Detection of Norovirus from Berries in Serbia by Digital PCR and NGS
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Norovirus Elution, Viral RNA Extraction and PCR Inhibitor Removal
2.3. RT-qPCR and Digital RT-PCR
2.4. Sequencing of HuNoV
2.5. Phylogenetic Analysis
2.6. Statistical Analysis
3. Results
3.1. Detection and Quantification of HuNoV RNA
3.2. Genotyping and Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, X.; Wang, Z.; Wang, Y.; Liu, Z.; Guan, X.; Ma, Y.; Zhou, H.; Jiang, Y.; Cui, W.; Wang, L.; et al. Surveillance of norovirus contamination in commercial fresh/frozen berries from Heilongjiang Province, China, using a TaqMan real-time RT-PCR assay. Food Microbiol. 2019, 82, 119–126. [Google Scholar] [CrossRef]
- Cotterelle, B.; Drougard, C.; Rolland, J.; Becamel, M.; Boudon, M.; Pinede, S.; Traoré, O.; Balay, K.; Pothier, P.; Espié, E. Outbreak of norovirus infection associated with the consumption of frozen raspberries, France, March 2005. Euro Surveill. 2005, 10, 2690. [Google Scholar] [CrossRef]
- Oteiza, J.M.; Prez, V.E.; Pereyra, D.; Jaureguiberry, M.V.; Sánchez, G.; Sant’Ana, A.S.; Barril, P.A. Occurrence of Norovirus, Rotavirus, Hepatitis a Virus, and Enterovirus in Berries in Argentina. Food Environ. Virol. 2022, 14, 170–177. [Google Scholar] [CrossRef]
- Miotti, C.; Signorini, M.L.; Oteiza, J.M.; Prez, V.E.; Barril, P.A. Meta-analysis of the prevalence of norovirus and hepatitis a virus in berries. Int. J. Food Microbiol. 2024, 413, 110577. [Google Scholar] [CrossRef]
- Bozkurt, H.; Phan-Thien, K.Y.; van Ogtrop, F.; Bell, T.; McConchie, R. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 116–138. [Google Scholar] [CrossRef] [PubMed]
- Steele, M.; Lambert, D.; Bissonnette, R.; Yamamoto, E.; Hardie, K.; Locas, A. Norovirus GI and GII and hepatitis A virus in berries and pomegranate arils in Canada. Int. J. Food Microbiol. 2022, 379, 109840. [Google Scholar] [CrossRef] [PubMed]
- Raymond, P.; Paul, S.; Perron, A.; Bellehumeur, C.; Larocque, É.; Charest, H. Detection and Sequencing of Multiple Human Norovirus Genotypes from Imported Frozen Raspberries Linked to Outbreaks in the Province of Quebec, Canada, in 2017. Food Environ. Virol. 2022, 14, 40–58. [Google Scholar] [CrossRef] [PubMed]
- Elmahdy, E.M.; Shaheen, M.N.F.; Mahmoud, L.H.I.; Hammad, I.A.; Soliman, E.R.S. Detection of Norovirus and Hepatitis A Virus in Strawberry and Green Leafy Vegetables by Using RT-qPCR in Egypt. Food Environ. Virol. 2022, 14, 178–189. [Google Scholar] [CrossRef]
- Hall, A.J.; Wikswo, M.E.; Pringle, K.; Gould, L.H.; Parashar, U.D. Vital signs: Foodborne norovirus outbreaks—United States, 2009–2012. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 491–495. [Google Scholar]
- Chatziprodromidou, I.P.; Bellou, M.; Vantarakis, G.; Vantarakis, A. Viral outbreaks linked to fresh produce consumption: A systematic review. J. Appl. Microbiol. 2018, 124, 932–942. [Google Scholar] [CrossRef]
- Huvarova, V.; Kralik, P.; Vasickova, P.; Kubankova, M.; Verbikova, V.; Slany, M.; Babak, V.; Moravkova, M. Tracing of Selected Viral, Bacterial, and Parasitic Agents on Vegetables and Herbs Originating from Farms and Markets. J. Food Sci. 2018, 83, 3044–3053. [Google Scholar] [CrossRef]
- Cook, N.; Williams, L.; D’Agostino, M. Prevalence of Norovirus in produce sold at retail in the United Kingdom. Food Microbiol. 2019, 79, 85–89. [Google Scholar] [CrossRef]
- De Keuckelaere, A.; Baert, L.; Stals, A.; De Vocht, M.; Li, D.; Delbeke, S.; Lauryssen, S.; Jacxsens, L.; Sas, B.; Uyttendaele, M. Survey conducted by a consumer organization for the presence of bacterial and viral pathogens on high risk fresh produce from the Belgian market. Acta Hortic. 2018, 1209, 459–466. [Google Scholar] [CrossRef]
- Gao, J.; Xue, L.; Li, Y.; Zhang, J.; Dai, J.; Ye, Q.; Wu, S.; Gu, Q.; Zhang, Y.; Wei, X.; et al. A systematic review and meta-analysis indicates a high risk of human noroviruses contamination in vegetable worldwide, with GI being the predominant genogroup. Int. J. Food Microbiol. 2024, 413, 110603. [Google Scholar] [CrossRef] [PubMed]
- Torok, V.A.; Hodgson, K.R.; Jolley, J.; Turnbull, A.; McLeod, C. Estimating risk associated with human norovirus and hepatitis A virus in fresh Australian leafy greens and berries at retail. Int. J. Food Microbiol. 2019, 309, 108327. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations/World Health Organization. Microbiological Hazards in Fresh Fruits and Vegetables. Available online: https://www.fao.org/fileadmin/templates/agns/pdf/jemra/FFV_2007_Final.pdf (accessed on 15 September 2025).
- Ekundayo, T.C.; Ijabadeniyi, O.A. Human norovirus contamination challenge in fresh produce: A global prevalence and meta-analytic assessment. J. Appl. Microbiol. 2023, 134, lxac009. [Google Scholar] [CrossRef]
- Šapić, S.; Jakšić, M.; Stojković, D. The raspberry commodity exchange in Serbia: An exploratory research of producers’ attitudes. Ekon. Preduzeća 2020, 68, 215–228. [Google Scholar]
- Statistical Yearbook of Serbia. Available online: https://publikacije.stat.gov.rs/G2024/Pdf/G20242057.pdf (accessed on 24 December 2024).
- European Commission. RASFF Window. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search (accessed on 24 December 2024).
- Atmar, R.L.; Opekun, A.R.; Gilger, M.A.; Estes, M.K.; Crawford, S.E.; Neill, F.H.; Graham, D.Y. Norwalk Virus Shedding after Experimental Human Infection. Emerg. Infect. Dis. 2008, 14, 1553–1557. [Google Scholar] [CrossRef]
- Atmar, R.L.; Opekun, A.R.; Gilger, M.A.; Estes, M.K.; Crawford, S.E.; Neill, F.H.; Ramani, S.; Hill, H.; Ferreira, J.; Graham, D.Y. Determination of the 50% human infectious dose for Norwalk virus. J. Infect. Dis. 2014, 209, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Velebit, B.; Djordjevic, V.; Milojevic, L.; Babic, M.; Grkovic, N.; Jankovic, V.; Yushina, Y. The common foodborne viruses: A review. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012110. [Google Scholar] [CrossRef]
- Lee, N.; Chan, M.C.; Wong, B.; Choi, K.W.; Sin, W.; Lui, G.; Chan, P.K.; Lai, R.W.; Cockram, C.S.; Sung, J.J.; et al. Fecal viral concentration and diarrhea in norovirus gastroenteritis. Emerg. Infect. Dis. 2007, 13, 1399–1401. [Google Scholar] [CrossRef]
- Rzeżutka, A.; Cook, N. Viruses: Hepatitis A Virus. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 198–204. [Google Scholar] [CrossRef]
- Raymond, P.; Paul, S.; Perron, A.; Deschênes, L. Norovirus Extraction from Frozen Raspberries Using Magnetic Silica Beads. Food Environ. Virol. 2021, 13, 248–258. [Google Scholar] [CrossRef]
- Summa, M.; Maunula, L. Rapid Detection of Human Norovirus in Frozen Raspberries. Food Environ. Virol. 2018, 10, 51–60. [Google Scholar] [CrossRef]
- Hedman, J.; Rådström, P. Overcoming Inhibition in Real-Time Diagnostic PCR. In PCR Detection of Microbial Pathogens; Wilks, M., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 17–48. [Google Scholar]
- Dramé, M.; Tabue Teguo, M.; Proye, E.; Hequet, F.; Hentzien, M.; Kanagaratnam, L.; Godaert, L. Should RT-PCR be considered a gold standard in the diagnosis of COVID-19? J. Med. Virol. 2020, 92, 2312–2313. [Google Scholar] [CrossRef]
- Oh, C.; Zhou, A.; O’Brien, K.; Schmidt Arthur, R.; Geltz, J.; Shisler Joanna, L.; Schmidt Arthur, R.; Keefer, L.; Brown William, M.; Nguyen Thanh, H. Improved performance of nucleic acid-based assays for genetically diverse norovirus surveillance. Appl. Environ. Microbiol. 2023, 89, e00331-23. [Google Scholar] [CrossRef]
- Jaykus, L.-A.; Bidawid, S.; Bosch, A.; Butot, S.; Cook, N.; Gummalla, S.; Lowther, J.; Nasheri, N.; Pintó, R.M.; Schaffner, D.W.; et al. Detection of foodborne viruses in berries—State of science and future considerations. Food Control 2026, 180, 111436. [Google Scholar] [CrossRef]
- Mirmahdi, R.S.; Dicker, S.L.; Yusuf, N.G.; Montazeri, N. Navigating Uncertainties in RT-qPCR and Infectivity Assessment of Norovirus. Food Environ. Virol. 2025, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; Dorostkar, R.; Jafarpour, A.; Bolandian, M.; Nodooshan, M.M. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J. Med. Virol. 2021, 93, 4182–4197. [Google Scholar] [CrossRef]
- Persson, S.; Eriksson, R.; Lowther, J.; Ellström, P.; Simonsson, M. Comparison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. Int. J. Food Microbiol. 2018, 284, 73–83. [Google Scholar] [CrossRef] [PubMed]
- ISO 15216-2; Microbiology of the Food Chain: Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR. Part 2: Method for Detection. International Organization for Standardization: Geneva, Switzerland, 2019.
- da Silva, A.K.; Le Saux, J.C.; Parnaudeau, S.; Pommepuy, M.; Elimelech, M.; Le Guyader, F.S. Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: Different behaviors of genogroups I and II. Appl. Environ. Microbiol. 2007, 73, 7891–7897. [Google Scholar] [CrossRef]
- Svraka, S.; Duizer, E.; Vennema, H.; de Bruin, E.; van der Veer, B.; Dorresteijn, B.; Koopmans, M. Etiological role of viruses in outbreaks of acute gastroenteritis in The Netherlands from 1994 through 2005. J. Clin. Microbiol. 2007, 45, 1389–1394. [Google Scholar] [CrossRef]
- Loisy, F.; Atmar, R.L.; Guillon, P.; Le Cann, P.; Pommepuy, M.; Le Guyader, F.S. Real-time RT-PCR for norovirus screening in shellfish. J. Virol. Methods 2005, 123, 1–7. [Google Scholar] [CrossRef]
- Kageyama, T.; Kojima, S.; Shinohara, M.; Uchida, K.; Fukushi, S.; Hoshino, F.B.; Takeda, N.; Katayama, K. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J. Clin. Microbiol. 2003, 41, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Pintó, R.M.; Costafreda, M.I.; Bosch, A. Risk assessment in shellfish-borne outbreaks of hepatitis A. Appl. Environ. Microbiol. 2009, 75, 7350–7355. [Google Scholar] [CrossRef] [PubMed]
- Wilrich, C.; Wilrich, P.-T. Estimation of the POD Function and the LOD of a Qualitative Microbiological Measurement Method. J. AOAC Int. 2019, 92, 1763–1772. [Google Scholar] [CrossRef]
- Forootan, A.; Sjöback, R.; Björkman, J.; Sjögreen, B.; Linz, L.; Kubista, M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol. Detect. Quantif. 2017, 12, 1–6. [Google Scholar] [CrossRef]
- Parra, G.I.; Squires, R.B.; Karangwa, C.K.; Johnson, J.A.; Lepore, C.J.; Sosnovtsev, S.V.; Green, K.Y. Static and Evolving Norovirus Genotypes: Implications for Epidemiology and Immunity. PLoS Pathog. 2017, 13, e1006136. [Google Scholar] [CrossRef]
- Kroneman, A.; Vennema, H.; Deforche, K.; v d Avoort, H.; Peñaranda, S.; Oberste, M.S.; Vinjé, J.; Koopmans, M. An automated genotyping tool for enteroviruses and noroviruses. J. Clin. Virol. 2011, 51, 121–125. [Google Scholar] [CrossRef]
- Kojima, S.; Kageyama, T.; Fukushi, S.; Hoshino, F.B.; Shinohara, M.; Uchida, K.; Natori, K.; Takeda, N.; Katayama, K. Genogroup-Specific PCR Primers for Detection of Norwalk-Like Viruses. J. Virol. Methods 2002, 100, 107–114. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. Molecular Evolutionary Genetics Analysis Version 12 for Adaptive and Green Computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Pierson-Perry, J.F.; Vaks, J.E.; Vore, T.; Durham, A.; Fischer, C.; Gutenbrunner, C.; Hillyard, D.; Kondratovich, M.; Ladwig, P.; Middleberg, R. EP17-A2: Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Di Cola, G.; Prez, V.E.; Fantilli, A.C.; Frydman, C.; Mozgovoj, M.; Luque, L.; Ferreyra, L.; Nates, S.V.; Pisano, M.B.; Ré, V.E. Detection and genotyping of enteric foodborne viruses with high (NoV, HAV, HEV) and low (RV, AdV) health impact in ready-to-eat leafy vegetables and berries from Córdoba, Argentina. medRxiv 2025. [Google Scholar] [CrossRef]
- Chatonnat, E.; Manseau-Ferland, K.; Jubinville, E.; Goulet-Beaulieu, V.; Jean, J. Prevalence of Foodborne Viruses in Berries Harvested in Canada. Foods 2023, 12, 723. [Google Scholar] [CrossRef]
- Sarvikivi, E.; Roivainen, M.; Maunula, L.; Niskanen, T.; Korhonen, T.; Lappalainen, M.; Kuusi, M. Multiple norovirus outbreaks linked to imported frozen raspberries. Epidemiol. Infect. 2012, 140, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Mäde, D.; Trübner, K.; Neubert, E.; Höhne, M.; Johne, R. Detection and Typing of Norovirus from Frozen Strawberries Involved in a Large-Scale Gastroenteritis Outbreak in Germany. Food. Environ. Virol. 2013, 5, 162–168. [Google Scholar] [CrossRef]
- Carlson, K.B.; Dilley, A.; O’Grady, T.; Johnson, J.A.; Lopman, B.; Viscidi, E. A narrative review of norovirus epidemiology, biology, and challenges to vaccine development. Vaccines 2024, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.; Hembree, C.D.; Handel, A.; Matthews, J.E.; Dickey, B.W.; McDonald, S.; Hall, A.J.; Parashar, U.D.; Leon, J.S.; Lopman, B. Severe Outcomes Are Associated with Genogroup II Genotype 4 Norovirus Outbreaks: A Systematic Literature Review. Clin. Infect. Dis. 2012, 55, 189–193. [Google Scholar] [CrossRef]
- Leshem, E.; Barclay, L.; Wikswo, M.; Vega, E.; Gregoricus, N.; Parashar, U.D.; Vinjé, J.; Hall, A.J. Genotype GI.6 Norovirus, United States, 2010–2012. Emerg. Infect. Dis. 2013, 19, 1317–1320. [Google Scholar] [CrossRef]
- Singh, A.K.; Nagar, J.; Tandekar, A.; Singh, S.; Diwan, V.; Ravindran, G.C.; Tiwari, R.R.; Mishra, P.K.; Nema, R.K. The evolving landscape of Norovirus GII genotypes in Asia: A systematic review and meta-analysis. J. Clin. Virol. 2025, 179, 105809. [Google Scholar] [CrossRef]
- Thongprachum, A.; Okitsu, S.; Khamrin, P.; Maneekarn, N.; Hayakawa, S.; Ushijima, H. Emergence of Norovirus GII.2 and Its Novel Recombination during the Gastroenteritis Outbreak in Japanese Children in Mid-2016. Infect. Genet. Evol. 2017, 51, 86–88. [Google Scholar] [CrossRef]
- Buesa, J.; Rodríguez-Díaz, J.; Galiana, C.; Villar, L.M.; Pérez-Rodríguez, F.J.; García-Durán, F.; Sánchez, G. Epidemiology of GII.4 and GII.2 Norovirus Outbreaks in Closed and Semi-Closed Institutions in 2017 and 2018. J. Med. Virol. 2021, 93, 963–970. [Google Scholar] [CrossRef]
- Jin, M.; Zhou, Y.K.; Xie, H.P.; Fu, J.G.; He, Y.Q.; Zhang, S.; Jing, H.B.; Kong, X.Y.; Sun, X.M.; Li, H.Y.; et al. Characterization of the New GII.17 Norovirus Variant That Emerged Recently as the Predominant Strain in China. J. Gen. Virol. 2016, 97, 2620–2632. [Google Scholar] [CrossRef]
- Bidalot, M.; Théry, L.; Kaplon, J.; De Rougemont, A.; Ambert-Balay, K. Emergence of New Recombinant Noroviruses GII.P16-GII.4 and GII.P16-GII.2, France, Winter 2016 to 2017. Euro Surveill. 2017, 22, 30508. [Google Scholar] [CrossRef]
- Kambhampati, A.K.; Calderwood, L.; Wikswo, M.E.; Barclay, L.; Mattison, C.P.; Balachandran, N.; Vinjé, J.; Hall, A.J.; Mirza, S.A. Spatiotemporal Trends in Norovirus Outbreaks in the United States, 2009–2019. Clin. Infect. Dis. 2023, 76, 667–673. [Google Scholar] [CrossRef]
- Raymond, P.; Blain, R.; Nasheri, N. Detection of Foodborne Viruses in Dates Using ISO 15216 Methodology. Viruses 2025, 17, 174. [Google Scholar] [CrossRef]
- Wang, D.; Cao, J.; Tian, Z.; Fang, B.; Qi, X.; Lei, Z.; Liu, L.; Zhu, J.; Ma, L. Development of a New Concentration Method for Hepatitis A Virus Detection (ISO 15216–2:2019) in Manila Clams (Ruditapes philippinarum). LWT 2022, 172, 114172. [Google Scholar] [CrossRef]
- Boudaud, N.; Chevaliez, S.; Cappelier, J.-M.; Le Guyader, F.S.; Gantzer, C. Assessment of ISO Method 15216 to Quantify Hepatitis E Virus in Bottled Water. Food Environ. Virol. 2021, 13, 282–291. [Google Scholar] [CrossRef]
- Quan, P.-L.; Sauzade, M.; Brouzes, E. dPCR: A Technology Review. Sensors 2018, 18, 1271. [Google Scholar] [CrossRef]
- Bartsch, C.; Höper, D.; Mäde, D.; Johne, R. Analysis of frozen strawberries involved in a large norovirus gastroenteritis outbreak using next generation sequencing and digital PCR. Food Microbiol. 2018, 76, 390–395. [Google Scholar] [CrossRef]
- Rexin, D.; Kaas, L.; Langlet, J.; Croucher, D.; Hewitt, J. Droplet Digital PCR for Precise Quantification of Human Norovirus in Shellfish Associated with Gastroenteritis Illness. J. Food Prot. 2024, 87, 100363. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Chen, J.; Li, H.; Fang, L.; Wu, S.; Jayavanth, P.; Tang, S.; Sanchez, G.; Wu, X. One-step duplex RT-droplet digital PCR assay for the detection of norovirus GI and GII in lettuce and strawberry. Food Microbiol. 2021, 94, 103653. [Google Scholar] [CrossRef] [PubMed]
- Boxman, I.L.A.; Molin, R.; Persson, S.; Juréus, A.; Jansen, C.C.C.; Sosef, N.P.; Le Guyader, S.F.; Ollivier, J.; Summa, M.; Hautaniemi, M.; et al. An international inter-laboratory study to compare digital PCR with ISO standardized qPCR assays for the detection of norovirus GI and GII in oyster tissue. Food Microbiol. 2024, 120, 104478. [Google Scholar] [CrossRef]
- Fraisse, A.; Coudray-Meunier, C.; Martin-Latil, S.; Hennechart-Collette, C.; Delannoy, S.; Fach, P.; Perelle, S. Digital RT-PCR method for hepatitis A virus and norovirus quantification in soft berries. Int. J. Food Microbiol. 2017, 243, 36–45. [Google Scholar] [CrossRef]
- Larocque, É.; Lévesque, V.; Lambert, D. Crystal digital RT-PCR for the detection and quantification of norovirus and hepatitis A virus RNA in frozen raspberries. Int. J. Food Microbiol. 2022, 380, 109884. [Google Scholar] [CrossRef]
- Rački, N.; Morisset, D.; Gutierrez-Aguirre, I.; Ravnikar, M. One-step RT-droplet digital PCR: A breakthrough in the quantification of waterborne RNA viruses. Anal. Bioanal. Chem. 2014, 406, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Bussmann, M.; Hesse, M.; Karalay, O.; Nash, R.; Missel, A. Impact of Template Addition Volume and Analyzed Volume on Digital PCR Sensitivity; Qiagen: Hilden, Germany, 2022; Available online: https://www.qiagen.com/cl/resources/download.aspx?id=625d0d8b-278b-4796-bff4-2cb04533d712&lang=en (accessed on 10 September 2025).
- Coudray-Meunier, C.; Fraisse, A.; Martin-Latil, S.; Guillier, L.; Delannoy, S.; Fach, P.; Perelle, S. A Comparative Study of Digital RT-PCR and RT-qPCR for Quantification of Hepatitis A Virus and Norovirus in Lettuce and Water Samples. Int. J. Food Microbiol. 2015, 201, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Wilczek, M.; Mańkowska-Wierzbicka, D.; Różańska, A.; Kalinowska, A.; Buda, A.; Pieszak, M.; Drzewiecka, H.; Mozer-Lisewska, I. Droplet Digital PCR or Real-Time PCR as a Method for Quantifying SARS-CoV-2 RNA in Plasma—Is There a Difference? Viruses 2022, 14, 1535. [Google Scholar] [CrossRef]
- Youssfi, W.; Zhang, W. Comparison of RT-qPCR and RT-ddPCR on Assessing Model Viruses in Wastewater. Water Environ. Res. 2025, 97, e70146. [Google Scholar] [CrossRef]
- Verhaegen, B.; De Reu, K.; De Zutter, L.; Verstraete, K.; Heyndrickx, M.; Vlaemynck, G. Comparison of Droplet Digital PCR and qPCR for the Quantification of Shiga Toxin-Producing Escherichia coli in Bovine Feces. Toxins 2016, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cao, L.; Brodsky, J.; Gablech, I.; Xu, F.; Li, Z.; Korabecna, M.; Neuzil, P. Quantitative or Digital PCR? A Comparative Analysis for Choosing the Optimal One for Biosensing Applications. TrAC Trends Anal. Chem. 2024, 174, 117676. [Google Scholar] [CrossRef]
- Hedman, J.; Lavander, M.; Salomonsson, E.N.; Löfström, C.; Rådström, P. Validation Guidelines for PCR Workflows in Bioterrorism Preparedness, Food Safety and Forensics. Accred. Qual. Assur. 2018, 23, 133–144. [Google Scholar] [CrossRef]
Target | Name | Sequence | Reference |
---|---|---|---|
Norovirus GI | G1-fwd | CGC TGG ATG CGN TTC CAT | [36] |
G1-rev | CCT TAG ACG CCA TCA TCA TTT AC | [37] | |
G1-probe | FAM-TGG ACA GGA GAY CGC RAT CT-BHQ1 1 | [37] | |
Norovirus GII | G2-fwd | ATG TTC AGR TGG ATG AGR TTC TCW GA | [38] |
G2-rev | TCG ACG CCA TCT TCA TTC ACA | [39] | |
G2-probe | HEX-AGC ACG TGG GAG GGC GAT CG-BHQ1 1 | [38] | |
Mengovirus | Mengo-fwd | GCG GGT CCT GCC GAA AGT | [40] |
Mengo-rev | GAA GTA ACA TAT AGA CAG ACG CAC AC | [40] | |
Mengo-probe | ROX-ATC ACA TTA CTG GCC GAA GC-MGBNFQ | [40] |
Sample | HuNoV GI RT-qPCR (Cq) | HuNoV GI RT-dPCR (gc/g) | HuNoV GII RT-qPCR (Cq) | HuNoV GII RT-dPCR (gc/g) | Extraction Efficiency (%) |
---|---|---|---|---|---|
1 | 33.9 | 85 | <LOD * | not tested | 3.9 |
2 | <LOD | not tested | 34.4 | 63 | 3.5 |
3 | <LOD | not tested | 33.8 | 138 | 6.9 |
4 | 34.7 | 59 | <LOD | not tested | 7.4 |
5 | <LOD | not tested | 32.5 | 169 | 5.1 |
6 | 34.2 | 105 | <LOD | not tested | 1.3 |
7 | <LOD | not tested | 31.1 | 658 | 11.6 |
8 | <LOD | not tested | 37.1 | 25 | 8.9 |
9 | <LOD | not tested | 34.1 | 78 | 6.4 |
10 | <LOD | not tested | 31.7 | 328 | 4.4 |
11 | 36.2 | 34 | <LOD | not tested | 5.3 |
12 | <LOD | not tested | 36.5 | 23 | 2.6 |
13 | <LOD | not tested | 38.9 | <RT-dPCR LOD95 | 4.6 |
14 | <LOD | not tested | 35.1 | 45 | 5.8 |
15 | <LOD | not tested | 33.4 | 193 | 7.2 |
16 | <LOD | not tested | 38.6 | <RT-dPCR LOD95 | 1.6 |
17 | <LOD | not tested | 34.3 | 82 | 3.4 |
18 | <LOD | not tested | 32.8 | 218 | 3.7 |
19 | <LOD | not tested | 36.9 | 37 | 1.8 |
Isolate | Fruit Type | Fresh or Frozen | Period | Genotype | Accession No. |
---|---|---|---|---|---|
VB-N1-2023 | Raspberries | Fresh | June 2023 | GII.2 | OR826789 |
VB-N2-2023 | Raspberries | Fresh | July 2023 | GII.2 | PQ243047 |
VB-N3-2023 | Blackberries | Frozen | August 2023 | GII.4 | PQ243256 |
VB-N4-2023 | Raspberries | Frozen | July 2023 | GI.6 | OR816112 |
VB-N5-2023 | Raspberries | Fresh | June 2023 | GII.4 | OR794161 |
VB-N6-2023 | Raspberries | Frozen | August 2023 | GI.6 | PQ249007 |
VB-N7-2023 | Raspberries | Frozen | July 2023 | GII.7 | OR821720 |
VB-N8-2023 | Raspberries | Fresh | August 2023 | GII.2 | PQ844635 |
VB-N9-2023 | Raspberries | Frozen | July 2023 | GII.4 | OR794162 |
VB-N10-2023 | Blackberries | Frozen | July 2023 | GII.4 | OR794207 |
VB-N11-2023 | Raspberries | Frozen | July 2023 | GII.4 | PQ844637 |
VB-N12-2023 | Raspberries | Frozen | July 2023 | GII.7 | PQ844638 |
VB-N13-2023 | Blackberries | Frozen | June 2023 | GII.4 | PQ844641 |
Sample ID | Genotype | Close Match Strain (Accession No.) | Country | % nt Identity |
---|---|---|---|---|
VB-N4-2023 | GI.6 | Hu/GI/JP/2008/GI.Pb-GI.6/HO-11 (LC122692) | Japan | 99.7 |
VB-N6-2023 | GI.6 | G19_018 (MK789655) | France | 97.9 |
VB-N1-2023 | GII.2 | Hu/US/2016/GII.P2-GII.2/Washington0526 (MK753007) | USA | 97.9 |
VB-N2-2023 | GII.2 | Hu/US/2019/GII.2[P16]/CA-RGDS-1097 (MT738527.1) | USA | 95.6 |
VB-N8-2023 | GII.2 | Hu/GII.2/HS255/2011/USA (KJ407074.2) | USA | 97.6 |
VB-N3-2023 | GII.4 | Hu/GII/JP/2013/GII.Pe-GII.4/MI-17 (LC122792) | Japan | 98.8 |
VB-N5-2023 | GII.4 | BMH19-097 (MW661264) | Canada | 98.5 |
VB-N9-2023 | GII.4 | CU-PBH23217-STN (PP564826) | Thailand | 98.5 |
VB-N10-2023 | GII.4 | RIVM-NOV-2018-0407_R03-13 (OP205558) | The Netherlands | 98.7 |
VB-N11-2023 | GII.4 | G19_033 (MK907797) | France | 97.6 |
VB-N13-2023 | GII.4 | Hu/GII.4/DBM15-156/2015/THA (MG786781) | Thailand | 95.9 |
VB-N7-2023 | GII.7 | II.7[P7]/TKY2799/2024 (LC877023) | Japan | 98.1 |
VB-N12-2023 | GII.7 | RIVM-NOV-2016-0195_R01-02 (OP205528) | The Netherlands | 97.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velebit, B.; Janković, V.; Velebit, M.; Bošković, T.; Jovanović, M.; Wang, D.; Mišić, D. Detection of Norovirus from Berries in Serbia by Digital PCR and NGS. Foods 2025, 14, 3257. https://doi.org/10.3390/foods14183257
Velebit B, Janković V, Velebit M, Bošković T, Jovanović M, Wang D, Mišić D. Detection of Norovirus from Berries in Serbia by Digital PCR and NGS. Foods. 2025; 14(18):3257. https://doi.org/10.3390/foods14183257
Chicago/Turabian StyleVelebit, Branko, Vesna Janković, Marina Velebit, Tamara Bošković, Milica Jovanović, Dapeng Wang, and Dunja Mišić. 2025. "Detection of Norovirus from Berries in Serbia by Digital PCR and NGS" Foods 14, no. 18: 3257. https://doi.org/10.3390/foods14183257
APA StyleVelebit, B., Janković, V., Velebit, M., Bošković, T., Jovanović, M., Wang, D., & Mišić, D. (2025). Detection of Norovirus from Berries in Serbia by Digital PCR and NGS. Foods, 14(18), 3257. https://doi.org/10.3390/foods14183257