An Asset for Food Safety: The Knowledge Behind the Physiological Alterations Induced by ETEC Enterotoxins
Abstract
1. Introduction
2. Search Strategy and Selection Criteria
3. ETEC Virulence Factors: Fimbriae and Toxins
3.1. Classification of ETEC Colonization Factors
3.2. Classification and Structural Characterization of ETEC Enterotoxins
3.2.1. Heat-Labile Toxins (LT)
3.2.2. Heat-Stable Toxins (ST)
3.2.2.1. STa Toxin
3.2.2.2. STb Toxin
3.2.2.3. EAST1 Toxin
4. Main Physiological Alterations and Adaptive Mechanisms
4.1. Gastrointestinal System (GI)
Non-Diarrheal Sequelae Associated with ETEC Infections
4.2. Enteric Nervous System (ENS)
4.3. Immune System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Croxen, M.A.; Finlay, B.B. Molecular Mechanisms of Escherichia coli Pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Sapountzis, P.; Segura, A.; Desvaux, M.; Forano, E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020, 8, 877. [Google Scholar] [CrossRef] [PubMed]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Preferred Product Characteristics for Vaccines Against Enterotoxigenic Escherichia coli; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Barros, M.M.; Castro, J.; Araújo, D.; Campos, A.M.; Oliveira, R.; Silva, S.; Outor-Monteiro, D.; Almeida, C. Swine Colibacillosis: Global Epidemiologic and Antimicrobial Scenario. Antibiotics 2023, 12, 682. [Google Scholar] [CrossRef]
- Luppi, A. Swine Enteric Colibacillosis: Diagnosis, Therapy and Antimicrobial Resistance. Porc. Health Manag. 2017, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, J.M.; Nadeau, É. Colibacillosis. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; John Wiley & Son: Hoboken, NJ, USA, 2019; pp. 807–834. [Google Scholar]
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia coli in Postweaning Diarrhea in Pigs: An Update on Bacterial Types, Pathogenesis, and Prevention Strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef]
- Castro, J.; Barros, M.M.; Araújo, D.; Campos, A.M.; Oliveira, R.; Silva, S.; Almeida, C. Swine Enteric Colibacillosis: Current Treatment Avenues and Future Directions. Front. Vet. Sci. 2022, 9, 981207. [Google Scholar] [CrossRef]
- Gyles, C.L.; Fairbrother, J.M. Escherichia coli. In Pathogenesis of Bacterial Infections in Animals; Gyles, C.L., Prescott, J.F., Songer, J.G., Thoen, C.O., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 267–279. ISBN 9780813812373. [Google Scholar]
- Zhang, Y.; Tan, P.; Zhao, Y.; Ma, X. Enterotoxigenic Escherichia coli: Intestinal Pathogenesis Mechanisms and Colonization Resistance by Gut Microbiota. Gut Microbes 2022, 14, 2055943. [Google Scholar] [CrossRef]
- Chatterjee, A.; Abraham, J. Microbial Contamination, Prevention, and Early Detection in Food Industry. In Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 21–47. [Google Scholar]
- Urban-Chmiel, R.; Osek, J.; Wieczorek, K. Methods of Controlling Microbial Contamination of Food. Pathogens 2025, 14, 492. [Google Scholar] [CrossRef]
- Ajekiigbe, V.O.; Ogieuhi, I.J.; Anthony, C.S.; Bakare, I.S.; Anyacho, S.; Ogunleke, P.O.; Fatokun, D.I.; Akinmeji, O.; Ruth, O.T.; Olaore, A.K.; et al. Consumer Behavior and Its Role in E. coli Outbreaks: The Impact of Fast-Food Preparation Practices and Hygiene Awareness. Trop. Med. Health 2025, 53, 27. [Google Scholar] [CrossRef]
- Vázquez-Quiñones, C.R.; Rincón-Guevara, M.; Natividad-Bonifacio, I.; Vázquez-Salinas, C.; González-Márquez, H. Incidence Rates of Resistant Enterotoxigenic Escherichia coli in Fresh Vegetables and Salads. Access Microbiol. 2025, 7, 000957.v3. [Google Scholar] [CrossRef] [PubMed]
- Youmans, B.P.; Ajami, N.J.; Jiang, Z.D.; Campbell, F.; Duncan Wadsworth, W.; Petrosino, J.F.; Du-Pont, H.L.; Highlander, S.K. Characterization of the Human Gut Microbiome during Travelers’ Diarrhea. Gut Microbes 2015, 6, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Suffredini, E.; Pepe, T.; Ventrone, I.; Croci, L. Norovirus Detection in Shellfish Using Two Real-Time RT-PCR Methods. New Microbiol. 2011, 34, 9–16. [Google Scholar] [PubMed]
- Amass, S.F.; Halbur, P.G.; Byrne, B.A.; Schneider, J.L.; Koons, C.W.; Cornick, N.; Ragland, D. Mechanical Transmission of Enterotoxigenic Escherichia coli to Weaned Pigs by People, and Biosecurity Procedures That Prevented Such Transmission. J. Swine Health Prod. 2003, 11, 61–68. [Google Scholar] [CrossRef]
- Kim, K.; Song, M.; Liu, Y.; Ji, P. Enterotoxigenic Escherichia coli Infection of Weaned Pigs: Intestinal Challenges and Nutritional Intervention to Enhance Disease Resistance. Front. Immunol. 2022, 13, 885253. [Google Scholar] [CrossRef]
- Laird, T.J.; Abraham, S.; Jordan, D.; Pluske, J.R.; Hampson, D.J.; Trott, D.J.; O’Dea, M. Porcine Enterotoxigenic Escherichia coli: Antimicrobial Resistance and Development of Microbial-Based Alternative Control Strategies. Vet. Microbiol. 2021, 258, 109117. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Turner, S.M.; Scott-Tucker, A.; Cooper, L.M.; Henderson, I.R. Weapons of Mass Destruction: Virulence Factors of the Global Killer Enterotoxigenic Escherichia coli. FEMS Microbiol. Lett. 2006, 263, 10–20. [Google Scholar] [CrossRef]
- Vidal, R.M.; Muhsen, K.; Tennant, S.M.; Svennerholm, A.M.; Sow, S.O.; Sur, D.; Zaidi, A.K.M.; Faruque, A.S.G.; Saha, D.; Adegbola, R.; et al. Colonization Factors among Enterotoxigenic Escherichia coli Isolates from Children with Moderate-to-Severe Diarrhea and from Matched Controls in the Global Enteric Multicenter Study (GEMS). PLoS Negl. Trop. Dis. 2019, 13, e0007037. [Google Scholar] [CrossRef]
- Levine, M.M. Escherichia coli That Cause Diarrhea: Enterotoxigenic, Enteropathogenic, Enteroinvasive, Enterohemorrhagic, and Enteroadherent. J. Infect. Dis. 1987, 155, 377–389. [Google Scholar] [CrossRef]
- von Mentzer, A.; Svennerholm, A.-M. Colonization Factors of Human and Animal-Specific Enterotoxigenic Escherichia coli (ETEC). Trends Microbiol. 2024, 32, 448–464. [Google Scholar] [CrossRef]
- Jansson, L.; Tobias, J.; Lebens, M.; Svennerholm, A.-M.; Teneberg, S. The Major Subunit, CfaB, of Colonization Factor Antigen I from Enterotoxigenic Escherichia coli is a Glycosphingolipid Binding Protein. Infect. Immun. 2006, 74, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Jansson, L.; Tobias, J.; Jarefjäll, C.; Lebens, M.; Svennerholm, A.-M.; Teneberg, S. Sulfatide Recognition by Colonization Factor Antigen CS6 from Enterotoxigenic Escherichia coli. PLoS ONE 2009, 4, e4487. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Hilliard, G.M.; Hamilton, D.J.; Luo, J.; Ostmann, M.M.; Fleckenstein, J.M. Enterotoxigenic Escherichia coli EtpA Mediates Adhesion between Flagella and Host Cells. Nature 2009, 457, 594–598. [Google Scholar] [CrossRef]
- Hartadi, E.B.; Effendi, M.H.; Plumeriastuti, H.; Sofiana, E.D.; Wibisono, F.M.; Hidayatullah, A.R. A Review of Enterotoxigenic Escherichia coli Infection in Piglets: Public Health Importance. Syst. Rev. Pharm. 2020, 11, 687–698. [Google Scholar] [CrossRef]
- Read, L.T.; Hahn, R.W.; Thompson, C.C.; Bauer, D.L.; Norton, E.B.; Clements, J.D. Simultaneous Exposure to Escherichia coli Heat-Labile and Heat-Stable Enterotoxins Increases Fluid Secretion and Alters Cyclic Nucleotide and Cytokine Production by Intestinal Epithelial Cells. Infect. Immun. 2014, 82, 5308–5316. [Google Scholar] [CrossRef]
- Dubreuil, J.D.; Isaacson, R.E.; Schifferli, D.M. Animal Enterotoxigenic Escherichia coli. EcoSalPlus 2016, 7, 1–47. [Google Scholar] [CrossRef]
- Spangler, B.D. Structure and Function of Cholera Toxin and the Related Escherichia coli Heat-Labile Enterotoxin. Microbiol. Rev. 1992, 56, 622–647. [Google Scholar] [CrossRef]
- Serrano, A.; Guyette, J.L.; Heim, J.B.; Taylor, M.; Cherubin, P.; Krengel, U.; Teter, K.; Tatulian, S.A. Holotoxin Disassembly by Protein Disulfide Isomerase is Less Efficient for Escherichia coli Heat-Labile Enterotoxin than Cholera Toxin. Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Clements, J.D.; Yancey, R.J.; Finkelstein, R.A. Properties of Homogeneous Heat-Labile Enterotoxin from Escherichia coli. Infect. Immun. 1980, 29, 91–97. [Google Scholar] [CrossRef]
- Connell, T.D. Cholera Toxin, LT-I, LT-IIa, and LT-IIb: The Critical Role of Ganglioside-Binding in Immunomodulation by Type I and Type II Heat-Labile Enterotoxins. Expert. Rev. Vaccines 2007, 6, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Mekalanos, J.J.; Sublett, R.D.; Romig, W.R. Genetic Mapping of Toxin Regulatory Mutations in Vibrio cholerae. J. Bacteriol. 1979, 139, 859–865. [Google Scholar] [CrossRef]
- Duan, Q.; Xia, P.; Nandre, R.; Zhang, W.; Zhu, G. Review of Newly Identified Functions Associated with the Heat-Labile Toxin of Enterotoxigenic Escherichia coli. Front. Cell. Infect. Microbiol. 2019, 9, 292. [Google Scholar] [CrossRef] [PubMed]
- Nawar, H.F.; Berenson, C.S.; Hajishengallis, G.; Takematsu, H.; Mandell, L.; Clare, R.L.; Connell, T.D. Binding to Gangliosides Containing N-Acetylneuraminic Acid is Sufficient to Mediate the Immunomodulatory Properties of the Nontoxic Mucosal Adjuvant LT-IIb(T13I). Clin. Vaccine Immunol. 2010, 17, 969–978. [Google Scholar] [CrossRef]
- Casey, T.A.; Connell, T.D.; Holmes, R.K.; Whipp, S.C. Evaluation of Heat-Labile Enterotoxins Type IIa and Type IIb in the Pathogenicity of Enterotoxigenic Escherichia coli for Neonatal Pigs. Vet. Microbiol. 2012, 159, 83–89. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Z.; Luo, Y.; Cox, E.; Devriendt, B. Heat-Stable Enterotoxins of Enterotoxigenic Escherichia coli and Their Impact on Host Immunity. Toxins 2019, 11, 24. [Google Scholar] [CrossRef]
- Burgess, M.N.; Bywater, R.J.; Cowley, C.M.; Mullan, N.A.; Newsome, P.M. Biological Evaluation of a Methanol-Soluble, Heat-Stable Escherichia coli Enterotoxin in Infant Mice, Pigs, Rabbits, and Calves. Infect. Immun. 1978, 21, 526–531. [Google Scholar] [CrossRef]
- Smith, H.W.; Gyles, C.L. The Effect of Cell-Free Fluids Prepared from Cultures of Human and Animal Enteropathogenic Strains of Escherichia coli on Ligated Intestinal Segments of Rabbits and Pigs. J. Med. Microbiol. 1970, 3, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Nair, G.B.; Takeda, Y. The Heat-Stable Enterotoxins. Microb. Pathog. 1998, 24, 123–131. [Google Scholar] [CrossRef]
- Weiglmeier, P.R.; Rösch, P.; Berkner, H. Cure and Curse: E. coli Heat-Stable Enterotoxin and Its Receptor Guanylyl Cyclase C. Toxins 2010, 2, 2213–2229. [Google Scholar] [CrossRef]
- Lima, A.A.M.; Fonteles, M.C. From Escherichia coli Heat-Stable Enterotoxin to Mammalian Endogenous Guanylin Hormones. Braz. J. Med. Biol. Res. 2014, 47, 179–191. [Google Scholar] [CrossRef]
- Okamoto, K.; Okamoto, K.; Yukitake, J.; Kawamoto, Y.; Miyama, A. Substitutions of Cysteine Residues of Escherichia coli Heat-Stable Enterotoxin by Oligonucleotide-Directed Mutagenesis. Infect. Immun. 1987, 55, 2121–2125. [Google Scholar] [CrossRef]
- Dubreuil, J.D. Escherichia coli STb Enterotoxin. Microbiology 1997, 143, 1783–1795. [Google Scholar] [CrossRef]
- Lee, C.H.; Moseley, S.L.; Moon, H.W.; Whipp, S.C.; Gyles, C.L.; So, M. Characterization of the Gene Encoding Heat-Stable Toxin II and Preliminary Molecular Epidemiological Studies of Enterotoxigenic Escherichia coli Heat-Stable Toxin II Producers. Infect. Immun. 1983, 42, 264–268. [Google Scholar] [CrossRef]
- Handl, C.E.; Harel, J.; Flock, J.I.; Dubreuil, J.D. High Yield of Active STb Enterotoxin from a Fusion Protein (MBP-STb) Expressed in Escherichia coli. Protein Expr. Purif. 1993, 4, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Dubreuil, J.D.; Fairbrother, J.M.; Lallier, R.; Lariviere, S. Production and Purification of Heat-Stable Enterotoxin b from a Porcine Escherichia coli Strain. Infect. Immun. 1991, 59, 198. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Hayashi, M.; Hitotsubashi, S.; Fuke, Y.; Yamanaka, H.; Okamoto, K. Purification and Characterization of Escherichia coli Heat-Stable Enterotoxin II. J. Bacteriol. 1991, 173, 5516. [Google Scholar] [CrossRef] [PubMed]
- Whipp, S.C. Protease Degradation of Escherichia coli Heat-Stable, Mouse-Negative, Pig-Positive Enterotoxin. Infect. Immun. 1987, 55, 2057–2060. [Google Scholar] [CrossRef]
- Ngeleka, M.; Pritchard, J.; Appleyard, G.; Middleton, D.M.; Fairbrother, J.M. Isolation and Association of Escherichia coli AIDA-I/STb, Rather than EAST1 Pathotype, with Diarrhea in Piglets and Antibiotic Sensitivity of Isolates. J. Vet. Diagn. Investig. 2003, 15, 242–252. [Google Scholar] [CrossRef]
- Berberov, E.M.; Zhou, Y.; Francis, D.H.; Scott, M.A.; Kachman, S.D.; Moxley, R.A. Relative Importance of Heat-Labile Enterotoxin in the Causation of Severe Diarrheal Disease in the Gnotobiotic Piglet Model by a Strain of Enterotoxigenic Escherichia coli That Produces Multiple Enterotoxins. Infect. Immun. 2004, 72, 3914–3924. [Google Scholar] [CrossRef]
- Ménard, L.-P.; Dubreuil, J.D. Enteroaggregative Escherichia coli Heat-Stable Enterotoxin 1 (EAST1): A New Toxin with an Old Twist. Crit. Rev. Microbiol. 2002, 28, 43–60. [Google Scholar] [CrossRef]
- Paiva de Sousa, C.; Dubreuil, J.D. Distribution and Expression of the astA Gene (EAST1 Toxin) in Escherichia coli and Salmonella. Int. J. Med. Microbiol. 2001, 291, 15–20. [Google Scholar] [CrossRef]
- Savarino, S.J.; McVeigh, A.; Watson, J.; Cravioto, A.; Molina, J.; Echeverria, P.; Bhan, M.K.; Levine, M.M.; Fasano, A. Enteroaggregative Escherichia coli Heat-Stable Enterotoxin Is Not Restricted to Enteroaggregative E. coli. J. Infect. Dis. 1996, 173, 1019–1022. [Google Scholar] [CrossRef]
- Savarino, S.J.; Fasano, A.; Robertson, D.C.; Levine, M.M. Enteroaggregative Escherichia coli Elaborate a Heat-Stable Enterotoxin Demonstrable in an in Vitro Rabbit Intestinal Model. J. Clin. Investig. 1991, 87, 1450–1455. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.M.; Prado, V.; Robins-Browne, R.; Lior, H.; Kaper, J.B.; Moseley, S.L.; Gicquelais, K.; Nataro, J.P.; Vial, P.; Tall, B. Use of DNA Probes and HEp-2 Cell Adherence Assay to Detect Diarrheagenic Escherichia coli. J. Infect. Dis. 1988, 158, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, J.M.; Hardwidge, P.R.; Munson, G.P.; Rasko, D.A.; Sommerfelt, H.; Steinsland, H. Molecular Mechanisms of Enterotoxigenic Escherichia coli Infection. Microbes Infect. 2010, 12, 89–98. [Google Scholar] [CrossRef]
- Sheikh, A.; Tumala, B.; Vickers, T.J.; Martin, J.C.; Rosa, B.A.; Sabui, S.; Basu, S.; Simoes, R.D.; Mitreva, M.; Storer, C.; et al. Enterotoxigenic Escherichia coli Heat-Labile Toxin Drives Enteropathic Changes in Small Intestinal Epithelia. Nat. Commun. 2022, 13, 6886. [Google Scholar] [CrossRef]
- Dorsey, F.C.; Fischer, J.F.; Fleckenstein, J.M. Directed Delivery of Heat-Labile Enterotoxin by Enterotoxigenic Escherichia coli. Cell. Microbiol. 2006, 8, 1516–1527. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.M.; Kaushik, R.S.; Francis, D.H.; Fleckenstein, J.M.; Hardwidge, P.R. Heat-Labile Enterotoxin Promotes Escherichia coli Adherence to Intestinal Epithelial Cells. J. Bacteriol. 2009, 191, 178–186. [Google Scholar] [CrossRef]
- Kesty, N.C.; Mason, K.M.; Reedy, M.; Miller, S.E.; Kuehn, M.J. Enterotoxigenic Escherichia coli Vesicles Target Toxin Delivery into Mammalian Cells. EMBO J. 2004, 23, 4538–4549. [Google Scholar] [CrossRef]
- Duarte-Mata, D.I.; Salinas-Carmona, M.C. Antimicrobial Peptides’ Immune Modulation Role in Intracellular Bacterial Infection. Front. Immunol. 2023, 14, 1119574. [Google Scholar] [CrossRef]
- Chakraborty, K.; Ghosh, S.; Koley, H.; Mukhopadhyay, A.K.; Ramamurthy, T.; Saha, D.R.; Mukhopadhyay, D.; Roychowdhury, S.; Hamabata, T.; Takeda, Y.; et al. Bacterial Exotoxins Downregulate Cathelicidin (HCAP-18/LL-37) and Human Beta-Defensin 1 (HBD-1) Expression in the Intestinal Epithelial Cells. Cell Microbiol. 2008, 10, 2520–2537. [Google Scholar] [CrossRef]
- Krause, W.J.; Cullingford, G.L.; Freeman, R.H.; Eber, S.L.; Richardson, K.C.; Fok, K.F.; Currie, M.G.; Forte, L.R. Distribution of Heat-Stable Enterotoxin/Guanylin Receptors in the Intestinal Tract of Man and Other Mammals. J. Anat. 1994, 184, 407–417. [Google Scholar]
- Akabas, M.H. Cystic Fibrosis Transmembrane Conductance Regulator. Structure and Function of an Epithelial Chloride Channel. J. Biol. Chem. 2000, 275, 3729–3732. [Google Scholar] [CrossRef]
- Arshad, N.; Visweswariah, S.S. The Multiple and Enigmatic Roles of Guanylyl Cyclase C in Intestinal Homeostasis. FEBS Lett. 2012, 586, 2835–2840. [Google Scholar] [CrossRef] [PubMed]
- Hug, M.J.; Tamada, T.; Bridges, R.J. CFTR and Bicarbonate Secretion to Epithelial Cells. News Physiol. Sci. 2003, 18, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, R.; Kamata, Y.; Nishikawa, Y. Effects of Escherichia coli Heat-Stable Enterotoxin and Guanylin on the Barrier Integrity of Intestinal Epithelial T84 Cells. Vet. Immunol. Immunopathol. 2013, 152, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Dreyfus, L.A.; Harville, B.; Howard, D.E.; Shaban, R.; Beatty, D.M.; Morris, S.J. Calcium Influx Mediated by the Escherichia coli Heat-Stable Enterotoxin B (STB). Proc. Natl. Acad. Sci. USA 1993, 90, 3202–3206. [Google Scholar] [CrossRef]
- Fujii, Y.; Nomura, T.; Yamanaka, H.; Okamoto, K. Involvement of Ca2+ -Calmodulin-Dependent Protein Kinase II in the Intestinal Secretory Action of Escherichia coli Heat-Stable Enterotoxin II. Microbiol. Immunol. 1997, 41, 633–636. [Google Scholar] [CrossRef]
- Klipstein, F.A.; Holdeman, L.V.; Corcino, J.J.; Moore, W.E.C. Enterotoxigenic Intestinal Bacteria in Tropical Sprue. Ann. Intern. Med. 1973, 79, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, D.; Blackwelder, W.C.; Sommerfelt, H.; Wu, Y.; Farag, T.H.; Panchalingam, S.; Biswas, K.; Saha, D.; Jahangir Hossain, M.; Sow, S.O.; et al. Pathogens Associated with Linear Growth Faltering in Children With Diarrhea and Impact of Antibiotic Treatment: The Global Enteric Multicenter Study. J. Infect. Dis. 2021, 224, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Qadri, F.; Saha, A.; Ahmed, T.; Al Tarique, A.; Begum, Y.A.; Svennerholm, A.-M. Disease Burden Due to Enterotoxigenic Escherichia coli in the First 2 Years of Life in an Urban Community in Bangladesh. Infect. Immun. 2007, 75, 3961–3968. [Google Scholar] [CrossRef]
- Anderson, J.D.; Bagamian, K.H.; Muhib, F.; Amaya, M.P.; Laytner, L.A.; Wierzba, T.; Rheingans, R. Burden of Enterotoxigenic Escherichia coli and Shigella Non-Fatal Diarrhoeal Infections in 79 Low-Income and Lower Middle-Income Countries: A Modelling Analysis. Lancet Glob. Health 2019, 7, 321–330. [Google Scholar] [CrossRef]
- Caulfield, L.E.; de Onis, M.; Blössner, M.; Black, R.E. Undernutrition as an Underlying Cause of Child Deaths Associated with Diarrhea, Pneumonia, Malaria, and Measles. Am. J. Clin. Nutr. 2004, 80, 193–198. [Google Scholar] [CrossRef]
- MAL-ED Network Investigators. Early Childhood Cognitive Development is Affected by Interactions among Illness, Diet, Enteropathogens and the Home Environment: Findings from the MAL-ED Birth Cohort Study. BMJ Glob. Health 2018, 3, 1–11. [Google Scholar] [CrossRef]
- Guerrant, R.L.; Deboer, M.D.; Moore, S.R.; Scharf, R.J.; Lima, A.A.M. The Impoverished Gut—A Triple Burden of Diarrhoea, Stunting and Chronic Disease. Nat. Rev. Gastroenterol. Hepatol. 2012, 10, 220–229. [Google Scholar] [CrossRef]
- Sheikh, A.; Tumala, B.; Vickers, T.J.; Alvarado, D.; Ciorba, M.A.; Bhuiyan, R.; Qadri, F.; Singer, B.B.; Fleckenstein, J.M. CEACAMs Serve as Toxin-Stimulated Receptors for Enterotoxigenic Escherichia coli. Proc. Natl. Acad. Sci. USA 2020, 117, 29055–29062. [Google Scholar] [CrossRef]
- Sheikh, A.; Wangdi, T.; Vickers, T.J.; Aaron, B.; Palmer, M.; Miller, M.J.; Kim, S.; Herring, C.; Simoes, R.; Crainic, J.A.; et al. Enterotoxigenic Escherichia coli Degrades the Host MUC2 Mucin Barrier to Facilitate Critical Pathogen-Enterocyte Interactions in Human Small Intestine. Infect. Immun. 2022, 90, e0057221. [Google Scholar] [CrossRef] [PubMed]
- Ilantzis, C.; DeMarte, L.; Screaton, R.A.; Stanners, C.P. Deregulated Expression of the Human Tumor Marker CEA and CEA Family Member CEACAM6 Disrupts Tissue Architecture and Blocks Colonocyte Differentiation. Neoplasia 2002, 4, 151–163. [Google Scholar] [CrossRef]
- Taddei, M.L.; Giannoni, E.; Fiaschi, T.; Chiarugi, P. Anoikis: An Emerging Hallmark in Health and Diseases. J. Pathol. 2012, 226, 380–393. [Google Scholar] [CrossRef]
- Barker, N. Adult Intestinal Stem Cells: Critical Drivers of Epithelial Homeostasis and Regeneration. Nat. Rev. Mol. Cell Biol. 2014, 15, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, F.M.; Laine, R.O.; Afrin, S.; Nakajima, R.; Akhtar, M.; Vickers, T.; Parker, K.; Nizam, N.N.; Grigura, V.; Goss, C.W.; et al. Contribution of Noncanonical Antigens to Virulence and Adaptive Immunity in Human Infection with Enterotoxigenic E. coli. Infect. Immun. 2021, 89, e00041-21. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.V.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C. The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon is Devoid of Bacteria. Proc. Natl. Acad. Sci. USA 2008, 105, 15064–15069. [Google Scholar] [CrossRef]
- Sassone-Corsi, P. Transcription Factors Responsive to CAMP. Annu. Rev. Cell Dev. Biol. 1995, 11, 355–377. [Google Scholar] [CrossRef] [PubMed]
- Lodish, H.; Berk, A.; Matsudaira, P.; Kaiser, C.A.; Krieger, M.; Scott, M.P.; Zipursky, L.; Darnell, J. Molecular Cell Biology, 5th ed.; W.H. Freeman: New York, NY, USA, 2000. [Google Scholar]
- Sassone-Corsi, P. The Cyclic AMP Pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011148. [Google Scholar] [CrossRef]
- Zambon, A.C.; Zhang, L.; Minovitsky, S.; Kanter, J.R.; Prabhakar, S.; Salomonis, N.; Vranizan, K.; Dubchak, I.; Conklin, B.R.; Insel, P.A. Gene Expression Patterns Define Key Transcriptional Events in Cell-Cycle Regulation by CAMP and Protein Kinase A. Proc. Natl. Acad. Sci. USA 2005, 102, 8561–8566. [Google Scholar] [CrossRef]
- Spencer, N.J.; Hu, H. Enteric Nervous System: Sensory Transduction, Neural Circuits and Gastrointestinal Motility. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 338–351. [Google Scholar] [CrossRef]
- Haller, V. A Dissertation on the Sensible and Irritable Parts of Animals; J. Nourse: London, UK, 1755. [Google Scholar]
- Furness, J.B. The Enteric Nervous System; Blackwell: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bennett, M.R.; Burnstock, G.; Holman, M.E. Transmission from Perivascular Inhibitory Nerves to the Smooth Muscle of the Guinea-Pig Taenia Coli. J. Physiol. 1966, 182, 527–540. [Google Scholar] [CrossRef]
- Bülbring, E.; Tomita, T. Properties of the Inhibitory Potential of Smooth Muscle as Observed in the Response to Field Stimulation of the Guinea-Pig Taenia Coli. J. Physiol. 1967, 189, 299–315. [Google Scholar] [CrossRef]
- Furness, J.B. Types of Neurons in the Enteric Nervous System. J. Auton. Nerv. Syst. 2000, 81, 87–96. [Google Scholar] [CrossRef]
- Costa, M.; Furness, J.B.; Gibbins, I.L. Chemical Coding of Enteric Neurons. Prog. Brain Res. 1986, 68, 217–239. [Google Scholar] [CrossRef]
- Costa, M.; Brookes, S.J.H.; Steele, P.A.; Gibbins, I.; Burcher, E.; Kandiah, C.J. Neurochemical Classification of Myenteric Neurons in the Guinea-Pig Ileum. Neuroscience 1996, 75, 949–967. [Google Scholar] [CrossRef]
- Brookes, S.J.H.; Song, Z.M.; Ramsay, G.A.; Costa, M. Long Aboral Projections of Dogiel Type II, AH Neurons within the Myenteric Plexus of the Guinea Pig Small Intestine. J. Neurosci. 1995, 15, 4013–4022. [Google Scholar] [CrossRef]
- Furness, J.B.; Kunze, W.A.; Bertrand, P.P.; Clerc, N.; Bornstein, J.C. Intrinsic Primary Afferent Neurons of the Intestine. Prog. Neurobiol. 1998, 54, 1–18. [Google Scholar] [CrossRef]
- Dubreuil, J.D. The Whole Shebang: The Gastrointestinal Tract, Escherichia coli Enterotoxins and Secretion. Curr. Issues Mol. Biol. 2012, 14, 71–82. [Google Scholar] [CrossRef]
- Jodal, M. Neuronal Influence on Intestinal Transport. J. Intern. Med. 1990, 228, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Cooke, H.J. Neurotransmitters in Neuronal Reflexes Regulating Intestinal Secretion. Ann. N. Y. Acad. Sci. 2006, 915, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Pothoulakis, C. The Role of Neuroenteric Hormones in Intestinal Infectious Diseases. Curr. Opin. Gastroenterol. 2000, 16, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.P.; Estes, M.K. Microbes and Microbial Toxins: Paradigms for Microbial-Mucosal Interactions. VIII. Pathological Consequences of Rotavirus Infection and Its Enterotoxin. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G303–G310. [Google Scholar] [CrossRef]
- Kirkup, A.J.; Brunsden, A.M.; Grundy, D. Receptors and Transmission in the Brain-Gut Axis: Potential for Novel Therapies. I. Receptors on Visceral Afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, 787–794. [Google Scholar] [CrossRef]
- Eherer, A.J.; Hinterleitner, T.A.; Petritsch, W.; Holzer-Petsche, U.; Beubler, E.; Krejs, G.J. Effect of 5-Hydroxytryptamine Antagonists on Cholera Toxin-Induced Secretion in the Human Jejunum. Eur. J. Clin. Investig. 1994, 24, 664–668. [Google Scholar] [CrossRef]
- Farthing, M.J.G. Enterotoxins and the Enteric Nervous System—A Fatal Attraction. Int. J. Med. Microbiol. 2000, 290, 491–496. [Google Scholar] [CrossRef]
- Eklund, S.; Jodal, M.; Lundgren, O. The Enteric Nervous System Participates in the Secretory Response to the Heat Stable Enterotoxins of Escherichia coli in Rats and Cats. Neuroscience 1985, 14, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Traserra, S.; Casabella-Ramón, S.; Vergara, P.; Jimenez, M. E. coli Infection Disrupts the Epithelial Barrier and Activates Intrinsic Neurosecretory Reflexes in the Pig Colon. Front. Physiol. 2023, 14, 1170822. [Google Scholar] [CrossRef]
- Eutamene, H.; Bradesi, S.; Larauche, M.; Theodorou, V.; Beaufrand, C.; Ohning, G.; Fioramonti, J.; Cohen, M.; Bryant, A.P.; Kurtz, C.; et al. Guanylate Cyclase C-Mediated Antinociceptive Effects of Linaclotide in Rodent Models of Visceral Pain. Neurogastroenterol. Motil. 2010, 22, 312-e84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Fujii, N.; Naren, A.P. Recent Advances and New Perspectives in Targeting CFTR for Therapy of Cystic Fibrosis and Enterotoxin-Induced Secretory Diarrheas. Future Med. Chem. 2012, 4, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Devriendt, B.; Stuyven, E.; Verdonck, F.; Goddeeris, B.M.; Cox, E. Enterotoxigenic Escherichia coli (K88) Induce Proinflammatory Responses in Porcine Intestinal Epithelial Cells. Dev. Comp. Immunol. 2010, 34, 1175–1182. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, J.; Zhang, C.; Jiang, C.; Ma, Y.; He, H.; Wu, Y.; Devriendt, B.; Cox, E.; Zhang, H. Toll-like Receptor 5-Mediated IL-17C Expression in Intestinal Epithelial Cells Enhances Epithelial Host Defense against F4+ ETEC Infection. Vet. Res. 2019, 50, 48. [Google Scholar] [CrossRef]
- Motyka, N.I.; Stewart, S.R.; Hollifield, I.E.; Kyllo, T.R.; Mansfield, J.A.; Norton, E.B.; Clements, J.D.; Bitoun, J.P. Elevated Extracellular CGMP Produced after Exposure to Enterotoxigenic Escherichia coli Heat-Stable Toxin Induces Epithelial IL-33 Release and Alters Intestinal Immunity. Infect. Immun. 2021, 89, e00707-20. [Google Scholar] [CrossRef]
- Bauer, D.L.; Bachnak, L.; Limbert, V.M.; Horowitz, R.M.; Baudier, R.L.; D’Souza, S.J.; Immethun, V.E.; Kurtz, J.R.; Grant, S.B.; McLachlan, J.B. The Adjuvant Combination of DmLT and Monophosphoryl Lipid A Activates the Canonical, Nonpyroptotic NLRP3 Inflammasome in Dendritic Cells and Significantly Interacts to Expand Antigen-Specific CD4 T Cells. J. Immunol. 2023, 210, 1519–1530. [Google Scholar] [CrossRef]
- Hollifield, I.E.; Motyka, N.I.; Fernando, K.A.; Bitoun, J.P. Heat-Labile Enterotoxin Decreases Macrophage Phagocytosis of Enterotoxigenic Escherichia coli. Microorganisms 2023, 11, 2121. [Google Scholar] [CrossRef]
- Ma, J.; Hermans, L.; Dierick, M.; Van der Weken, H.; Cox, E.; Devriendt, B. Enterotoxigenic Escherichia coli Heat Labile Enterotoxin Affects Neutrophil Effector Functions via CAMP/PKA/ERK Signaling. Gut Microbes 2024, 16, 2399215. [Google Scholar] [CrossRef]
- Loos, M.; Geens, M.; Schauvliege, S.; Gasthuys, F.; van der Meulen, J.; Dubreuil, J.D.; Goddeeris, B.M.; Niewold, T.; Cox, E. Role of Heat-Stable Enterotoxins in the Induction of Early Immune Responses in Piglets after Infection with Enterotoxigenic Escherichia coli. PLoS ONE 2012, 7, e41041. [Google Scholar] [CrossRef]
- Loos, M.; Hellemans, A.; Cox, E. Optimization of a Small Intestinal Segment Perfusion Model for Heat-Stable Enterotoxin a Induced Secretion in Pigs. Vet. Immunol. Immunopathol. 2013, 152, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Leach, S.; Clements, J.D.; Kaim, J.; Lundgren, A. The Adjuvant Double Mutant Escherichia coli Heat Labile Toxin Enhances IL-17A Production in Human T Cells Specific for Bacterial Vaccine Antigens. PLoS ONE 2012, 7, e51718. [Google Scholar] [CrossRef] [PubMed]
- Sukwa, N.; Mubanga, C.; Hatyoka, L.M.; Chilyabanyama, O.N.; Chibuye, M.; Mundia, S.; Munyinda, M.; Kamuti, E.; Siyambango, M.; Badiozzaman, S.; et al. Safety, Tolerability, and Immunogenicity of an Oral Inactivated ETEC Vaccine (ETVAX®) with DmLT Adjuvant in Healthy Adults and Children in Zambia: An Age Descending Randomised, Placebo-Controlled Trial. Vaccine 2023, 41, 6884–6894. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, T.R.; Khanam, F.; Basher, S.R.; Dash, P.; Chowdhury, M.I.; Haque, S.; Harun, N.B.; Akter, A.; Karmakar, P.C.; Hakim, A.; et al. Safety and Immunogenicity of a Recombinant Double-Mutant Heat-Labile Toxin Derived from Enterotoxigenic Escherichia coli in Healthy Bangladeshi Adults Delivered by Three Different Routes. Front. Bacteriol. 2025, 4, 1567791. [Google Scholar] [CrossRef]


| Colonization Factors (CFs) | Type of CF | Associated Enterotoxins | Host |
|---|---|---|---|
| CFA/I-like group | |||
| CFA/I | Fimbrial | LT*, LT*+STaH, STaH | Human |
| CS1 | Fimbrial | LT*+STaH | Human |
| CS2 | Fimbrial | LT*+STaH | Human |
| CS4 | Fimbrial | LT*+STp | Human |
| CS14 | Fimbrial | LT*+STaH, STaH | Human |
| CS17 | Fimbrial | LT* | Human |
| CS19 | Fimbrial | LT*+STp | Human |
| PCFO71 | Not determined | Human | |
| CS5-like group | |||
| CS5 | Helical | LT*+STaH, STaH | Human |
| CS7 | Helical | LT*+STaH | Human |
| Class Ib group | |||
| CS12 | Fimbrial | LT*+STp | Human |
| CS18 | Fimbrial | Human | |
| CS20 | Fimbrial | Human | |
| CS26 | Not determined | Human | |
| CS27A | Not determined | LT*, LT*+STp | Human |
| CS27B | Not determined | LT*, LT*+STp | Human |
| CS28A | Not determined | LT*, LT*+STp | Human |
| CS28B | Not determined | LT*, LT*+STp | Human |
| CS30 | Fimbrial | LT*+STp | |
| F6 | Fimbrial | LT*+STb | Neonatal piglets |
| Diverse group | |||
| CS3 | Fibrillar | LT*+STaH | Human |
| CS6 | Non-fimbrial | LT*, LT*+STp, STp | Human |
| CS15 | Non-fimbrial | Not determined | Human |
| CS22 | Fibrillar | Not determined | Human |
| CS13 2 | Fibrillar | LT*, LT*+STp | Human |
| CS23 2 | Fibrillar/Non-fimbrial | Not determined | Human |
| F4 | Fibrillar | LT*+STb, LT*+STaP+STb | Neonatal and weaned piglets |
| F41 | Fibrillar | Not determined | Calves, lambs and goat kids, piglets |
| F5 | Fibrillar | LT*+STb, STaP | Calves, lambs and goat kids |
| F18 | Fimbrial | LT*+STb, STaP+STb | Weaned piglets |
| CS10 1 | Non-fimbrial | Not determined | Human |
| CS11 1 | Fibrillar | Not determined | Human |
| Type IV pili | |||
| CS8 (CFA/III) | Fimbrial | LT* | Human |
| CS21 | Fimbrial | LT*, LT*+STaH, STaH | Human |
| Toxins | Form | Peptide Sequence (N → C) | Length (aa) | UniProt Accession |
|---|---|---|---|---|
| STaH (human) | Mature | NSSNYCCELCCNPACTGCY | 19 | P07965 |
| Precursor | MKKSILFIFLSVLSFSPFAQDAKPVESSKEKITLESKKCNIAKKSNKSGPESMNSSNYCCELCCNPACTGCY | 72 | ||
| STaP (porcine) | Mature | NTFYCCELCCNPACAGCY | 18 | P01559 |
| Precursor | MKKLMLAIFISVLSFPSFSQSTESLDSSKEKITLETKKCDVVKNNSEKKSENMNNTFYCCELCCNPACAGCY | 72 | ||
| STb | Mature | STQSNKKDLCENYRQIAKESCKIGFLGVRDGTAGACFGAQIMVAAKGC | 48 | P22542 |
| Precursor | MKKNIAFLLASMFVFSIATNAYASTQSNKKDLCENYRQIAKESCKIGFLGVRDGTAGACFGAQIMVAAKGC | 71 | ||
| LT-Ih A-subunit (human) | Mature | NGDKLYRADSRPPDEIKRSGGLMPRGHNEYFDRGTQMNINLYDHARGTQTGFVRYDDGYVSTSLSLRSAHLAGQSILSGYSTYYIYVIATAPNMFNVNDVLGVYSPHPYEQEVSALGGIPYSQIYGWYRVNFGVIDERLHRNREYRDRYYRNLNIAPAEDGYRLAGFPPDHQAWREEPWIHHAPQGCGNSSRTITGDTCNEETQNLSTIYLRKYQSKVKRQIFSDYQSEVDIYNRIRNEL | 240 | P43530 |
| Precursor | MKNITFIFFILLASPLYANGDKLYRADSRPPDEIKRSGGLMPRGHNEYFDRGTQMNINLYDHARGTQTGFVRYDDGYVSTSLSLRSAHLAGQSILSGYSTYYIYVIATAPNMFNVNDVLGVYSPHPYEQEVSALGGIPYSQIYGWYRVNFGVIDERLHRNREYRDRYYRNLNIAPAEDGYRLAGFPPDHQAWREEPWIHHAPQGCGNSSRTITGDTCNEETQNLSTIYLRKYQSKVKRQIFSDYQSEVDIYNRIRNEL | 258 | ||
| LT-Ih B-subunit (human) | Mature | APQSITELCSEYHNTQIYTINDKILSYTESMAGKREMVIITFKSGATFQVEVPGSQHIDSQKKAIERMKDTLRITYLTETKIDKLCVWNNKTPNSIAAISMEN | 103 | P0CK94 |
| Precursor | MNKVKFYVLFTALLSSLCAHGAPQSITELCSEYHNTQIYTINDKILSYTESMAGKREMVIITFKSGATFQVEVPGSQHIDSQKKAIERMKDTLRITYLTETKIDKLCVWNNKTPNSIAAISMEN | 124 | ||
| LT-Ip A-subunit (porcine) | Mature | NGDRLYRADSRPPDEIKRSGGLMPRGHNEYFDRGTQMNINLYDHARGTQTGFVRYDDGYVSTSLSLRSAHLAGQSILSGYSTYYIYVIATAPNMFNVNDVLGVYSPHPYEQEVSALGGIPYSQIYGWYRVNFGVIDERLHRNREYRDRYYRNLNIAPAEDGYRLAGFPPDHQAWREEPWIHHAPQGCGNSSRTITGDTCNEETQNLSTIYLREYQSKVKRQIFSDYQSEVDIYNRIRDEL | 240 | P06717 |
| Precursor | MKNITFIFFILLASPLYANGDRLYRADSRPPDEIKRSGGLMPRGHNEYFDRGTQMNINLYDHARGTQTGFVRYDDGYVSTSLSLRSAHLAGQSILSGYSTYYIYVIATAPNMFNVNDVLGVYSPHPYEQEVSALGGIPYSQIYGWYRVNFGVIDERLHRNREYRDRYYRNLNIAPAEDGYRLAGFPPDHQAWREEPWIHHAPQGCGNSSRTITGDTCNEETQNLSTIYLREYQSKVKRQIFSDYQSEVDIYNRIRDEL | 258 | ||
| LT-Ip B-subunit (porcine) | Mature | APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGETFQVEVPGSQHIDSQKKAIERMKDTLRITYLTETKIDKLCVWNNKTPNSIAAISMKN | 103 | P32890 |
| Precursor | MNKVKCYVLFTALLSSLYAHGAPQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGETFQVEVPGSQHIDSQKKAIERMKDTLRITYLTETKIDKLCVWNNKTPNSIAAISMKN | 124 | ||
| LT-IIa A-subunit | Mature | NDFFRADSRTPDEIRRAGGLLPRGQQEAYERGTPININLYEHARGTVTGNTRYNDGYVSTTVTLRQAHLIGQNILGSYNEYYIYVVAPAPNLFDVNGVLGRYSPYPSENEFAALGGIPLSQIIGWYRVSFGAIEGGMQRNRDYRGDLFRGLTVAPNEDGYQLAGFPSNFPAWREMPWSTFAPEQCVPNNKEFKGGVCISATNVLSKYDLMNFKKLLKRRLALTFFMSEDDFIGVHGERDEL | 241 | P13810 |
| Precursor | MIKHVLLFFVFISFSVSANDFFRADSRTPDEIRRAGGLLPRGQQEAYERGTPININLYEHARGTVTGNTRYNDGYVSTTVTLRQAHLIGQNILGSYNEYYIYVVAPAPNLFDVNGVLGRYSPYPSENEFAALGGIPLSQIIGWYRVSFGAIEGGMQRNRDYRGDLFRGLTVAPNEDGYQLAGFPSNFPAWREMPWSTFAPEQCVPNNKEFKGGVCISATNVLSKYDLMNFKKLLKRRLALTFFMSEDDFIGVHGERDEL | 259 | ||
| LT-IIa B-subunit | Mature | QVYAGVSEHFRNICNQTTADIVAGVQLKKYIADVNTNTRGIYVVSNTGGVWYIPGGRDYPDNFLSGEIRKTAMAAILSDTKVNLCAKTSSSPNHIWAMELDRES | 104 | P13812 |
| Precursor | MSSKKIIGAFVLMTGILSGQVYAGVSEHFRNICNQTTADIVAGVQLKKYIADVNTNTRGIYVVSNTGGVWYIPGGRDYPDNFLSGEIRKTAMAAILSDTKVNLCAKTSSSPNHIWAMELDRES | 123 | ||
| LT-IIb A-subunit | Mature | NDYFRADSRTPDEVRRSGGLIPRGQDEAYERGTPININLYDHARGTATGNTRYNDGYVSTTTTLRQAHFLGQNMLGGYNEYYIYVVAAAPNLFDVNGVLGRYSPYPSENEYAALGGIPLSQIIGWYRVSFGAIEGGMHRNRDYRRDLFRGLSAAPNEDGYRIAGFPDGFPAWEEVPWREFAPNSCLPNNKASSDTTCASLTNKLSQHDLADFKKYIKRKFTLMTLLSINNDGFFSNNGGKDEL | 243 | P43528 |
| Precursor | MAKVISFFISLFLISFPLYANDYFRADSRTPDEVRRSGGLIPRGQDEAYERGTPININLYDHARGTATGNTRYNDGYVSTTTTLRQAHFLGQNMLGGYNEYYIYVVAAAPNLFDVNGVLGRYSPYPSENEYAALGGIPLSQIIGWYRVSFGAIEGGMHRNRDYRRDLFRGLSAAPNEDGYRIAGFPDGFPAWEEVPWREFAPNSCLPNNKASSDTTCASLTNKLSQHDLADFKKYIKRKFTLMTLLSINNDGFFSNNGGKDEL | 263 | ||
| LT-IIb B-subunit | Mature | GASQFFKDNCNRTTASLVEGVELTKYISDINNNTDGMYVVSSTGGVWRISRAKDYPDNVMTAEMRKIAMAAVLSGMRVNMCASPASSPNVIWAIELEAE | 99 | P43529 |
| Precursor | MSFKKIIKAFVIMAALVSVQAHAGASQFFKDNCNRTTASLVEGVELTKYISDINNNTDGMYVVSSTGGVWRISRAKDYPDNVMTAEMRKIAMAAVLSGMRVNMCASPASSPNVIWAIELEAE | 122 | ||
| LT-IIc A-subunit | Mature | NDFFRADTRTPSEIRQAGGLLPRGQQEAYERGTPININLYDHARGTVTGNTRYNDGYVSTTTTLRQAHLIGQNLLGSYNEYYIYVVAPAPNLFDVNGVLGRYSPYPSENEFAALGGIPLSQIIGWYRVSFGVIEGGMQRNRHYRRDLFQGLSVAPNHDGYHLAGFPDGFAAWRELPWSAFAPAACEHDYMVRILDACDSYTNRISKNDLFAFKRFMRIRSSLMILQSIEDDLQYNENKDEL | 241 | H6W8G4 |
| Precursor | MIKHLLLFFVFISFSVSANDFFRADTRTPSEIRQAGGLLPRGQQEAYERGTPININLYDHARGTVTGNTRYNDGYVSTTTTLRQAHLIGQNLLGSYNEYYIYVVAPAPNLFDVNGVLGRYSPYPSENEFAALGGIPLSQIIGWYRVSFGVIEGGMQRNRHYRRDLFQGLSVAPNHDGYHLAGFPDGFAAWRELPWSAFAPAACEHDYMVRILDACDSYTNRISKNDLFAFKRFMRIRSSLMILQSIEDDLQYNENKDEL | 259 | ||
| LT-IIc B-subunit | Mature | GVSKTFKDNCASTTAKLVQSVQLVNISSDVNKDSKGIYISSSAGKTWFIPGGQYYPDNYLSNEMRKIAMAAVLSNVRVNLCASEAYTPNHVWAIELAP | 98 | H6W8G5 |
| Precursor | MNFKKLIALLFIVLNIASLPTYAGVSKTFKDNCASTTAKLVQSVQLVNISSDVNKDSKGIYISSSAGKTWFIPGGQYYPDNYLSNEMRKIAMAAVLSNVRVNLCASEAYTPNHVWAIELAP | 121 |
| Toxin | Subtypes | Receptor(s) |
|---|---|---|
| STa | STaH | Guanylate cyclase C |
| STaP | Guanylate cyclase C | |
| EAST1 | Guanylate cyclase C | |
| STb | Sulfatide | |
| LT-I | LT-Ih | a GM1, GD1b, GM2, asialo GM1, galactoproteins, galactose-containing glycolipids |
| LT-Ip | ||
| LT-II | LT-IIa | a GD1b, GD1a, GT1b, GQ1b, GD2 |
| LT-IIb | a GD1a, GT1b, GM3 | |
| LT-IIc | a GM1, GM2, GM3, GD1a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, M.M.; Campos, A.M.; Castro, J.; Oliveira, R.; Araújo, D.; Outor-Monteiro, D.; Almeida, C. An Asset for Food Safety: The Knowledge Behind the Physiological Alterations Induced by ETEC Enterotoxins. Foods 2025, 14, 3651. https://doi.org/10.3390/foods14213651
Barros MM, Campos AM, Castro J, Oliveira R, Araújo D, Outor-Monteiro D, Almeida C. An Asset for Food Safety: The Knowledge Behind the Physiological Alterations Induced by ETEC Enterotoxins. Foods. 2025; 14(21):3651. https://doi.org/10.3390/foods14213651
Chicago/Turabian StyleBarros, Maria Margarida, Ana Maria Campos, Joana Castro, Ricardo Oliveira, Daniela Araújo, Divanildo Outor-Monteiro, and Carina Almeida. 2025. "An Asset for Food Safety: The Knowledge Behind the Physiological Alterations Induced by ETEC Enterotoxins" Foods 14, no. 21: 3651. https://doi.org/10.3390/foods14213651
APA StyleBarros, M. M., Campos, A. M., Castro, J., Oliveira, R., Araújo, D., Outor-Monteiro, D., & Almeida, C. (2025). An Asset for Food Safety: The Knowledge Behind the Physiological Alterations Induced by ETEC Enterotoxins. Foods, 14(21), 3651. https://doi.org/10.3390/foods14213651

