Functional Evaluation of Bacillus subtilis DCP04 from Korean Fermented Soybean Paste: A Potential Probiotic Strain for Polyethylene Degradation and Adsorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Screening, Isolation, and Identification
2.3. Characterization of Probiotic Properties
2.3.1. Hemolytic Activity
2.3.2. Biogenic Amine Production
2.3.3. Aggregation Assays
2.4. Enzyme Activity Assessment
2.4.1. Laccase Activity
2.4.2. Manganese Peroxidase (MnP) Activity
2.5. LDPE Particle Adsorption by DCP04
2.5.1. Biofilm Formation Assay
2.5.2. LDPE Adsorption Efficiency
- ▪
- Time dependency: An NP suspension (200 nm, 20 µg/mL) was incubated with DCP04 for 3, 6, 9, and 12 h.
- ▪
- Size dependency: NP suspensions (50, 100, and 200 nm; 20 µg/mL) were incubated with DCP04 for 4 h.
- ▪
- Concentration dependency: NP suspensions (200 nm) at concentrations of 10, 20, 50, and 100 µg/mL were incubated with DCP04 for 4 h.
2.5.3. Morphological Observation of Adsorption
2.6. Biodegradation of LDPE Film by DCP04
2.6.1. Weight Loss Measurement
2.6.2. Surface Morphology Analysis
2.6.3. FT-IR
2.7. Statistical Analysis
3. Results
3.1. Isolation and Molecular Identification of Strain DCP04
3.2. Probiotic and Safety Profile of Strain DCP04
3.3. Enzyme Activities
3.4. Adsorption of LDPE by B. subtilis DCP04
3.5. Biodegradation of LDPE Films by B. subtilis DCP04
3.5.1. Weight Loss and Surface Morphology Analysis
3.5.2. Analysis Chemical Modifications by FT-IR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BSAM | Basal salt agar medium |
CLSM | Confocal laser scanning microscopy |
FE-SEM | Field emission scanning electron microscope |
FT-IR | Fourier-transform infrared spectroscopy |
GI | Gastrointesinal |
LDPE | Low-density polyethylene |
MnP | Manganese peroxidase |
MP | Microplastic |
NP | Nanoplastic |
NTA | Nanoparticle tracking analysis |
PBS | Phosphate-buffered saline |
TSB | Tryptic soy broth |
References
- Leistenschneider, D.; Wolinski, A.; Cheng, J.; ter Halle, A.; Duflos, G.; Huvet, A.; Paul-Pont, I.; Lartaud, F.; Galgani, F.; Lavergne, É.; et al. A critical review on the evaluation of toxicity and ecological risk assessment of plastics in the marine environment. Sci. Total Environ. 2023, 896, 164955. [Google Scholar] [CrossRef]
- Bule Možar, K.; Miloloža, M.; Martinjak, V.; Cvetnić, M.; Ocelić Bulatović, V.; Mandić, V.; Bafti, A.; Ukić, Š.; Kučić Grgić, D.; Bolanča, T. Bacteria and Yeasts Isolated from the Environment in Biodegradation of PS and PVC Microplastics: Screening and Treatment Optimization. Environments 2023, 10, 207. [Google Scholar] [CrossRef]
- Shilpa; Basak, N.; Meena, S.S. Biodegradation of low-density polythene (LDPE) by a novel strain of Pseudomonas aeruginosa WD4 isolated from plastic dumpsite. Biodegradation 2024, 35, 641–655. [Google Scholar] [CrossRef]
- Domenech, J.; Marcos, R. Pathways of human exposure to microplastics, and estimation of the total burden. Curr. Opin. Food Sci. 2021, 39, 144–151. [Google Scholar] [CrossRef]
- Lalrinfela, P.; Vanlalsangi, R.; Lalrinzuali, K.; Babu, P.J. Microplastics: Their effects on the environment, human health, and plant ecosystems. Environ. Pollut. Manag. 2024, 1, 248–259. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, X.Y.; Chen, B.J.; Yang, Y.P.; Li, H.; Wang, F. Impact of microplastics on the human digestive system: From basic to clinical. World J. Gastroenterol. 2025, 31, 100470. [Google Scholar] [CrossRef]
- Zhou, L.; Ran, L.; He, Y.; Huang, Y. Mechanisms of microplastics on gastrointestinal injury and liver metabolism disorder. Mol. Med. Rep. 2025, 31, 98. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Kaur, M.; Mor, S. Impacts of microplastics on gut health: Current status and future directions. Indian J. Gastroenterol. 2025. advance online publication. [Google Scholar] [CrossRef]
- Gao, B.; Chen, L.; Wu, L.; Zhang, S.; Zhao, S.; Mo, Z.; Chen, Z.; Tu, P. Association between microplastics and the functionalities of human gut microbiome. Ecotoxicol. Environ. Saf. 2025, 290, 117497. [Google Scholar] [CrossRef]
- Hsu, W.H.; Chen, Y.Z.; Chiang, Y.T.; Lin, K.L.; Wang, S.Y.; Lee, H.J.; Huang, C.C.; Wu, P.C.; Tsai, Y.C.; Chang, F.R. Polystyrene nanoplastics disrupt the intestinal microenvironment by altering bacteria-host interactions through extracellular vesicle-delivered microRNAs. Nat. Commun. 2025, 16, 5026. [Google Scholar] [CrossRef]
- Hirt, N.; Body-Malapel, M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Part. Fibre Toxicol. 2020, 17, 57. [Google Scholar] [CrossRef]
- Cui, Y.; Wu, Y.; Shi, P.; Ni, Y.; Zeng, H.; Zhang, Z.; Zhao, C.; Sun, W.; Yi, Q. Mitigating microplastic-induced organ damage: Mechanistic insights from the microplastic-macrophage axes. Redox Biol. 2025, 84, 103688. [Google Scholar] [CrossRef]
- Jahedi, F.; Jaafarzadeh Haghighi Fard, N. Micro- and nanoplastic toxicity in humans: Exposure pathways, cellular effects, and mitigation strategies. Toxicol. Rep. 2025, 14, 102043. [Google Scholar] [CrossRef]
- Ali, I.; Tan, X.; Mustafa, G.; Gao, J.; Peng, C.; Naz, I.; Duan, Z.; Zhu, R.; Ruan, Y. Removal of micro- and nanoplastics by filtration technology: Performance and obstructions to market penetrations. J. Clean. Prod. 2024, 470, 143305. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, Y.; Ju, C.; Zhao, T.; Meng, Q.; Cong, J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. Environ. Res. 2024, 263, 120046. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, T.; Rao, C.; Wang, L.; Wan, T.; Wu, W.; Li, Z.; Wang, Y.; Feng, Y.; Wang, Y.; et al. Novel probiotics adsorbing and excreting microplastics in vivo show potential for preventing microplastic-induced gut dysbiosis. Front. Microbiol. 2025, 15, 1522794. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Kim, W.S.; Paik, H.D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019, 28, 1297–1305. [Google Scholar] [CrossRef]
- Lu, J.; Zhu, X.; Zhang, C.; Lu, F.; Lu, Z.; Lu, Y. Co-expression of alcohol dehydrogenase and aldehyde dehydrogenase in Bacillus subtilis for alcohol detoxification. Food Chem. Toxicol. 2020, 135, 110890. [Google Scholar] [CrossRef]
- Jia, H.; Huang, S.; Cheng, S.; Zhang, X.; Chen, X.; Zhang, Y.; Wang, J.; Wu, L. Novel mechanisms of selenite reduction in Bacillus subtilis 168: Confirmation of multiple-pathway mediated remediation based on transcriptome analysis. J. Hazard. Mater. 2022, 433, 128834. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.; Amstutz, J.; Patrick, J.E. Biofilm formation by Bacillus subtilis is altered in the presence of pesticides. Access Microbiol. 2020, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Uwakwe, F.E.; Ezejiofor, T.I.N.; Anyalogbu, E.A.A.; Ogbulie, T.E. The Biodegradation of Low-Density Polyethylene by Bacillus Species. EQA—Int. J. Environ. Qual. 2023, 67, 26–35. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-Y.; Liao, Y.-C.; Lin, S.-H.; Lin, J.-S.; Lee, C.-C.; Watanabe, K. Safety assessment of Lactiplantibacillus plantarum TWK10 based on whole-genome sequencing, phenotypic, and oral toxicity analysis. Nutrients 2022, 14, 2313. [Google Scholar] [CrossRef]
- Istre, G.R.; Welch, D.F.; Marks, M.I.; Moyer, N. Susceptibility of group A beta-hemolytic Streptococcus isolates to penicillin and erythromycin. Antimicrob. Agents Chemother. 1981, 20, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, R.; Lorenzo, J.M.; Fonseca, S.; Franco, I.; Carballo, J. Strains of Staphylococcus and Bacillus Isolated from Traditional Sausages as Producers of Biogenic Amines. J. Food Prot. 2012, 75, 653–659. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328851/ (accessed on 1 August 2025). [CrossRef] [PubMed]
- Özogul, I. The Function of Lactic Acid Bacteria on Biogenic Amines Production by Food-Borne Pathogens in Arginine Decarboxylase Broth. Food Sci. Technol. Res. 2012, 18, 795–799. [Google Scholar] [CrossRef]
- Tatsaporn, T.; Kornkanok, K. Using Potential Lactic Acid Bacteria Biofilms and their Compounds to Control Biofilms of Foodborne Pathogens. Foods 2020, 26, e00477. [Google Scholar] [CrossRef]
- Algburi, A.; Alazzawi, S.A.; Al-Ezzy, A.I.A.; Weeks, R.; Chistyakov, V.; Chikindas, M.L. Potential Probiotics Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 Co-Aggregate with Clinical Isolates of Proteus mirabilis and Prevent Biofilm Formation. Probiotics Antimicrob. Proteins 2020, 12, 1471–1483. [Google Scholar] [CrossRef]
- Senthivelan, T.; Kanagaraj, J.; Panda, R.C.; Narayani, T. Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum: Media optimization by response surface methodology (RSM) and central composite rotatable design (CCRD). Biotechnol. Rep. 2019, 23, e00344. [Google Scholar] [CrossRef]
- Muthukumarasamy, N.P.; Jackson, B.; Raj, A.J.; Sevanan, M. Production of Extracellular Laccase from Bacillus subtilis MTCC 2414 Using Agroresidues as a Potential Substrate. Biochem. Res. Int. 2015, 9, 765190. [Google Scholar] [CrossRef]
- Miyata, N.; Tani, Y.; Iwahori, K.; Soma, M. Enzymatic Formation of Manganese Oxides by an Acremonium-like Hyphomycete Fungus, Strain KR21-2. FEMS Microbiol. Ecol. 2004, 47, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, X.; Wang, Y.; Zhao, Y. Determination Method of Manganese Peroxidase During Straw Degradation. J. Microbiol. Mod. Tech. 2020, 7, 101. [Google Scholar]
- Yang, C.; Huang, B.; Lin, J.; Yang, Q.; Guo, Y.; Liu, D.; Sun, B. Isolation and Screening of High Biofilm Producing Lactic Acid Bacteria, and Exploration of Its Effects on the Microbial Hazard in Corn Straw Silage. J. Hazard. Mater. 2024, 480, 136009. [Google Scholar] [CrossRef]
- Zhao, L.; Dou, Q.; Chen, S.; Wang, Y.; Yang, Q.; Chen, W.; Zhang, H.; Du, Y.; Xie, M. Adsorption Abilities and Mechanisms of Lactobacillus on Various Nanoplastics. Chemosphere 2023, 320, 138038. [Google Scholar] [CrossRef]
- Zhuang, Y.; Seong, H.J.; Jang, Y.-S. Degradation of low density polyethylene by Bacillus species. Appl. Biol. Chem. 2022, 65, 84. [Google Scholar] [CrossRef]
- Dey, A.S.; Bose, H.; Mohapatra, B.; Sar, P. Biodegradation of Unpretreated Low-Density Polyethylene (LDPE) by Stenotrophomonas sp. and Achromobacter sp., Isolated from Waste Dumpsite and Drilling Fluid. Front. Microbiol. 2020, 11, 603210. [Google Scholar] [CrossRef]
- Mazlumi, A.; Panahi, B.; Hejazi, M.A.; Nami, Y. Probiotic potential characterization and clustering using unsupervised algorithms of lactic acid bacteria from saltwater fish samples. Sci. Rep. 2022, 12, 11952. [Google Scholar] [CrossRef]
- Burel, C.; Dreyfus, R.; Purevdorj-Gage, L. Physical mechanisms driving the reversible aggregation of Staphylococcus aureus and response to antimicrobials. Sci. Rep. 2021, 11, 15048. [Google Scholar] [CrossRef]
- Bais, H.P.; Fall, R.; Vivanco, J.M. Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiol. 2004, 134, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Vlamakis, H.; Chai, Y.; Beauregard, P.; Losick, R.; Kolter, R. Sticking together: Building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 2013, 11, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, S.W.; Jung, E.M.; Lee, E.H. Biosorption of sub-micron-sized polystyrene microplastics using bacterial biofilms. J. Hazard. Mater. 2023, 458, 131858. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, Y.; Fang, X.; Zhong, R.; Gong, H.; Yan, M. Bacillus subtilis, a promising bacterial candidate for trapping nanoplastics during water treatment. J. Hazard. Mater. 2024, 462, 136679. [Google Scholar] [CrossRef]
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef]
- Klun, B.; Starin, M.; Novak, J.; Putar, U.; Čelan Korošin, N.; Binda, G.; Kalčíková, G. Biofilm formation on polyethylene and polylactic acid microplastics in freshwater: Influence of environmental factors. J. Environ. Chem. Eng. 2025, 13, 118689. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Screening of Bacillus strains isolated from mangrove ecosystems in peninsular Malaysia for microplastic degradation. Environ. Pollut. 2017, 231, 1552–1559. [Google Scholar] [CrossRef]
- Jebashalomi, V.; Charles, P.E.; Rajaram, R. Microbial degradation of low-density polyethylene (LDPE) and polystyrene using Bacillus cereus (OR268710) isolated from plastic-polluted tropical coastal environment. Sci. Total Environ. 2024, 924, 171580. [Google Scholar] [CrossRef]
- Yao, C.; Xia, W.; Dou, M.; Du, Y.; Wu, J. Oxidative degradation of UV-irradiated polyethylene by laccase-mediator system. J. Hazard. Mater. 2022, 440, 129709. [Google Scholar] [CrossRef]
- Hoang, H.G.; Tran, H.T.; Nguyen, M.K.; Nguyen, N.S.H.; Thuy, B.T.P. Investigating the polyethylene degradation mechanism using docking and molecular dynamics simulations. Environ. Sci. Pollut. Res. Int. 2024, 31, 64857–64869. [Google Scholar] [CrossRef]
- Trotter, R.E.; Vazquez, A.R.; Grubb, D.S.; Freedman, K.E.; Grabos, L.E.; Jones, S.; Gentile, C.L.; Melby, C.L.; Johnson, S.A.; Weir, T.L. Bacillus subtilis DE111 intake may improve blood lipids and endothelial function in healthy adults. Benef. Microbes 2020, 11, 621–630. [Google Scholar] [CrossRef]
- Ghoneim, M.A.M.; Hassan, A.I.; Mahmoud, M.G.; Asker, M.S. Effect of polysaccharide from Bacillus subtilis sp. on cardiovascular diseases and atherogenic indices in diabetic rats. BMC Complement. Altern. Med. 2016, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Kiatkamjornwong, S.; Sonsuk, M.; Wittayapichet, S.; Prasassarakich, P.; Vejjanukroh, P.C. Degradation of styrene-g-cassava starch filled polystyrene plastics. Polym. Degrad. Stab. 1999, 66, 323–335. [Google Scholar] [CrossRef]
- Mendoza, J.E.; Tineo, D.; Chuquibala-Checan, B.; Atalaya-Marin, N.; Taboada-Mitma, V.H.; Tafur-Culqui, J.; Tarrillo, E.; Gómez-Fernández, D.; Goñas, M.; Reyes-Reyes, M.A. Global perspectives on the biodegradation of LDPE in agricultural systems. Front. Microbiol. 2025, 15, 1510817. [Google Scholar] [CrossRef] [PubMed]
Strain | Auto- Aggregation (%) | Co-Aggregation (%) | Biogenic Amine | Hemolysis | |||
---|---|---|---|---|---|---|---|
E. coli | S. aureus | P. aeruginosa | Lysine Decarboxylase | Arginine Decarboxylase | |||
B. subtilis DCP04 | 36.16 ± 0.40 | 5.05 ± 0.25 | 25.58 ± 0.03 | 25.52 ± 0.17 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.-H.; Jeong, H.; Jung, I.; Choi, M.; Kim, J.-H. Functional Evaluation of Bacillus subtilis DCP04 from Korean Fermented Soybean Paste: A Potential Probiotic Strain for Polyethylene Degradation and Adsorption. Foods 2025, 14, 3328. https://doi.org/10.3390/foods14193328
Kim G-H, Jeong H, Jung I, Choi M, Kim J-H. Functional Evaluation of Bacillus subtilis DCP04 from Korean Fermented Soybean Paste: A Potential Probiotic Strain for Polyethylene Degradation and Adsorption. Foods. 2025; 14(19):3328. https://doi.org/10.3390/foods14193328
Chicago/Turabian StyleKim, Gyeong-Hwan, Haemin Jeong, Injun Jung, Myounghyun Choi, and Jong-Hoon Kim. 2025. "Functional Evaluation of Bacillus subtilis DCP04 from Korean Fermented Soybean Paste: A Potential Probiotic Strain for Polyethylene Degradation and Adsorption" Foods 14, no. 19: 3328. https://doi.org/10.3390/foods14193328
APA StyleKim, G.-H., Jeong, H., Jung, I., Choi, M., & Kim, J.-H. (2025). Functional Evaluation of Bacillus subtilis DCP04 from Korean Fermented Soybean Paste: A Potential Probiotic Strain for Polyethylene Degradation and Adsorption. Foods, 14(19), 3328. https://doi.org/10.3390/foods14193328