, R.; Cocolin, L. Evolution of microbiota during spontaneous and inoculated Tonda di Cagliari table olives fermentation and impact on sensory characteristics. LWT—Food Sci. Technol. 2017, 84, 64–72. [Google Scholar] [CrossRef]
- De Angelis, M.; Campanella, D.; Cosmai, L.; Summo, C.; Rizzello, C.G.; Caponio, F. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 2015, 52, 18–30. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Caggia, C. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol. 2017, 65, 136–148. [Google Scholar] [CrossRef]
- Campus, M.; Değirmencioğlu, N.; Comunian, R. Technologies and trends to improve table olive quality and safety. Front. Microbiol. 2018, 9, 617. [Google Scholar] [CrossRef]
- Martins, F.; Rodrigues, N.; Ramalhosa, E. A Review of the Microbial Dynamics of Natural and Traditional Fermentations of Table Olive. Appl. Microbiol. 2025, 5, 52. [Google Scholar] [CrossRef]
- Tassou, C.C.; Panagou, E.Z.; Nychas, G.J. Microbial colonization of naturally fermented olives. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2010; pp. 397–406. [Google Scholar]
- Campaniello, D.; Bevilacqua, A.; D’Amato, D.; Corbo, M.R.; Altieri, C.; Sinigaglia, M. Microbial characterization of table olives processed according to Spanish and natural styles. Food Technol. Biotechnol. 2005, 43, 289–294. [Google Scholar]
- Barrahi, M.; Esmail, A.; Elhartiti, H.; Chahboun, N.; Benali, A.; Amiyare, R.; Lakhrissi, B.; Rhaiem, N.; Zarrouk, A.; Ouhssine, M. Chemical composition and evaluation of antibacterial activity of fennel (Foeniculum vulgare Mill) seed essential oil against some pathogenic bacterial strains. Caspian J. Environ. Sci. 2020, 18, 295–307. [Google Scholar]
- Milenković, A.; Ilić, Z.; Stanojević, L.; Milenković, L.; Šunić, L.; Lalević, D.; Stanojević, J.; Danilović, B.; Cvetković, D. Essential Oil Yield, Composition, Antioxidant and Microbial Activity of Wild Fennel (Foeniculum vulgare Mill.) from Monte Negro Coast. Horticulturae 2022, 8, 1015. [Google Scholar] [CrossRef]
- Miraj, S.; Kiani, S. Study of antibacterial, antimycobacterial, antifungal, and antioxidant activities of Foeniculum vulgare: A review. Pharm. Lett. 2016, 8, 200–205. [Google Scholar]
- Yahyaoui, M.; Moumnassi, S.; Bentouhami, N.; Houmy, N.; Ed-Daoui, A.; Bellaouchi, R.; Taibi, M.; Haddou, M.; Bouzidi, A.; Brasca, M.; et al. Enhancing the fermentation of unsalted Moroccan Picholine green olives through heat-shock treatment, Lactiplantibacillus plantarum S61 inoculation and orange peel addition. CyTA–J. Food 2024, 22, 2384610. [Google Scholar] [CrossRef]
- Sab, C.; Romero, C.; Brenes, M.; Montaño, A.; Ouelhadj, A.; Medina, E. Industrial processing of Algerian table olive cultivars elaborated as Spanish style. Front. Microbiol. 2021, 12, 729436. [Google Scholar] [CrossRef]
- Medina, E.; Brenes, M.; Romero, C.; Ramírez, E.; de Castro, A. Survival of foodborne pathogenic bacteria in table olive brines. Food Control 2013, 34, 719–724. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Romero-Gil, V.; Medina-Pradas, E.; Garrido-Fernández, A.; Arroyo-López, F.N. Exploring bacteria diversity in commercialized table olive biofilms by metataxonomic and compositional data analysis. Sci. Rep. 2020, 10, 11381. [Google Scholar] [CrossRef]
- Medina, E.; Ruiz-Bellido, M.A.; Romero-Gil, V.; Rodríguez-Gómez, F.; Montes-Borrego, M.; Landa, B.B.; Arroyo-López, F.N. Assessment of the bacterial community in directly brined Aloreña de Málaga table olive fermentations by metagenetic analysis. Int. J. Food Microbiol. 2016, 236, 47–55. [Google Scholar] [CrossRef]
- Kazou, M.; Tzamourani, A.; Panagou, E.Z.; Tsakalidou, E. Unraveling the microbiota of natural black cv. Kalamata fermented olives through 16S and ITS metataxonomic analysis. Microorganisms 2020, 8, 672. [Google Scholar] [CrossRef]
- Aponte, M.; Blaiotta, G.; La Croce, F.; Mazzaglia, A.; Farina, V.; Settanni, L.; Moschetti, G. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiol. 2012, 30, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Coimbra-Gomes, J.; Reis, P.J.; Tavares, T.G.; Silva, A.A.; Mendes, E.; Casal, S.; Malcata, F.X.; Macedo, A.C. Cobrançosa table olive fermentation as per the Portuguese traditional method, using potentially probiotic Lactiplantibacillus pentosus i106 upon alternative inoculation strategies. Fermentation 2022, 9, 12. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, F.; Valero, A.; Vives Lara, E.; Marín, A.; Ramírez, E.M. LP309 a new strain of Lactiplantibacillus pentosus that improves the lactic fermentation of Spanish-style table olives. J. Food Sci. 2023, 88, 5191–5202. [Google Scholar] [CrossRef] [PubMed]
- Vaccalluzzo, A.; Celano, G.; Pino, A.; Calabrese, F.M.; Foti, P.; Caggia, C.; Randazzo, C. Metagenetic and volatilomic approaches to elucidate the effect of Lactiplantibacillus plantarum starter cultures on Sicilian table olives. Front. Microbiol. 2022, 12, 771636. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Calero-Delgado, B.; Rodríguez-Gómez, F.; Bautista-Gallego, J.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. The use of multifunctional yeast-lactobacilli starter cultures improves fermentation performance of Spanish-style green table olives. Food Microbiol. 2020, 91, 103497. [Google Scholar]
- Anagnostopoulos, D.A.; Bozoudi, D.; Tsaltas, D. Enterococci isolated from Cypriot green table olives as a new source of technological and probiotic properties. Fermentation 2018, 4, 48. [Google Scholar] [CrossRef]
- El Issaoui, K.; Senhaji, N.S.; Wieme, A.; Abrini, J.; Khay, E.O. Probiotic properties and physicochemical potential of lactic acid bacteria isolated from Moroccan table olives. J. Food Qual. Hazards Control 2022, 9, 169–178. [Google Scholar] [CrossRef]
- Tufariello, M.; Durante, M.; Ramires, F.A.; Grieco, F.; Tommasi, L.; Perbellini, E.; Falco, V.; Tsaioula-Margari, M.; Logrieco, A.F.; Mita, G.; et al. New process for production of fermented black table olives using selected autochthonous microbial resources. Front. Microbiol. 2015, 6, 1007. [Google Scholar] [CrossRef]
- Maoloni, A.; Cardinali, F.; Milanović, V.; Osimani, A.; Garofalo, C.; Ferrocino, I.; Corvaglia, M.R.; Cocolin, L.; Aquilanti, L. Microbial dynamics and key sensory traits of laboratory-scale co-fermented green olives (Olea europaea L. cv. Ascolana tenera) and sea fennel (Crithmum maritimum L.). Food Biosci. 2022, 50, 102077. [Google Scholar]
- Lee, J.; Lee, M.; Jung, M.; Kim, Y.; Roh, S.; Ryu, B.; Jeon, C.; Choi, H.; Whon, T.; Lee, S. Unravelling the key factors for the dominance of Leuconostoc starters during kimchi fermentation. NPJ Sci. Food 2025, 9, 15. [Google Scholar] [CrossRef]
- Agirman, B.; Settanni, L.; Erten, H. Effect of different mineral salt mixtures and dough extraction procedure on the physical, chemical and microbiological composition of Şalgam: A black carrot fermented beverage. Food Chem. 2021, 344, 128618. [Google Scholar] [CrossRef]
- Ruppitsch, W.; Nisic, A.; Hyden, P.; Cabal, A.; Sucher, J.; Stöger, A.; Allerberger, F.; Martinović, A. Genetic Diversity of Leuconostoc mesenteroides Isolates from Traditional Montenegrin Brine Cheese. Microorganisms 2021, 9, 1612. [Google Scholar] [CrossRef]
- Kumral, A.Y.; Basoglu, F.; Sahin, I. Effect of the use of different lactic starters on the microbiological and physicochemical characteristics of naturally black table olives of Gemlik cultivar. J. Food Process. Preserv. 2009, 33, 651–664. [Google Scholar] [CrossRef]
- Kharkhota, M.; Kharchuk, M.; Duplij, V.; Brindza, J.; Avdieieva, L.; Matvieieva, N. Effect of Priestia endophytica on the metabolites accumulation in chicory and lettuce plants cultivated in vitro. Prep. Biochem. Biotechnol. 2023, 53, 1137–1142. [Google Scholar] [CrossRef]
- Matvieieva, N.; Duplij, V.; Kharkhota, M.; Avdeeva, L. Priestia endophytica bacteria stimulate Rhodiola rosea L. in vitro growth. Agrobiodivers. Improv. Nutr. Health Life Qual. 2022, 6, 149–155. [Google Scholar] [CrossRef]
- Shurigin, V.; Li, L.; Alaylar, B.; Egamberdieva, D.; Liu, Y.H.; Li, W.J. Plant beneficial traits of endophytic bacteria associated with fennel (Foeniculum vulgare Mill.). AIMS Microbiol. 2024, 10, 449. [Google Scholar] [CrossRef] [PubMed]
- Hussein, W.; Ramadan, W.A.; Ibrahim, H.F. Isolation and identification of associated endophytic bacteria from barley seeds harbour non-ribosomal peptides and enhance tolerance to salinity stress. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 27. [Google Scholar] [CrossRef]
- Agunbiade, V.F.; Fadiji, A.E.; Agbodjato, N.A.; Babalola, O.O. Isolation and characterization of plant-growth-promoting, drought-tolerant rhizobacteria for improved maize productivity. Plants 2024, 13, 1298. [Google Scholar] [CrossRef] [PubMed]
- Manetsberger, J.; Caballero Gómez, N.; Soria-Rodríguez, C.; Benomar, N.; Abriouel, H. Simply versatile: The use of Peribacillus simplex in sustainable agriculture. Microorganisms 2023, 11, 2540. [Google Scholar] [CrossRef]
- Azabou, M.C.; Gharbi, Y.; Medhioub, I.; Ennouri, K.; Barham, H.; Tounsi, S.; Triki, M.A. The endophytic strain Bacillus velezensis OEE1: An efficient biocontrol agent against Verticillium wilt of olive and a potential plant growth promoting bacteria. Biol. Control 2020, 142, 104168. [Google Scholar]
- Castro, D.; Torres, M.; Sampedro, I.; Martínez-Checa, F.; Torres, B.; Béjar, V. Biological control of Verticillium wilt on olive trees by the salt-tolerant strain Bacillus velezensis XT1. Microorganisms 2020, 8, 1080. [Google Scholar] [CrossRef] [PubMed]
- Cheffi, M.; Chenari Bouket, A.; Alenezi, F.N.; Luptakova, L.; Belka, M.; Vallat, A.; Rateb, M.E.; Tounsi, S.; Triki, M.A.; Belbahri, L. Olea europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes. Microorganisms 2019, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- Covington, A.L.; Cerqueira, F.M.; Pavia, J.E.; Reynoso, D.; Ren, P. Complex trauma sequelae: Mycobacterium goodii and Priestia endophytica hardware infection in a patient with Ehlers-Danlos syndrome. BMC Infect. Dis. 2024, 24, 1064. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Gallego, J.; Rodríguez-Gómez, F.; Barrio, E.; Querol, A.; Garrido-Fernández, A.; Arroyo-López, F.N. Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. Int. J. Food Microbiol. 2011, 147, 89–96. [Google Scholar] [CrossRef]
- Pereira, E.L.; Ramalhosa, E.; Borges, A.; Pereira, J.A.; Baptista, P. Yeast dynamics during the natural fermentation process of table olives (Negrinha de Freixo cv.). Food Microbiol. 2015, 46, 582–586. [Google Scholar] [CrossRef]
- Bencresciuto, G.; Mandalà, C.; Migliori, C.; Cortellino, G.; Vanoli, M.; Bardi, L. Assessment of starters of lactic acid bacteria and killer yeasts: Selected strains in lab-scale fermentations of table olives (Olea europaea L.) cv. Leccino. Fermentation 2023, 9, 182. [Google Scholar] [CrossRef]
- Alongi, D.; Pirrone, A.; Naselli, V.; Prestianni, R.; Monte, M.; Gaglio, R.; De Pasquale, C.; Settanni, L.; Alfonzo, A.; Moschetti, G.; et al. Co-inoculation approach combining lactic acid bacteria and yeasts to enhance the production of Nocellara del Belice green split table olives. Food Biosci. 2024, 61, 104816. [Google Scholar] [CrossRef]
- Chytiri, A.; Tasioula-Margari, M.; Bleve, G.; Kontogianni, V.G.; Kallimanis, A.; Kontominas, M.G. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes. J. Sci. Food Agric. 2020, 100, 926–935. [Google Scholar] [CrossRef]
- Oliveira, T.; Ramalhosa, E.; Nunes, L.; Pereira, J.A.; Colla, E.; Pereira, E.L. Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov. Food Sci. Emerg. Technol. 2017, 44, 167–172. [Google Scholar] [CrossRef]
- Simões, L.A.; de Souza, A.C.; Ferreira, I.; Melo, D.S.; Lopes, L.A.A.; Magnani, M.; Schwan, R.F.; Dias, D.R. Probiotic properties of yeasts isolated from Brazilian fermented table olives. J. Appl. Microbiol. 2021, 131, 1983–1997. [Google Scholar] [CrossRef]
- Parapouli, M.; Vasileiadis, A.; Afendra, A.S.; Hatziloukas, E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020, 6, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Ciafardini, G.; Venditti, G.; Zullo, B. Yeast dynamics in the black table olives processing using fermented brine as starter. J. Food Sci. 2021, 5, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table olives more than a fermented food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Anglana, C.; Crupi, P.; Virtuosi, I.; Fiume, P.; Di Terlizzi, B.; Moselhy, N.; Attay, H.A.G.; Pati, S.; Logrieco, A.F.; et al. Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. J. Sci. Food Agric. 2019, 99, 2504–2512. [Google Scholar] [CrossRef]
- Schaide, T.; Cabrera-Bañegil, M.; Pérez-Nevado, F.; Esperilla, A.; Martín-Vertedor, D. Effect of olive leaf extract combined with Saccharomyces cerevisiae in the fermentation process of table olives. J. Food Sci. Technol. 2019, 56, 3001–3013. [Google Scholar] [CrossRef]
- Psani, M.; Kotzekidou, P. Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J. Microbiol. Biotechnol. 2006, 22, 1329–1336. [Google Scholar] [CrossRef]
- Mujdeci, G.N.; Ozbas, Z.Y. Technological and enzymatic characterization of the yeasts isolated from natural fermentation media of Gemlik olives. J. Appl. Microbiol. 2021, 131, 801–818. [Google Scholar] [CrossRef]
- Settanni, L.; Barbaccia, P.; Bonanno, A.; Ponte, M.; Di Gerlando, R.; Franciosi, E.; Di Grigoli, A.; Gaglio, R. Evolution of indigenous starter microorganisms and physicochemical parameters in spontaneously fermented beef, horse, wild boar and pork salamis produced under controlled conditions. Food Microbiol. 2020, 87, 103385. [Google Scholar] [CrossRef]
- Correa-Galeote, D.; Ghomari, I.; Asehraou, A.; González-López, J. Revealing the bacterial abundance and diversity in brines from started Spanish-style green table olives. LWT—Food Sci. Technol. 2022, 160, 113212. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Kamilari, E.; Tsaltas, D. Evolution of bacterial communities, physicochemical changes and sensorial attributes of natural whole and cracked Picual table olives during spontaneous and inoculated fermentation. Front. Microbiol. 2020, 11, 1128. [Google Scholar] [CrossRef]
- Tzamourani, A.P.; Kasimati, A.; Karagianni, E.; Manthou, E.; Panagou, E.Z. Exploring microbial communities of Spanish-style green table olives of Conservolea and Halkidiki cultivars during modified atmosphere packaging in multi-layered pouches through culture-dependent techniques and metataxonomic analysis. Food Microbiol. 2022, 107, 104063. [Google Scholar] [CrossRef]
- Michailidou, S.; Trikka, F.; Pasentsis, K.; Petrovits, G.E.; Kyritsi, M.; Argiriou, A. Insights into the evolution of Greek style table olives microbiome stored under modified atmosphere: Biochemical implications on the product quality. Food Control 2021, 130, 108286. [Google Scholar] [CrossRef]
- Kallastu, A.; Malv, E.; Aro, V.; Meikas, A.; Vendelin, M.; Kattel, A.; Nahku, R.; Kazantseva, J. Absolute quantification of viable bacteria abundances in food by next-generation sequencing: Quantitative NGS of viable microbes. Curr. Res. Food Sci. 2023, 6, 100443. [Google Scholar] [CrossRef]


| Samples | Microbial Concentration (log CFU/g or CFU/mL) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| PCA | DRBC | MRS | M17 | TSA | PAB | MSA | VRGBA | VRBA | EHA | |
| P1 | 4.9 ± 0.5 b | 4.9 ± 0.5 abc | 6.5 ± 0.1 ab | 6.6 ± 0.5 a | <2.0 b | <2.0 a | 3.9 ± 0.2 c | <1.0 a | <1.0 a | <1.0 a | 
| P2 | 4.7 ± 0.4 b | 4.5 ± 0.4 c | 6.7 ± 0.2 ab | 6.6 ± 0.1 a | <2.0 b | <2.0 a | 4.4 ± 0.3 bc | <1.0 a | <1.0 a | <1.0 a | 
| P3 | 4.8 ± 0.2 b | 4.6 ± 0.4 bc | 6.6 ± 0.4 ab | 6.6 ± 0.4 a | <2.0 b | <2.0 a | 3.0 ± 0.4 d | <1.0 a | <1.0 a | <1.0 a | 
| P4 | 4.9 ± 0.3 b | 4.7 ± 0.2 bc | 7.3 ± 0.3 a | 6.7 ± 0.1 a | <2.0 b | <2.0 a | 2.7 ± 0.5 d | <1.0 a | <1.0 a | <1.0 a | 
| S1 | 5.7 ± 0.5 b | 5.6 ± 0.4 abc | 6.0 ± 0.3 b | 5.8 ± 0.4 a | 2.5 ± 0.3 a | <2.0 a | 5.2 ± 0.5 ab | <1.0 a | <1.0 a | <1.0 a | 
| S2 | 6.8 ± 0.3 a | 5.8 ± 0.5 a | 6.4 ± 0.5 ab | 6.3 ± 0.5 a | 2.5 ± 0.3 a | <2.0 a | 5.6 ± 0.2 a | <1.0 a | <1.0 a | <1.0 a | 
| S3 | 6.8 ± 0.5 a | 5.7 ± 0.3 ab | 6.3 ± 0.1 b | 6.3 ± 0.3 a | 2.5 ± 0.4 a | <2.0 a | 5.3 ± 0.4 a | <1.0 a | <1.0 a | <1.0 a | 
| S4 | 6.9 ± 0.2 a | 5.9 ± 0.4 a | 6.3 ± 0.5 b | 6.3 ± 0.4 a | 2.6 ± 0.2 a | <2.0 a | 5.9 ± 0.3 a | <1.0 a | <1.0 a | <1.0 a | 
| Statistical significance | *** | ** | * | n.s. | *** | n.s. | *** | n.s. | n.s. | n.s. | 
| Characters | Clusters (Number of Isolates) | ||||
|---|---|---|---|---|---|
| LAB | I (n = 36) | II (n = 8) | III (n = 12) | IV (n = 2) | V (n = 4) | 
| Cell morphology | Coccus | Coccus (short chain) | Coccus (short chain) | Coccus (short chain) | Rod | 
| Growth: | |||||
| 
 | + | − | + | + | + | 
| 
 | + | − | − | − | − | 
| 
 | + | − | − | + | + | 
| 
 | + | + | + | + | + | 
| CO2 from glucose | − | + | + | + | − | 
| Pentose fermentation | n.d. | n.d. | n.d. | n.d. | + | 
| Spore-forming bacteria | VI (n = 3) | VII (n = 6) | VIII (n = 3) | IX (n = 6) | |
| Cell morphology | Rod | Rod | Rod | Rod | |
| Resistance to: | |||||
| 
 | 11 | 8 | 5 | 10 | |
| 
 | 4−10 | 5−10 | 5−9 | 5−9 | |
| 
 | + | + | + | + | |
| 
 | + | − | − | + | |
| Glucose utilization | + | + | + | + | |
| Glucose fermentation | − | − | − | − | |
| Starch hydrolysis | + | − | + | − | |
| Strains | Species | % Similarity (Accession No. of Closest Relative) by | Sequence Length (bp) | Accession Number | |
|---|---|---|---|---|---|
| Lactic acid bacteria | BLAST | EzTaxon | |||
| OL40 | Enterococcus faecium | 99.86 (CP144273.1) | 99.79 (AJ301830) | 1428 | PQ573832 | 
| OL46 | Enterococcus faecium | 99.46 (MT000137.1) | 99.05 (AJ301830) | 1475 | PQ573833 | 
| OL53 | Leuconostoc pseudomesenteroides | 99.93 (LC223100.1) | 99.51 (AB023237) | 1455 | PQ573834 | 
| OL55 | Lactiplantibacillus pentosus | 99.46 (OR502270.1) | 99.12 (AZCU01000047) | 1484 | PQ573835 | 
| OL58 | Lactiplantibacillus plantarum | 99.10 (ON197164.1) | 99.03 (CP032751) | 1440 | PQ573836 | 
| OL59 | Leuconostoc mesenteroides subsp. jonggajibkimchii | 99.86 (MT597785.1) | 99.93 (CP014611) | 1394 | PQ573837 | 
| OL60 | Enterococcus faecium | 99.51 (OR016181.1) | 99.16 (AJ301830) | 1435 | PQ573838 | 
| OL62 | Leuconostoc mesenteroides subsp. cremoris | 99.93 (OM265424.1) | 99.50 (ACKV01000113) | 1408 | PQ573839 | 
| OL68 | Leuconostoc mesenteroides subsp. jonggajibkimchii | 99.93 (MK774577.1) | 99.93 (CP014611) | 1454 | PQ573840 | 
| OL127 | Enterococcus faecium | 100 (CP144273.1) | 99.80 (AJ301830) | 1470 | PQ573841 | 
| Spore-forming bacteria | |||||
| OL9 | Peribacillus frigoritolerans | 99.93 (MH910209.1) | 99.86 (AM747813) | 1401 | PQ574041 | 
| OL10 | Peribacillus frigoritolerans | 99.86 (MN710443.1) | 99.93 (AM747813) | 1417 | PQ574042 | 
| OL14 | Bacillus velezensis | 99.93 (ON197102.1) | 99.79 (AY603658) | 1523 | PQ574043 | 
| OL16 | Peribacillus simplex | 99.87 (OP986040.1) | 99.86 (BCVO01000086) | 1496 | PQ574044 | 
| OL17 | Priestia endophytica | 99.93 (OK605862.1) | 99.93 (AF295302) | 1435 | PQ574045 | 
| OL19 | Priestia endophytica | 99.93 (OK605857.1) | 99.93 (AF295302) | 1433 | PQ574046 | 
| Macroscopic Characteristics | Clusters (Number of Isolates) | ||
|---|---|---|---|
| VI (n = 50) | VII (n = 1) | VIII (n = 3) | |
| Colony colour 1 | White | Tannish-white | Cream | 
| Shape | Round | Round | Round | 
| Edge | Fringed | Entire | Entire | 
| Opacity | Opaque | Shiny | Opaque | 
| Surface | Smooth | Glistening | Smooth | 
| Consistency | Butyrous | Butyrous | Butyrous | 
| Phenotypic Group | Amplicon Size 5.8S-ITS (bp) | Size of Restriction Fragments (bp) | Number of Strains 1 | Species | Range Size of the PCR Products (bp) | Acc. No. (% Similarity) | ||
|---|---|---|---|---|---|---|---|---|
| CfoI | HaeIII | HinfI | ||||||
| VI | 550 | 285 + 255 | 460 + 85 | 270 + 270 | 4 | Candida tropicalis | 468–532 | PQ574034-PQ574037 (100) | 
| VII | 805 | 335 + 220 + 145 + 105 | 805 | 410 + 390 | 1 | Torulaspora delbrueckii | 477 | PQ574038 (100) | 
| VIII | 850 | 380 + 330 + 140 | 325 + 230 + 175 + 140 | 365 + 360 + 130 | 1 | Saccharomyces cerevisiae | 540 | PQ574039 (100) | 
| Fruit Samples | Brine Samples | |||||||
|---|---|---|---|---|---|---|---|---|
| Lactic acid bacteria | P1 | P2 | P3 | P4 | S1 | S2 | S3 | S4 | 
| Enterococcus faecium | ■ | ■ | ■ | ■ | ■ | ■ | ■ | |
| Lactiplantibacillus pentosus | ■ | |||||||
| Lactiplantibacillus plantarum | ■ | ■ | ||||||
| Leuconostoc mesenteroides subsp. cremoris | ■ | ■ | ■ | ■ | ■ | |||
| Leuconostoc mesenteroides subsp. jonggajibkimchi | ■ | ■ | ■ | ■ | ||||
| Leuconostoc pseudomesenteroides | ■ | |||||||
| Spore-forming bacteria | ||||||||
| Bacillus velezensis | ■ | |||||||
| Peribacillus frigoritolerans | ■ | ■ | ||||||
| Peribacillus simplex | ■ | |||||||
| Priestia endophytica | ■ | ■ | ||||||
| Yeasts | ||||||||
| Candida tropicalis | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | 
| Saccharomyces cerevisiae | ■ | ■ | ■ | |||||
| Torulaspora delbrueckii | ■ | |||||||
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonzo, A.; Gaglio, R.; Alongi, D.; Franciosi, E.; Perricone, G.; Garofalo, G.; Prestianni, R.; Naselli, V.; Pirrone, A.; Francesca, N.; et al. Polyphasic Characterisation of Microbiota Associated with Sant’Agostino Table Olives Flavoured with Foeniculum vulgare. Foods 2025, 14, 3689. https://doi.org/10.3390/foods14213689
Alfonzo A, Gaglio R, Alongi D, Franciosi E, Perricone G, Garofalo G, Prestianni R, Naselli V, Pirrone A, Francesca N, et al. Polyphasic Characterisation of Microbiota Associated with Sant’Agostino Table Olives Flavoured with Foeniculum vulgare. Foods. 2025; 14(21):3689. https://doi.org/10.3390/foods14213689
Chicago/Turabian StyleAlfonzo, Antonio, Raimondo Gaglio, Davide Alongi, Elena Franciosi, Giulio Perricone, Giuliana Garofalo, Rosario Prestianni, Vincenzo Naselli, Antonino Pirrone, Nicola Francesca, and et al. 2025. "Polyphasic Characterisation of Microbiota Associated with Sant’Agostino Table Olives Flavoured with Foeniculum vulgare" Foods 14, no. 21: 3689. https://doi.org/10.3390/foods14213689
APA StyleAlfonzo, A., Gaglio, R., Alongi, D., Franciosi, E., Perricone, G., Garofalo, G., Prestianni, R., Naselli, V., Pirrone, A., Francesca, N., Moschetti, G., & Settanni, L. (2025). Polyphasic Characterisation of Microbiota Associated with Sant’Agostino Table Olives Flavoured with Foeniculum vulgare. Foods, 14(21), 3689. https://doi.org/10.3390/foods14213689
 
         
                                                


 
       