Study on Effect and Mechanism of β-Aminobutyric Acid on Mango Anthracnose Caused by Colletotrichum gloeosporioides
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BABA Treatment and Inoculation
2.3. Determination of Disease Spot Diameter and Incidence of Mango
2.4. Sample Collection
2.5. Determination of Total Phenol and Total Flavonoid Content
2.6. Measurement of Active Oxygen Content
2.7. Measurement of DPPH Free Radical Scavenging Capacity
2.8. Determination of Enzyme Activities in Mango Fruits
2.9. Determination of Relative Expressions of Related Defense Genes
2.10. Data Analysis
3. Results
3.1. Effect of BABA on Anthracnose Prevention and Treatment in Mango Fruit
3.2. The Effect of BABA Treatment on the Accumulation of Total Phenols and Total Flavonoids in Mango Fruit
3.3. Effect of BABA Treatment on H2O2 Content and O2− Production Rate in Mango Fruit
3.4. Effect of BABA Treatment on DPPH Radical Scavenging Capacity in Mango Fruit
3.5. Effect of BABA Treatment on SOD, CAT, and POD Activities in Mango Fruit
3.6. Effect of BABA Treatment on PAL, GLU, and CHI Activities in Mango Fruit
3.7. Correlation Analysis of the Incidence Rate of Mango Anthracnose, Lesion Diameter, Membrane Lipid Peroxidation, Antioxidant Enzyme Activity, and the Activity of Disease-Related Proteins
3.8. The Effect of BABA Treatment on the Expression of Defense-Related Genes in Mango Fruit
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Xin, Q.; Zhang, M.; Chen, J.; Lu, Q.; Zhou, X.; Li, X.; Zhang, W.; Feng, W.; Pei, H.; et al. Research progress on mango post-harvest ripening physiology and the regulatory technologies. Foods 2023, 12, 173. [Google Scholar] [CrossRef]
- Njie, A.; Zhang, W.; Dong, X.; Lu, C.; Pan, X.; Liu, Q. Effect of melatonin on fruit quality via decay inhibition and enhancement of antioxidative enzyme activities and genes expression of two mango cultivars during cold storage. Foods 2022, 11, 3209. [Google Scholar] [CrossRef]
- Pang, X.; Huang, Y.; Xiao, N.; Wang, Q.; Feng, B.; Shad, M.A. Effect of EVA film and chitosan coating on quality and physicochemical characteristics of mango fruit during postharvest storage. Food Chem. X 2024, 21, 101169. [Google Scholar] [CrossRef]
- Papanikolaou, Y.; Fulgoni, V.L. Mango Consumption Is associated with enhanced nutrient intakes, diet quality, and weight-related health outcomes. Nutrients 2021, 14, 59. [Google Scholar] [CrossRef]
- Tefera, A.; Seyoum, T.; Woldetsadik, K. Effect of disinfection, packaging, and storage environment on the shelf life of mango. Biosyst. Eng. 2007, 96, 201–212. [Google Scholar] [CrossRef]
- Le, T.D.; Viet Nguyen, T.; Muoi, N.V.; Toan, H.T.; Lan, N.M.; Pham, T.N. Supply chain management of mango (Mangifera indica L.) fruit: A review with a focus on product quality during postharvest. Front. Sustain. Food Syst. 2022, 5, 799431. [Google Scholar] [CrossRef]
- Guirado-Manzano, L.; Tienda, S.; Gutiérrez-Barranquero, J.A.; de Vicente, A.; Cazorla, F.M.; Arrebola, E. Biological control and cross infections of the Neofusicoccum spp. causing mango postharvest rots in spain. Horticulturae 2024, 10, 166. [Google Scholar] [CrossRef]
- Luo, S.; Wan, B.; Feng, S.; Shao, Y. Biocontrol of postharvest anthracnose of mango fruit with debaryomyces Nepalensisand effects on storage quality and postharvest physiology. J. Food Sci. 2015, 80, M2555–M2563. [Google Scholar] [CrossRef]
- Archana, T.J.; Gogoi, R.; Kaur, C.; Varghese, E.; Sharma, R.R.; Srivastav, M.; Tomar, M.; Kumar, M.; Kumar, A. Bacterial volatile mediated suppression of postharvest anthracnose and quality enhancement in mango. Postharvest Biol. Technol. 2021, 177, 111525. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kang, H.W. β-aminobutyric acid and powdery mildew infection enhanced the activation of defense-related genes and salicylic acid in Cucumber (Cucumis sativus L.). Genes 2023, 14, 2087. [Google Scholar] [CrossRef]
- Ren, X.; Wang, J.; Zhu, F.; Wang, Z.; Mei, J.; Xie, Y.; Liu, T.; Ye, X. β-aminobutyric acid (BABA)-induced resistance to tobacco black shank in tobacco (Nicotiana tabacum L.). PLoS ONE 2022, 17, e0267960. [Google Scholar] [CrossRef]
- Luna, E.; van Hulten, M.; Zhang, Y.; Berkowitz, O.; López, A.; Pétriacq, P.; Sellwood, M.A.; Chen, B.; Burrell, M.; van de Meene, A.; et al. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nat. Chem. Biol. 2014, 10, 450–456. [Google Scholar] [CrossRef]
- Van der Ent, S.; Van Hulten, M.; Pozo, M.J.; Czechowski, T.; Udvardi, M.K.; Pieterse, C.M.J.; Ton, J. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: Differences and similarities in regulation. New Phytol. 2009, 183, 419–431. [Google Scholar] [CrossRef]
- Wang, J.; Cao, S.; Wang, L.; Wang, X.; Jin, P.; Zheng, Y. Effect of β-aminobutyric acid on disease resistance against rhizopus rot in harvested peaches. Front. Microbiol. 2018, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Singh, P.; Chen, M.; Zimmerli, L. L-glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J. Exp. Bot. 2009, 61, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.Q.; Liang, Q.Z.; Huang, G.P.; Deng, L.B.; Li, X.H.; Wang, X.; Zhu, S.J. Effect of BABA on disease resistance in harvested mango fruits. Chin. J. Trop. Crops 2015, 36, 2067–2072. [Google Scholar] [CrossRef]
- Li, C.; Wang, K.; Huang, Y.; Lei, C.; Cao, S.; Qiu, L.; Xu, F.; Jiang, Y.; Zou, Y.; Zheng, Y. Activation of the BABA-induced priming defence through redox homeostasis and the modules of TGA1 and MAPKK5 in postharvest peach fruit. Mol. Plant Pathol. 2021, 22, 1624–1640. [Google Scholar] [CrossRef]
- Wang, K.; Wu, D.; Bo, Z.; Chen, S.; Wang, Z.; Zheng, Y.; Fang, Y. Regulation of redox status contributes to priming defense against Botrytis cinerea in grape berries treated with β-aminobutyric acid. Sci. Hortic. 2019, 244, 352–364. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, D.; Yang, B.; Gao, Z.; Li, M.; Jiang, Y.; Hu, M. β-aminobutyric acid induces resistance of mango fruit to postharvest anthracnose caused by Colletotrichum gloeosporioides and enhances activity of fruit defense mechanisms. Sci. Hortic. 2013, 160, 78–84. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, J.H. Assessing the Effect of cold plasma on the softening of postharvest blueberries through reactive oxygen species metabolism using transcriptomic analysis. Foods 2024, 13, 1132. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Datir, S.; Regan, S. Advances in physiological, transcriptomic, proteomic, metabolomic, and molecular genetic approaches for enhancing mango fruit quality. J. Agric. Food Chem. 2023, 71, 20–34. [Google Scholar] [CrossRef]
- Wang, P.; Luo, Y.; Huang, J.; Gao, S.; Zhu, G.; Dang, Z.; Gai, J.; Yang, M.; Zhu, M.; Zhang, H.; et al. The genome evolution and domestication of tropical fruit mango. Genome Biol. 2020, 21, 60. [Google Scholar] [CrossRef] [PubMed Central]
- Fu, D.; Sun, Y.; Yu, C.; Zheng, X.; Yu, T.; Lu, H. Comparison of the effects of three types of aminobutyric acids on the control of Penicillium expansum infection in pear fruit. J. Sci. Food Agric. 2016, 97, 1497–1501. [Google Scholar] [CrossRef]
- Wang, K.; Liao, Y.; Xiong, Q.; Kan, J.; Cao, S.; Zheng, Y. Induction of direct or priming resistance against botrytis cinerea in strawberries by β-aminobutyric acid and their effects on sucrose metabolism. J. Agric. Food Chem. 2016, 64, 5855–5865. [Google Scholar] [CrossRef] [PubMed]
- Elsherbiny, E.A.; Dawood, D.H.; Safwat, N.A. Antifungal action and induction of resistance by β-aminobutyric acid against Penicillium digitatum to control green mold in orange fruit. Pestic. Biochem. Physiol. 2020, 171, 104721. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.A.; Jones, J.D.; Dangl, J.L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 2006, 141, 373–378. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Li, B.; Chen, T.; Tian, S. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Comput. Struct. Biotechnol. J. 2020, 18, 3344–3349. [Google Scholar] [CrossRef] [PubMed]
- Vellosillo, T.; Vicente, J.; Kulasekaran, S.; Hamberg, M.; Castresana, C. Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol. 2010, 154, 444–448. [Google Scholar] [CrossRef]
- Dubreuil-Maurizi, C.; Trouvelot, S.; Frettinger, P.; Pugin, A.; Wendehenne, D.; Poinssot, B. β-aminobutyric acid primes an NADPH oxidase–dependent reactive oxygen species production during grapevine-triggered immunity. Mol. Plant-Microbe Interact. 2010, 23, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.J.; Shi-Long, J.; Xuan-Li, J. Disease-resistant identification and analysis to transcriptome differences of blueberry leaf spot induced by beta-aminobutyric acid. Arch. Microbiol. 2021, 203, 3623–3632. [Google Scholar] [PubMed]
- Jakab, G.; Cottier, V.; Toquin, V. β-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 2001, 107, 29–37. [Google Scholar] [CrossRef]
- Li, C.; Wang, K.; Lei, C.; Cao, S.; Huang, Y.; Ji, N.; Xu, F.; Zheng, Y. Alterations in sucrose and phenylpropanoid metabolism affected by BABA-primed defense in postharvest grapes and the associated transcriptional mechanism. Mol. Plant-Microbe Interact. 2021, 34, 1250–1266. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, H.L.; Yuan, Z.Y.; Zhang, C.Y.; Wen, X.H. Control effects and mechanisms of β-aminobutyric acid and chitosan on postharvest blue mold of red Fuji apple. J. Northwest AF Univ. (Nat. Sci. Ed.) 2013, 41, 149–156. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Jin, P.; Guo, X.; Li, Y.; Fan, C.; Wang, J.; Zheng, Y. Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion with β-aminobutyric acid. Postharvest Biol. Technol. 2016, 118, 71–78. [Google Scholar] [CrossRef]
- Cohen, Y.; Rubin, A.E.; Kilfin, G. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-aminobutyric acid (BABA). Eur. J. Plant Pathol. 2010, 126, 553–573. [Google Scholar] [CrossRef]
- Tan, W.P.; Pang, X.Q.; Zhang, Z.Q.; Huang, X.M. Accumulation of reactive oxygen species related to disease resistance induced by BABA in postharvest Banana (Musa AAA. Cv. Brazil) Fruit. Sci. Agric. Sinica 2014, 47, 3290–3299. [Google Scholar] [CrossRef]
- El-kereamy, A.; El-sharkawy, I.; Ramamoorthy, R.; Taheri, A.; Errampalli, D.; Kumar, P.; Jayasankar, S. Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection. PLoS ONE 2011, 6, e17973. [Google Scholar] [CrossRef]
- Zhu, Y.; Zong, Y.; Liang, W.; Sabina, A.; Chai, X.; Li, Y.; Bi, Y.; Dov, P. β-Aminobutyric acid treatment accelerates the deposition of suberin polyphenolic and lignin at wound sites of potato tubers during healing. Postharvest Biol. Technol. 2021, 179, 111566. [Google Scholar] [CrossRef]
Gene | Primer (Forward) | Primer (Reverse) |
---|---|---|
Actin | GTTCTACTCACTGAAGCA | CCTGGATAGCAACATACA |
PAL | CTGCCAATGAGTCTGCTGTC | GAAGTTGCACCGAAACCAGT |
GLU | GGACAACAACATTGGGCAGA | TTTTGGGACGTCGAGGATGA |
CHI | CAGTTGCCAGTATTGTTA | TCCATCTCTTGTGTAGAA |
PR1 | TGCCAATCAACGTATCGGAG | CCACATCTTCACTGCATCCG |
DIR | LD | TPC | TFC | H2O2 C | O2− PR | DPPH RSC | SOD Activity | CAT Activity | POD Activity | PAL Activity | GLU Activity | CHI Activity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIR | 1.00 | ||||||||||||
LD | 0.99 ** | 1.00 | |||||||||||
TPC | −0.83 ** | −0.84 ** | 1.00 | ||||||||||
TFC | −0.85 ** | −0.81 ** | 0.93 ** | 1.00 | |||||||||
H2O2 C | 0.21 | 0.26 | 0.29 | 0.22 | 1.00 | ||||||||
O2− PR | 0.84 ** | 0.89 ** | −0.94 ** | −0.81 ** | −0.04 | 1.00 | |||||||
DPPH RSC | −0.23 | −0.28 | 0.72 ** | 0.54 * | 0.66 ** | −0.67 ** | 1.00 | ||||||
SOD activity | −0.79 ** | −0.73 ** | 0.91 ** | 0.90 ** | 0.42 | −0.74 ** | 0.55 * | 1.00 | |||||
CAT activity | −0.68 ** | −0.71 ** | 0.97 ** | 0.85 ** | 0.39 | −0.93 ** | 0.87 ** | 0.81 ** | 1.00 | ||||
POD activity | −0.48 | −0.50 | 0.88 ** | 0.78 ** | 0.60 * | −0.79 ** | 0.95 ** | 0.76 ** | 0.96 ** | 1.00 | |||
PAL activity | −0.34 | −0.46 | 0.69 ** | 0.46 | 0.27 | −0.80 ** | 0.89 ** | 0.39 | 0.84 ** | 0.82 ** | 1.00 | ||
GLU activity | −0.53 * | −0.59 * | 0.87 ** | 0.66 ** | 0.47 | −0.87 ** | 0.91 ** | 0.72 ** | 0.94 ** | 0.92 ** | 0.90 ** | 1.00 | |
CHI activity | −0.67 ** | −0.78 ** | 0.52 * | 0.33 | −0.49 | −0.77 ** | 0.22 | 0.26 | 0.49 | 0.27 | 0.60 * | 0.53 * | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Wang, J.; Wang, Y.; Yuan, H.; Liu, Y.; Li, K.; Tao, L.; Zhu, Y.; Li, H. Study on Effect and Mechanism of β-Aminobutyric Acid on Mango Anthracnose Caused by Colletotrichum gloeosporioides. Foods 2025, 14, 3061. https://doi.org/10.3390/foods14173061
Pan C, Wang J, Wang Y, Yuan H, Liu Y, Li K, Tao L, Zhu Y, Li H. Study on Effect and Mechanism of β-Aminobutyric Acid on Mango Anthracnose Caused by Colletotrichum gloeosporioides. Foods. 2025; 14(17):3061. https://doi.org/10.3390/foods14173061
Chicago/Turabian StylePan, Cuiping, Jing Wang, Yiyue Wang, Huaiyu Yuan, Ying Liu, Ke Li, Lian Tao, Yongqing Zhu, and Huajia Li. 2025. "Study on Effect and Mechanism of β-Aminobutyric Acid on Mango Anthracnose Caused by Colletotrichum gloeosporioides" Foods 14, no. 17: 3061. https://doi.org/10.3390/foods14173061
APA StylePan, C., Wang, J., Wang, Y., Yuan, H., Liu, Y., Li, K., Tao, L., Zhu, Y., & Li, H. (2025). Study on Effect and Mechanism of β-Aminobutyric Acid on Mango Anthracnose Caused by Colletotrichum gloeosporioides. Foods, 14(17), 3061. https://doi.org/10.3390/foods14173061