Valorization of Blackcurrant Pomace for the Development of Functional Stirred Yogurt with Enhanced Nutritional and Antioxidant Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. BP Powder Preparation
2.3. Extraction of Phytochemicals from BP Powder
2.4. BP Extract Characterization
2.4.1. Total Anthocyanins Content
2.4.2. Total Flavonoids Content
2.4.3. Total Polyphenols Content
2.4.4. DPPH Scavenging Activity Method
2.5. Preparation and Characterization of BP-Supplemented Stirred Yogurt
2.6. Characterization of Physicochemical and Phytochemical Properties of BP-Stirred Yogurt
2.7. Color Evaluation of Supplemented Stirred Yogurt
2.8. Mineral Evaluation of Supplemented Stirred Yogurt
2.9. Scanning Electron Microscopy Analysis
2.10. Microbiological Analyses
2.11. Sensory Evaluation of Supplemented Stirred Yogurt Samples
2.12. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Characterization of BP Powder
3.2. Characterization of Bioactive Potential of Supplemented Stirred Yogurts and Storage Stability of the Samples
3.3. Physicochemical Characterization of Supplemented Stirred Yogurt Samples
3.4. Color Evaluation of Supplemented Stirred Yogurts
3.5. Mineral Profile
3.6. Microstructure Analysis
3.7. Microbial Analysis of Supplemented Stirred Yogurts
3.8. Sensorial Analysis of Supplemented Stirred Yogurts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Economou, F.; Chatziparaskeva, G.; Papamichael, I.; Loizia, P.; Voukkali, I.; Navarro-Pedreño, J.; Klontza, E.; Lekkas, D.F.; Naddeo, V.; Zorpas, A.A. The Concept of Food Waste and Food Loss Prevention and Measuring Tools. Waste Manag. Res. 2024, 42, 651–669. [Google Scholar] [CrossRef]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food by-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Cara, I.G.; Trincă, L.C.; Trofin, A.E.; Cazacu, A.; Ţopa, D.; Peptu, C.A.; Jităreanu, G. Assessment of Some Straw-Derived Materials for Reducing the Leaching Potential of Metribuzin Residues in the Soil. Appl. Surf. Sci. 2015, 358, 586–594. [Google Scholar] [CrossRef]
- Jităreanu, A.F.; Mihăilă, M.; Robu, A.-D.; Lipșa, F.-D.; Costuleanu, C.L. Dynamic of Ecological Agriculture Certification in Romania Facing the EU Organic Action Plan. Sustainability 2022, 14, 11105. [Google Scholar] [CrossRef]
- Laaksonen, O.A.; Mäkilä, L.; Sandell, M.A.; Salminen, J.-P.; Liu, P.; Kallio, H.P.; Yang, B. Chemical-Sensory Characteristics and Consumer Responses of Blackcurrant Juices Produced by Different Industrial Processes. Food Bioprocess Technol. 2014, 7, 2877–2888. [Google Scholar] [CrossRef]
- Rusu, M.; Cara, I.-G.; Stoica, F.; Țopa, D.; Jităreanu, G. Quality Parameters of Plum Orchard Subjected to Conventional and Ecological Management Systems in Temperate Production Area. Horticulturae 2024, 10, 907. [Google Scholar] [CrossRef]
- Yang, W.; Kortesniemi, M.; Ma, X.; Zheng, J.; Yang, B. Enzymatic Acylation of Blackcurrant (Ribes Nigrum) Anthocyanins and Evaluation of Lipophilic Properties and Antioxidant Capacity of Derivatives. Food Chem. 2019, 281, 189–196. [Google Scholar] [CrossRef]
- Gagneten, M.; Archaina, D.A.; Salas, M.P.; Leiva, G.E.; Salvatori, D.M.; Schebor, C. Gluten-free Cookies Added with Fiber and Bioactive Compounds from Blackcurrant Residue. Int. J. Food Sci. Technol. 2021, 56, 1734–1740. [Google Scholar] [CrossRef]
- Kruszewski, B.; Boselli, E. Blackcurrant Pomace as a Rich Source of Anthocyanins: Ultrasound-Assisted Extraction under Different Parameters. App. Sci. 2024, 14, 821. [Google Scholar] [CrossRef]
- Sharma, M.; Usmani, Z.; Gupta, V.K.; Bhat, R. Valorization of Fruits and Vegetable Wastes and By-Products to Produce Natural Pigments. Crit. Rev. Biotechnol. 2021, 41, 535–563. [Google Scholar] [CrossRef]
- Kowalski, R.; de Mejia, E.G. Phenolic composition, antioxidant capacity and physical characterization of ten blackcurrant (Ribes nigrum) cultivars, their juices, and the inhibition of type 2 diabetes and inflammation biochemical markers. Food Chem. 2021, 359, 129889. [Google Scholar] [CrossRef] [PubMed]
- Allai, F.M.; Azad, Z.R.; Gul, K.; Dar, B.N.; Jabeen, A.; Majid, D. Black Currant. In Antioxidants in Fruits: Properties and Health Benefits 2020; Springer: Singapore, 2020; pp. 271–293. [Google Scholar]
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of Apple Pomace by Extraction of Valuable Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 776–796. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewski, A.; Krajewska, M.; Zheng, L.; Nghiem, L.D.; Oleskowicz-Popiel, P.; Prochaska, K.; Szczygiełda, M. Pectin Recovery from Apple Pomace by Forward Osmosis—Assisted Technology. J. Memb. Sci. 2024, 706, 122956. [Google Scholar] [CrossRef]
- Toscano Martínez, H.; Gagneten, M.; Díaz-Calderón, P.; Enrione, J.; Salvatori, D.; Schebor, C.; Leiva, G. Natural Food Colorant from Blackcurrant Spray-dried Powder Obtained by Enzymatic Treatment: Characterization and Acceptability. J. Food Process. Preserv. 2021, 45, e15011. [Google Scholar] [CrossRef]
- Jaworska, G.; Sady, M.; Grega, T.; Bernaś, E.; Pogoń, K. Qualitative Comparison of Blackcurrant and Blackcurrant-Whey beverages. Food Sci. Tech. Intern. 2011, 17, 331–341. [Google Scholar] [CrossRef]
- Raikos, V.; Ni, H.; Hayes, H.; Ranawana, V. Antioxidant Properties of a Yogurt beverage Enriched with Salal (Gaul-Theria shallon) Berries and Blackcurrant (Ribes nigrum) Pomace during Cold Storage. Beverage 2018, 5, 2. [Google Scholar] [CrossRef]
- Szydłowska, M.; Wojdyło, A.; Nowicka, P. Black and Red Currant Pomaces as Raw Materials to Create Smoothies with in Vitro Health-Promoting Potential. Foods 2024, 13, 2715. [Google Scholar] [CrossRef]
- Stoica, F.; Râpeanu, G.; Nistor, O.V.; Enachi, E.; Stănciuc, N.; Mureșan, C.; Bahrim, G.E. Recovery of Bioactive Com-pounds from Red Onion Skins Using Conventional Solvent Extraction and Microwave Assisted Extraction. Ann. Univ. Dunarea Jos Galati 2020, 44, 104–126. [Google Scholar] [CrossRef]
- Onose, I.; Abalasei, B.A.; Onose, R.M.; Albu, A. Appraisal of Motor Skills in a Sample of Students within the Moldavian Area. Behav. Sci. 2020, 10, 97. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Corbu, A.R.; Codină, G.G. Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Beverage. Gels 2024, 10, 616. [Google Scholar] [CrossRef]
- Pourrajab, B.; Fatahi, S.; Dehnad, A.; Varkaneh, H.K.; Shidfar, F. The impact of probiotic yogurt consumption on lipid profiles in subjects with mild to moderate hypercholesterolemia: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardio. Dis. 2020, 30, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Farvin, K.H.S.; Baron, C.P.; Nielsen, N.S.; Otte, J.; Jacobsen, C. Antioxidant Activity of Yoghurt Peptides: Part 2-Characterisation of Peptide Fractions. Food Chem. 2010, 123, 1090–1097. [Google Scholar] [CrossRef]
- Lisko, D.J.; Johnston, G.P.; Johnston, C.G. Effects of dietary yogurt on the healthy human gastrointestinal (GI) microbiome. Microorganisms 2017, 5, 6. [Google Scholar] [CrossRef]
- Stoica, F.; Rațu, R.N.; Motrescu, I.; Cara, I.G.; Filip, M.; Țopa, D.; Jităreanu, G. Application of Pomace Powder of Black Carrot as a Natural Food Ingredient in Yoghurt. Foods 2024, 13, 1130. [Google Scholar] [CrossRef]
- Pădureţ, S.; Ghinea, C.; Prisacaru, A.E.; Leahu, A. Physicochemical, Textural, and Antioxidant Attributes of Yogurts Supplemented with Black Chokeberry: Fruit, Juice, and Pomace. Foods 2024, 13, 3231. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 01, F1-2. [Google Scholar] [CrossRef]
- Gavril (Rațu), R.N.; Constantin, O.E.; Enachi, E.; Stoica, F.; Lipșa, F.D.; Stănciuc, N.; Aprodu, I.; Râpeanu, G. Optimization of the Parameters Influencing the Antioxidant Activity and Concentration of Carotenoids Extracted from Pumpkin Peel Using a Central Composite Design. Plants 2024, 13, 1447. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis of the AOAC, 17th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2000.
- SR ISO 2171:2009; Cereals, Legumes and Derived Products. Determination of Ash Content by Calcination. ASRO Publisher House: Bucharest, Romania, 2009.
- SR EN ISO 6492:2001; Determination of Fat Content (ISO 6492:1999). Croatian Standards Institute: Zagreb, Croatia, 2001.
- SR EN ISO 5983-2:2010; Determination of Nitrogen Content and Calculation of Crude Protein Content-Part 2: Block Digestion and Steam Distillation Method (ISO 5983-2:2009; EN ISO 5983-2:2009). Croatian Standards Institute: Zagreb, Croatia, 2010.
- SR EN ISO 6865:2001; Determination of Crude Fibre Content-Method with Intermediate Filtration (ISO 6865:2000; EN ISO 6865:2000). Croatian Standards Institute: Zagreb, Croatia, 2001.
- Wrolstad, R.E.; Smith, D.E. Color Analysis. In Food Science Text Series; Springer International Publishing: Cham, Switzerland, 2017; pp. 545–555. [Google Scholar]
- Trajkovska, B.; Nakov, G.; Prabhat, S.T.; Badgujar, P.C. Effect of Blueberry Pomace Addition on Quality Attributes of Buttermilk-Based Fermented Drinks during Cold Storage. Foods 2024, 13, 1770. [Google Scholar] [CrossRef]
- ISO 16140-3:2021; Microbiology of the Food Chain—Method Validation. Part 3: Protocol for the Verification of Reference Methods and Validated Alternative Methods in a Single Laboratory. ISO: Geneva, Switzerland, 2021.
- ISO 13299; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. 2016. Available online: https://www.iso.org/obp/ui/#iso:std:iso:13299:ed-2:v1:en (accessed on 2 October 2023).
- Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G. Application of Pulsed Electric Field in the Production of Juice and Extraction of Bioactive Compounds from Blueberry Fruits and Their By-Products. J. Food Sci. Technol. 2015, 52, 5898–5905. [Google Scholar] [CrossRef]
- Sójka, M.; Król, B. Composition of Industrial Seedless Black Currant Pomace. Eur. Food Res. Technol. 2009, 228, 597–605. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Păcularu-Burada, B.; Popescu, S.M. Wild Bilberry, Blackcurrant, and Blackberry by-Products as a Source of Nutritional and Bioactive Compounds. Int. J. Food Prop. 2023, 26, 1579–1595. [Google Scholar] [CrossRef]
- Basegmez, H.I.O.; Povilaitis, D.; Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Alasalvar, C.; Venskutonis, P.R. Biorefining of Blackcurrant Pomace into High-Value Functional Ingredients Using Supercritical CO2, Pressurized Liquid and Enzyme Assisted Extractions. J. Supercrit. Fluids 2017, 124, 10–19. [Google Scholar] [CrossRef]
- Sankowski, L.V.; Morales-Medina, R.; Arguello, C.F.; Reißner, A.M.; Struck, S.; Rohm, H.; Brückner-Gühmann, M. Thermal-Mechanical Treatment of Blackcurrant Pomace for Enrichment in Yoghurt. Food Hydrocoll. 2024, 146, 109296. [Google Scholar] [CrossRef]
- Redha, A.; Siddiqui, A.; Zare, S.; Spadaccini, R.; Guazzotti, D.; Feng, S.; Aluko. Blackcurrants: A Nutrient-Rich Source for the Development of Functional Foods for Improved Athletic Performance. Food Rev. Int. 2024, 40, 135–157. [Google Scholar] [CrossRef]
- Raczkowska, E.; Wojdyło, A.; Nowicka, P. Author Correction: The Use of Blackcurrant Pomace and Erythritol to Optimise the Functional Properties of Shortbread Cookies. Sci. Rep. 2024, 14, 5021. [Google Scholar] [CrossRef]
- Murariu, O.C.; Caruso, G.; Frunză, G.; Lipșa, F.D.; Ulea, E.; Tallarita, A.V.; Jităreanu, G. Effect of Wheat Flour Integration with Blueberry Fruits on Rheological, Quality, Antioxidant, and Sensory Attributes of ‘French’ Bread. Foods 2025, 14, 1189. [Google Scholar] [CrossRef]
- Diez-Sánchez, E.; Llorca, E.; Tárrega, A.; Fiszman, S.; Hernando, I. Changing Chemical Leavening to Improve the Structural, Textural and Sensory Properties of Functional Cakes with Blackcurrant Pomace. LWT 2020, 127, 109378. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Choi, I. Physicochemical characteristics, antioxidant properties and consumer acceptance of Greek yogurt fortified with apple pomace syrup. Foods 2023, 12, 1856. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT-Food Sci. Technol. 2015, 63, 1145–1154. [Google Scholar] [CrossRef]
- Difonzo, G.; Antonino, C.; Squeo, G.; Caponio, F.; Faccia, M. Application of Agri-Food By-Products in Cheesemaking. Antioxidants 2023, 12, 660. [Google Scholar] [CrossRef]
- Manzoor, S.; Yusof, Y.A.; Amin Tawakkal, I.S.M.; Fikry, M. Quality Characteristics and Sensory Profile of Stirred Yogurt Enriched with Papaya Peel Powder. Pertanika J. Trop. Agric. Sci. 2019, 42, 519–533. [Google Scholar]
- Montibeller, M.J.; de Lima Monteiro, P.; Tupuna-Yerovi, D.S.; Rios Ade, O.; Manfroi, V. Stability Assessment of Anthocyanins Obtained from Skin Grape Applied in Kefir and Carbonated Water as a Natural Colorant. J. Food Process. Preserv. 2018, 42, e13698. [Google Scholar] [CrossRef]
- Cheng, X.; Zhu, J.; Chen, Z.; Wu, Z.; Zhang, F.; Wu, C.; Fan, G. Color stability and degradation kinetics of anthocyanins in mulberry stirred yoghurt fermented by different starter cultures. Food Sci. Biotechnol. 2023, 32, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Hapuarachchi, W.; Munasinghe, D.; Sandupama, P.; Jayasinghe, M. Determinant factors for berry derived anthocyanin persistency in stirred yoghurts. Food Chem. Adv. 2024, 4, 100541. [Google Scholar] [CrossRef]
- Aiello, F.; Restuccia, D.; Spizzirri, U.G.; Carullo, G.; Leporini, M.; Loizzo, M.R. Improving kefir bioactive properties by functional enrichment with plant and agro-food waste extracts. Fermentation 2020, 6, 83. [Google Scholar] [CrossRef]
- Biadała, A.; Adzahan, N.M. Storage stability of antioxidant in milk products fermented with selected kefir grain microflora. Molecules 2021, 26, 3307. [Google Scholar] [CrossRef]
- Ersöz, E.; Kınık, Ö.; Yerlikaya, O.; Açu, M. Effect of Phenolic Compounds on Characteristics of Strained Yoghurts Produced from Sheep Milk. Afr. J. Agric. Res. 2011, 23, 5351–5359. [Google Scholar]
- Meremäe, K.; Raudsepp, P.; Rusalepp, L.; Anton, D.; Bleive, U.; Roasto, M. In Vitro Antibacterial and Antioxidative Activity and Polyphenolic Profile of the Extracts of Chokeberry, Blackcurrant, and Rowan Berries and Their Pomaces. Foods 2024, 13, 421. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Khanashyam, A.C.; Mundanat, A.S.; Shah, K.; Babu, K.S.; Thorakkattu, P.; Pandiselvam, R. Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods 2023, 12, 556. [Google Scholar] [CrossRef]
- Paini, J.; Benedetti, V.; Ail, S.S.; Castaldi, M.J.; Baratieri, M.; Patuzzi, F. Valorization of wastes from the food production industry: A review towards an integrated agri-food processing biorefinery. Waste Biomass Valoriz. 2022, 13, 31–50. [Google Scholar] [CrossRef]
- Marchiani, R.; Bertolino, M.; Ghirardello, D.; McSweeney, P.L.; Zeppa, G. Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. J. Food Sci. Technol. 2016, 53, 1585–1596. [Google Scholar] [CrossRef]
- El-Moneim, A.; Reham, A.; Shamsia, S.M.; EL-Deeb, A.; Ziena, H.M. Utilization of brewers spent grain (BSG) in producing functional processed cheese “Block”. J. Food Dairy Sci. 2018, 3, 103–109. [Google Scholar] [CrossRef]
- Chavan, R.; Nalawade, T.; Kumar, A. Studies on the Development of Whey Based Mango beverage. Food Dairy Technol. 2015, 3, 1–6. [Google Scholar]
- Abdo, E.M.; Mansour, H.M.M.; Darwish, A.M.G.; El-Sohaimy, S.A.; Gomaa, M.A.E.; Shaltout, O.E.; Allam, M.G. Beetroot Stalk Extract as a Functional Colorant for Stirred Yogurt beverages: Effect on Nutritional Value and Stability during Storage. Fermentation 2023, 9, 878. [Google Scholar] [CrossRef]
- Barwal, V.S.; Singh, T.K.; Alkesh, A. Studies on Processing and Development of Ready-to-Serve Drink from Bittergourd Fruit. J. Food Sci. Technol. 2005, 42, 217–220. [Google Scholar]
- Alane, D.; Raut, N.; Kamble, D.B.; Bhotmange, M. Studies on Preparation and Storage Stability of Whey Based Mango Herbal beverage. Int. J Chem. Stud. 2017, 5, 237–241. [Google Scholar]
- Chatterjee, G.; DeNeve, J.; Dutta, A.; Das, S. Formulation and Statistical Evaluation of a Ready-to-Drink Whey Based Orange beverage and Its Storage Stability. Rev. Mex. Ing. Qum. 2015, 14, 253–264. [Google Scholar]
- Panghal, A.; Kumar, V.; Dhull, S.; Gat, Y.; Chhikara, N. Utilization of Dairy Industry Waste-Whey in Formulation of Papaya RTS beverage. Curr. Res. Nutr. Food Sci. J. 2017, 5, 168–174. [Google Scholar] [CrossRef]
- Yadav, R.B.; Yadav, B.S.; Kalia, N. Development and Storage Studies on Whey-Based Banana Herbal (Mentha arvensis) beverage. Am. J. Food Technol. 2010, 5, 121–129. [Google Scholar] [CrossRef]
- Sousa, S.F.F.B.; Silva, A.C.; Araújo, J.P. Determination of Physical and Physical-Chemical Properties of Rubimel Cultivar Peaches, Braz. Braz. J. Agroind. Technol. 2018, 12, 2627–2644. [Google Scholar]
- Pacheco, M.H.S.; Kuriya, S.P.; Capobiango, C.S.C.; Pimentel, T.C.; Cruz, A.G.; Esmerino, E.A.; Freitas, M.Q. Exploration of Gender Differences in Bottled Mineral Water Consumption: A Projective Study of Consumer’s Perception in Brazil. J. Sens. Stud. 2018, 33, e12434. [Google Scholar] [CrossRef]
- Oliveira, E.W.; Esmerino, E.A.; Carr, B.T.; Pinto, L.P.F.; Silva, H.L.A.; Pimentel, T.C.; Bolini, H.M.A.; Cruz, A.G.; Freitas, M.Q. Reformulating Minas Frescal Cheese Using Consumers’ Perceptions: Insights from Intensity Scales and Check-All-That-Apply Questionnaires. J. Dairy Sci. 2017, 100, 6111–6124. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Prodromidis, P.; Grigorakis, S.; Makris, D.P.; Biliaderis, C.G.; Moschakis, T. Natural Food Colorants Derived from Onion Wastes: Application in a Yoghurt Product. Electrophoresis 2018, 39, 1975–1983. [Google Scholar] [CrossRef]
- Izli, N.; Yıldız, G.; Ünal, H.; Isık, E.; Uylaser, V. Effect of Different Drying Methods on Drying Characteristics, Color, Total Phenolic Content and Antioxidant Capacity of Goldenberry (Physalis peruviana L.). Int. J. Food Sci. Technol. 2013, 49, 9–17. [Google Scholar] [CrossRef]
- Robert, P.; Fredes, C. The Encapsulation of Anthocyanins from Berry-Type Fruits. Trends in Foods. Molecules 2015, 20, 5875–5888. [Google Scholar] [CrossRef]
- Gush, L.; Shah, S.; Gilani, F. Macronutrients and Micronutrients. In A prescription for Healthy Living; Academic Press: Cambridge, MA, USA, 2021; pp. 255–273. [Google Scholar]
- Kulaitiene, J.; Vaitkeviˇciene, N.; Levickiene, D. Studies on Proximate Composition, Mineral and Total Phenolic Content of Yoghurt Bites Enriched with Different Plant Raw Material. Fermentation 2021, 7, 301. [Google Scholar] [CrossRef]
- Goosen, N.J.; Oosthuizen, D.; Stander, M.A.; Dabai, A.I.; Pedavoah, M.M.; Usman, G.O. Phenolics, Organic Acids and Minerals in the Fruit Juice of the Indigenous African Sourplum (Ximenia Caffra, Olacaceae). S. Afr. J. Bot. 2018, 119, 11–16. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Khalifa, S.A. The Effects of Various Stabilizers on Physiochemical Properties of Camel’s Milk Yoghurt. J. Am. Sci. 2015, 11, 15–24. [Google Scholar]
- Staffolo, M.D.; Bertola, N.; Martino, M.; Bevilacqua, Y.A. Influence of Dietary Fiber Addition on Sensory and Rheological Properties of Yoghurt. Int. Dairy J. 2004, 14, 263–268. [Google Scholar] [CrossRef]
- Kowalski, R.; Gustafson, E.; Carroll, M.; Gonzalez de Mejia, E. Enhancement of biological properties of blackcurrants by lactic acid fermentation and incorporation into yogurt: A review. Antioxidants 2020, 9, 1194. [Google Scholar] [CrossRef]
- Wyżga, B.; Skóra, M.; Wybraniec, S.; Hąc-Wydro, K. Study on the effect of blackcurrant extract–based preservative on model membranes and pathogenic bacteria. Arch. Biochem. Biophys. 2023, 750, 109806. [Google Scholar] [CrossRef] [PubMed]
- Kumaş, Y.T.; Kibar, H.; Soydemir, H.E. Investigating UV-C radiation as a non-chemical method to prevent quality loss in the pea seed during storage. J. Stored Prod. Res. 2025, 111, 102532. [Google Scholar] [CrossRef]
- Sharma, R.; Diwan, B.; Singh, B.P.; Kulshrestha, S. Probiotic fermentation of polyphenols: Potential sources of novel functional foods. Food Prod. Proc. Nut. 2022, 4, 21. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Zieba, T.; Rój, E. The Influence of Addition of Defatted Blackcurrant Seeds on Pro-Health Constituents and Texture of Cereal Extrudates. J. Food Qual. 2011, 34, 395–402. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Codină, G.G. Physicochemical and Functional Characterization of Pear Leathers Enriched with Wild Bilberry and Blackcurrant Pomace Powders. Agronomy 2024, 14, 2048. [Google Scholar] [CrossRef]





| Batches | Description |
|---|---|
| DBC | Stirred yogurt—product without added ingredients |
| DBBP1 | Stirred yogurt with 5% BP powder |
| DBBP2 | Stirred yogurt with 10% BP powder |
| DBBP3 | Stirred yogurt with 15% BP powder |
| Parameter | BP Powder |
|---|---|
| Total Anthocyanins, mg C3G/g DM | 3.14 ± 0.09 |
| Total Flavonoids, mg CE/g DM | 5.16 ± 0.10 |
| Total Polyphenols, mg GAE/g DM | 9.83 ± 0.12 |
| Antioxidant activity, µmol TE/g DM | 24.52 ± 0.83 |
| Inhibition, % | 92.48 ± 1.23 |
| L* | 34.73 ± 0.18 |
| a* | 19.48 ± 0.13 |
| b* | 6.95 ± 0.07 |
| Chroma | 20.68 ± 0.15 |
| Hue angle | 0.34 ± 0.01 |
| Moisture, % | 10.28 ± 0.15 |
| Ash, % | 1.04 ± 0.11 |
| Lipids, % | 4.18 ± 0.13 |
| Proteins, % | 4.68 ± 0.24 |
| Total dietary fiber, % | 15.48 ± 0.44 |
| Calcium (Ca, mg/100 g) | 289.65 ± 0.31 |
| Phosphorus (P, mg/100 g) | 49.14 ± 0.24 |
| Potassium (K, mg/100 g) | 367.45 ± 0.34 |
| Magnesium (Mg, mg/100 g) | 101.22 ± 0.27 |
| Zinc (Zn, mg/100 g) | 1.39 ± 0.20 |
| Iron (Fe, mg/100 g) | 52.67 ± 0.29 |
| Copper (Cu, mg/100 g) | 0.94 ± 0.15 |
| Sodium (Na, mg/100 g) | 9.65 ± 0.30 |
| Phytochemical Characteristics | Storage Time, (days) | DBC | DBBP1 | DBBP2 | DBBP3 |
|---|---|---|---|---|---|
| Total Anthocyanins, mg C3G/100 g DM | 0 | - | 33.42 ± 0.26 aC | 64.52 ± 0.32 aB | 98.44 ± 0.41 aA |
| 21 | - | 29.39 ± 0.20 bC | 60.41 ± 0.28 bB | 94.21 ± 0.33 bA | |
| Total Flavonoids mg CE/100 g DM | 0 | 54.92 ± 1.41 aD | 77.61 ± 1.15 aC | 89.55 ± 1.57 aB | 106.96 ± 1.84 aA |
| 21 | 51.04 ± 1.10 bD | 73.41 ± 1.06 bC | 85.49 ± 1.19 bB | 102.82 ± 1.28 bA | |
| Total Polyphenols mg GAE/100 g DM | 0 | 88.53 ± 1.57 aD | 134.49 ± 1.68 aC | 154.19 ± 1.77 aB | 171.45 ± 1.79 aA |
| 21 | 84.61 ± 1.06 bD | 130.55 ± 1.17 bC | 150.24 ± 1.19 bB | 167.54 ± 1.22 bA | |
| Antioxidant activity, µmol TE/g DM | 0 | 8.21 ± 0.35 aD | 12.89 ± 0.41 aC | 16.55 ± 0.46 aB | 21.15 ± 0.49 aA |
| 21 | 5.11 ± 0.20 bD | 9.78 ± 0.21 bC | 13.42 ± 0.25 bB | 18.07 ± 0.27 bA |
| Physical–Chemical Characteristics | DBC | DBBP1 | DBBP2 | DBBP3 |
|---|---|---|---|---|
| Total dry matter, % | 15.01 ± 0.18 d | 15.89 ± 0.20 c | 17.84 ± 0.23 b | 20.46 ± 0.25 a |
| Fat, % | 3.03 ± 0.11 a | 3.19 ± 0.08 a | 3.26 ± 0.06 a | 3.31 ± 0.05 a |
| Protein, % | 3.45 ± 0.17 d | 3.78 ± 0.04 c | 3.98 ± 0.03 b | 4.21 ± 0.12 a |
| Fiber, % | 0.00 ± 0.00 d | 3.71 ± 0.09 c | 5.65 ± 0.11 b | 7.97 ± 0.15 a |
| Carbohydrates, % | 7.65 ± 0.12 c | 8.01 ± 0.09 c | 9.64 ± 0.15 b | 11.93 ± 0.16 a |
| Moisture, % | 84.99 ± 0.27 a | 84.11 ± 0.21 b | 82.16 ± 0.23 c | 79.54 ± 0.25 d |
| Ash, % | 0.88 ± 0.02 c | 0.92 ± 0.02 b | 0.96 ± 0.03 b | 1.01 ± 0.03 a |
| Energetic value, Kcal/100 g | 64.77 ± 0.09 d | 83.29 ± 0.11 c | 95.12 ± 0.14 b | 110.29 ± 0.16 a |
| KJ/100 g | 265.56 ± 0.09 d | 341.49 ± 0.11 c | 389.99 ± 0.14 b | 452.19 ± 0.16 a |
| Physical–Chemical Characteristics | Storage Time (Day) | DBC | DBBP1 | DBBP2 | DBBP3 |
|---|---|---|---|---|---|
| pH | 0 | 4.57 ± 0.02 aC | 4.99 ± 0.03 aB | 5.02 ± 0.04 aB | 5.08 ± 0.07 aA |
| 21 | 4.32 ± 0.06 bC | 4.55 ± 0.02 bB | 4.60 ± 0.03 bB | 4.73 ± 0.04 bA | |
| Total titratable acidity (TTA), % | 0 | 0.55 ± 0.05 aA | 0.50 ± 0.08 aB | 0.49 ± 0.04 aB | 0.47 ± 0.02 aB |
| 21 | 0.60 ± 0.04 bA | 0.54 ± 0.02 bB | 0.53 ± 0.06 bB | 0.50 ± 0.05 bB | |
| Total soluble solids (TSSs), °Brix | 0 | 7.10 ± 0.02 aC | 7.50 ± 0.04 aC | 7.90 ± 0.03 aB | 8.90 ± 0.07 aA |
| 21 | 7.47 ± 0.03 bC | 7.85 ± 0.03 bC | 8.32 ± 0.05 bB | 9.40 ± 0.06 bA | |
| TSS/TTA ratio | 0 | 12.91 ± 0.03 aD | 15.00 ± 0.04 aC | 16.12 ± 0.06 aB | 18.94 ± 0.07 aA |
| 21 | 12.45 ± 0.02 bD | 14.54 ± 0.03 bC | 15.70 ± 0.05 bB | 18.80 ± 0.06 bA |
| Samples | Storage Time (day) | L* | a* | b* | Chroma | Hue Angle | ΔE |
|---|---|---|---|---|---|---|---|
| DBC | 0 | 96.12 ± 0.28 aA | −3.92 ± 0.05 aD | 10.84 ± 0.20 aA | 11.52 ± 0.21 aA | 178.77 ± 0.04 aB | - |
| 21 | 95.67 ± 0.25 bA | −3.13 ± 0.04 bD | 11.89 ± 0.22 bA | 12.29 ± 0.23 bA | 178.68 ± 0.03 aB | - | |
| DBBP1 | 0 | 51.95 ± 0.22 aB | 6.73 ± 0.19 aC | −0.16 ± 0.04 aD | 6.73 ± 0.17 aD | 359.97 ± 0.03 aA | 46.75 ± 0.23 aC |
| 21 | 49.77 ± 0.14 bB | 8.59 ± 0.19 bC | −0.07 ± 0.02 bD | 8.60 ± 0.16 bC | 359.99 ± 0.02 aA | 48.86 ± 0.11 bC | |
| DBBP2 | 0 | 47.60 ± 0.23 aC | 9.27 ± 0.14 aB | −0.71 ± 0.07 aC | 9.30 ± 0.15 aC | 359.92 ± 0.02 aA | 51.59 ± 0.21 aB |
| 21 | 45.51 ± 0.21 bC | 11.22 ± 0.18 bB | −0.56 ± 0.05 bC | 11.23 ± 0.13 bB | 359.95 ± 0.03 aA | 53.64 ± 0.20 aB | |
| DBBP3 | 0 | 44.11 ± 0.20 aD | 10.41 ± 0.17 aA | −1.12 ± 0.09 aB | 10.47 ± 0.18 aB | 359.89 ± 0.02 aA | 55.26 ± 0.21 aA |
| 21 | 42.05 ± 0.19 bD | 12.56 ± 0.20 bA | −0.89 ± 0.06 bB | 12.23 ± 0.13 bA | 359.92 ± 0.02 aA | 57.31 ± 0.19 aA |
| Parameter | DBC | DBBP1 | DBBP2 | DBBP3 |
|---|---|---|---|---|
| Calcium (Ca, mg/100 g) | 117.67 ± 0.31 c | 128.77 ± 0.34 b | 131.55 ± 0.35 a | 137.22 ± 0.37 a |
| Phosphorus (P, mg/100 g) | 27.67 ± 0.24 d | 39.86 ± 0.29 c | 59.66 ± 0.30 b | 73.51 ± 0.33 a |
| Potassium (K, mg/100 g) | 168.63 ± 0.36 d | 203.31 ± 0.30 c | 239.38 ± 0.33 b | 270.12 ± 0.39 a |
| Magnesium (Mg, mg/100 g) | 55.28 ± 0.22 d | 62.46 ± 0.28 c | 69.63 ± 0.30 b | 76.23 ± 0.32 a |
| Zinc (Zn, mg/100 g) | 0.49 ± 0.05 b | 0.57 ± 0.06 a | 0.64 ± 0.08 a | 0.70 ± 0.11 a |
| Iron (Fe, mg/100 g) | 4.41 ± 0.00 d | 5.29 ± 0.09 c | 6.35 ± 0.12 b | 7.81 ± 0.14 a |
| Copper (Cu, mg/100 g) | 0.09 ± 0.02 b | 0.11 ± 0.06 a | 0.13 ± 0.07 a | 0.15 ± 0.09 a |
| Sodium (Na, mg/100 g) | 110.30 ± 0.28 d | 128.72 ± 0.30 c | 136.41 ± 0.32 b | 144.22 ± 0.35 a |
| Parameter | Storage Time (Day) | DBC | DBBP1 | DBBP2 | DBBP3 |
|---|---|---|---|---|---|
| TAB, log CFU/mL | 0 | 6.96 ± 0.32 aC | 7.25 ± 0.23 aB | 8.23 ± 0.18 aA | 8.73 ± 0.19 aA |
| 21 | 7.39 ± 0.19 bB | 7.84 ± 0.42 bB | 8.56 ± 0.17 bA | 8.97 ± 0.17 aA | |
| Yeast, log CFU/mL | 0 | 0.86 ± 0.17 aD | 1.12 ± 0.13 aC | 1.36 ± 0.36 aB | 1.58 ± 0.22 aA |
| 21 | 0.93 ± 0.15 aD | 1.28 ± 0.16 aC | 1.43 ± 0.21 aB | 1.73 ± 0.12 aA | |
| Molds, log CFU/mL | 0 | 0.23 ± 0.16 aD | 1.18 ± 0.15 aC | 1.89 ± 0.20 aB | 2.15 ± 0.13 aA |
| 21 | 0.26 ± 0.09 aD | 1.30 ± 0.21 aC | 2.13 ± 0.19 aB | 2.27 ± 0.18 aA | |
| Coliforms, log CFU/mL | 0 | 1.47 ± 0.23 aC | 1.63 ± 0.18 aB | 1.72 ± 0.25 aA | 1.77 ± 0.25 aA |
| 21 | 1.52 ± 0.15 aC | 1.67 ± 0.13 aB | 1.75 ± 0.05 aA | 1.78 ± 0.13 aA | |
| Escherichia coli | 0 | Not detected | Not detected | Not detected | Not detected |
| 21 | Not detected | Not detected | Not detected | Not detected | |
| Coagulase-positive staphylococci | 0 | Not detected | Not detected | Not detected | Not detected |
| 21 | Not detected | Not detected | Not detected | Not detected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipșa, F.D.; Rațu, R.N.; Stoica, F.; Motrescu, I.; Cara, I.G.; Cristea, R.-M.; Ulea, E. Valorization of Blackcurrant Pomace for the Development of Functional Stirred Yogurt with Enhanced Nutritional and Antioxidant Properties. Foods 2025, 14, 3650. https://doi.org/10.3390/foods14213650
Lipșa FD, Rațu RN, Stoica F, Motrescu I, Cara IG, Cristea R-M, Ulea E. Valorization of Blackcurrant Pomace for the Development of Functional Stirred Yogurt with Enhanced Nutritional and Antioxidant Properties. Foods. 2025; 14(21):3650. https://doi.org/10.3390/foods14213650
Chicago/Turabian StyleLipșa, Florin Daniel, Roxana Nicoleta Rațu, Florina Stoica, Iuliana Motrescu, Irina Gabriela Cara, Ramona-Maria Cristea, and Eugen Ulea. 2025. "Valorization of Blackcurrant Pomace for the Development of Functional Stirred Yogurt with Enhanced Nutritional and Antioxidant Properties" Foods 14, no. 21: 3650. https://doi.org/10.3390/foods14213650
APA StyleLipșa, F. D., Rațu, R. N., Stoica, F., Motrescu, I., Cara, I. G., Cristea, R.-M., & Ulea, E. (2025). Valorization of Blackcurrant Pomace for the Development of Functional Stirred Yogurt with Enhanced Nutritional and Antioxidant Properties. Foods, 14(21), 3650. https://doi.org/10.3390/foods14213650

