A Comparative Study on Novel-Assisted Extraction Techniques for Retrieving Protein from Moringa oleifera Seeds
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Protein Extraction Procedure
2.3.1. Alkaline Extraction
2.3.2. Enzyme-Assisted Extraction
2.3.3. Ultrasonic-Assisted Extraction
2.3.4. Microwave-Assisted Extraction
2.3.5. Determination of Protein Yield and Recovery
2.4. Chemical Analysis
2.4.1. Proximate Composition
2.4.2. Determination of Phytic Acid Content
2.4.3. Determination of Trypsin Inhibitor Activity
2.4.4. Color Change Analysis
2.4.5. SDS-PAGE
2.5. Techno-Functional Properties of Moringa Seed Protein Isolate
2.5.1. Water and Oil Holding Capacity
2.5.2. Emulsification Properties
2.5.3. Foaming Properties Determination
2.5.4. Protein Solubility Assay
2.5.5. Surface Hydrophobicity Determination
2.6. Determination of Thermal Properties
2.7. In Vitro Protein Digestibility Assay
2.8. Surface Morphology Determination
2.9. Comparative Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effect of Extraction Methods on Protein Yield and Proximate Composition
3.2. Anti-Nutritional Factors (ANFs)
3.3. Molecular Weight Distribution by SDS-PAGE
3.4. Effect of Extraction Methods on the Color Characteristics
3.5. Effect of Extraction Methods on Protein Solubility
3.6. Effect of Extraction Methods on Protein Techno-Functional Properties
3.6.1. Water/Oil Holding Capacities
3.6.2. Foaming Properties
3.6.3. Emulsifying Properties
3.6.4. Surface Hydrophobicity
3.7. Influence of Extraction Methods on Thermal Stability
3.8. In Vitro Protein Digestibility (IVPD)
3.9. Changes in Structural Morphology
3.10. Comparative Radar Plot of MSPIs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anyiam, P.N.; Phongthai, S.; Grossmann, L.; Jung, Y.H.; Sai Ut, S.; Onsaard, E.; Rawdkuen, S. Potential plant proteins for functional food ingredients: Composition, utilization and its challenges. NFS J. 2025, 38, 100216. [Google Scholar] [CrossRef]
- Bassogog, C.B.B.; Nyobe, C.E.; Sabine, F.Y.; Dupon, A.A.B.; Ngui, S.P.; Minka, S.R.; Laure, N.J.; Mune, M.A.M. Protein hydrolysates of moringa oleifera seed: Antioxidant and antihyperglycaemic potential as ingredient for the management of type-2 diabetes. Heliyon 2024, 10, e28368. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Selvasekaran, P.; Kapoor, S.; Barbhai, M.; Lorenzo, J.M.; Saurabh, V.; Potkule, J.; Changan, S.; ElKelish, A.; Selim, S.; et al. Moringa oleifera Lam. Seed proteins extraction, preparation of protein hydrolysates, bioactivities, functional food properties and industrial application. Food Hydrocoll. 2022, 131, 107791. [Google Scholar] [CrossRef]
- Anyiam, P.N.; Phongthai, S.; Sai Ut, S.; Kingwascharapong, P.; Jung, Y.H.; Zhang, W.; Rawdkuen, S. Nutritional components and digestibility profiles of some potential plant-based protein sources. Foods 2025, 14, 1769. [Google Scholar] [CrossRef]
- Owon, M.; Osman, M.; Ibrahim, A.; Salama, M.A.; Matthaus, B. Characterisation of different parts from Moringa oleifera regarding protein, lipid composition and extractable phenolic compounds. OCL Oilseeds Fats Crops Lipids 2021, 28, 45. [Google Scholar] [CrossRef]
- Fatima, K.; Imran, M.; Ahmad, M.H.; Khan, M.K.; Khalid, W.; Al-Farga, A.; Alansari, W.S.; Shamlan, G.; Eskandrani, A.A. Ultrasound-assisted extraction of protein from Moringa oleifera seeds and its impact on techno-functional properties. Molecules 2023, 28, 2554. [Google Scholar] [CrossRef]
- Anyiam, P.N.; Phongthai, S.; Kingwaschrapong, P.; Pongsetkul, J.; Zhang, W.; Yang, Y.H.; Rawdkuen, S. A comparative review on novel-assisted extraction techniques for retrieving protein from some potential plant sources. NFS J. 2025, 40, 100239. [Google Scholar] [CrossRef]
- Tang, J.; Yao, D.; Xia, S.; Cheong, L.; Tu, M. Recent progress in plant-based proteins: From extraction and modification methods to applications in the food industry. Food Chem. X 2024, 23, 10154. [Google Scholar] [CrossRef]
- Ravindran, N.; Singh, S.K.; Singha, P. A comprehensive review on recent trends in extractions, pretreatment and modifications of plant-based proteins. Food Res. Int. 2024, 190, 114575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Boateng, I.D.; Wang, Y.; Lin, M.; Vardhanabhuti, B. High-intensity ultrasound-assisted alkaline extraction of soy protein: Optimization, modeling, physicochemical and functional properties. Int. J. Biol. Macromol. 2024, 283, 137494. [Google Scholar] [CrossRef]
- Coutinho, G.S.M.; Prado, P.M.C.; Ribeiro, A.E.C.; Nickerson, M.T.; Galiari, M.; Junior, M.S.S. Exploring microwave-assisted extraction on physicochemical and functional properties of pigeon pea protein for food applications. J. Food Eng. 2025, 392, 112497. [Google Scholar] [CrossRef]
- Yeasmin, F.; Prasad, P.; Sahu, J.K. Utilization of discarded Phaseolus vulgaris L. seeds for protein extraction by enzymatic modification: Protein physicochemical, techno-functional, and bioactive Characteristics. Food Bioprocess Technol. 2025, 18, 8105–8122. [Google Scholar] [CrossRef]
- Illingworth, K.A.; Lee, Y.Y.; Siow, L.F. Functional properties of Moringa oleifera protein isolates as influenced by different isolation techniques, pH and ionic strength. Food Bioprocess Technol. 2024, 17, 3060–3073. [Google Scholar] [CrossRef]
- Ajayi, F.F.; Mudgil, P.; Maqsood, S. Molecular structural modification of jack bean protein using thermos-shearing/ultrasound/microwave treatments for improved extractability, functional and gelling properties: The underlying impacts of matrix pre-treatment versus alkaline-assisted extraction. Food Hydrocoll. 2024, 154, 110066. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Rockville, MD, USA, 1992. [Google Scholar]
- Reddy, N.R.; Balakrishnan, C.V.; Salunkekhe, D.K. Phytate phosphorous and mineral changes during germination and cooking of black gram (Phaseolus mungo) seeds. J. Food Sci. 1978, 43, 540–543. [Google Scholar] [CrossRef]
- Wintersohle, C.; Krack, C.I.; Ignatzy, L.M.; Etzbach, L.; Schweiggert-Weisz, U. Physicochemical and chemical properties of mung bean protein isolate affected by the isolation procedure. Curr. Res. Food Sci. 2023, 7, 100582. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680. [Google Scholar] [CrossRef]
- Constantino, A.B.T.; Garcia-Rojas, E.E. Modifications of physicochemical and functional properties of amaranth protein isolate (Amaranthus cruentus BRS Alegeria) treated with high-intensity ultrasound. J. Cereal Sci. 2020, 95, 103076. [Google Scholar] [CrossRef]
- Hegde, K.R.; Buvaneswaran, M.; Bhavana, M.R.; Sinija, V.R.; Rawson, A.; Hema, V. Effects of ultrasound and high-pressure assisted extraction of pearl millet protein isolate: Functional, digestibility, and structural properties. Int. J. Biol. Macromol. 2025, 289, 138877. [Google Scholar] [CrossRef]
- Rawdkuen, S.; D’Amico, S.; Schoenlechner, R. Physicochemical, functional, and in-vitro digestibility of protein isolates from Thai and Peru Sacha inchi (Plukenetia volubilis L.) oil press-cakes. Foods 2022, 11, 1869. [Google Scholar] [CrossRef] [PubMed]
- Mathews, A.; Tangirala, S.; Nirmal, T.S.; Kumar, S.; Anandharaj, A.; Rawson, A. Extraction and modification of protein from Sesame oil cake by the application of emerging technologies. Food Chem. Adv. 2023, 2, 100326. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, X.; Zheng, Y.; Wang, D.; Deng, Y.; Zhao, Y. Impact of ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction on rheological, structural, and functional properties of Akebia trifoliata (Thunb.) Koidz. seed protein isolates. Food Hydrocoll. 2021, 112, 106355. [Google Scholar] [CrossRef]
- Cui, L.; Bandillo, N.; Wang, Y.; Ohm, J.-B.; Chen, B.; Rao, J. Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH. Food Hydrocoll. 2020, 108, 106008. [Google Scholar] [CrossRef]
- Das, D.; Panesar, P.S.; Saini, C.S. Ultrasonic extraction of soy protein isolate: Characterization and comparison with microwave and enzymatic extraction methods. J. Food Sci. 2023, 88, 2758–2779. [Google Scholar] [CrossRef]
- Tang, S.-Q.; Du, Q.-H.; Fu, Z. Ultrasonic treatment on physicochemical properties of water-soluble protein from Moringa oleifera seed. Ultrason. Sonochem. 2021, 71, 105357. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Huang, M.; Hayat, K.; Kurtz, N.C.; Wu, X.; Ahmad, M.; Zheng, F. Ultrasound-assisted alkaline proteinase extraction enhances the yield of pecan protein and modifies its functional properties. Ultrason. Sonochem. 2021, 80, 105789. [Google Scholar] [CrossRef] [PubMed]
- Codex Stan 244-2003; Codex Alimentarius Commission. Codex Standard for Soy Protein Products. FAO/WHO: Rome, Italy, 2003. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 28 May 2025).
- Wang, F.; Zhang, Y.; Xu, L.; Ma, H. An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT Food Sci. Technol. 2020, 127, 109348. [Google Scholar] [CrossRef]
- Kadam, D.M.; Parab, S.S.; Kasara, A.; Dange, M.M.; Mahawar, M.K.; Kumar, M.; Arude, V.G. Effect of microwave pre-treatment on protein extraction from de-oiled cottonseed meal and its functional and antioxidant properties. Food Humanit. 2023, 1, 263–270. [Google Scholar] [CrossRef]
- Loushigam, G.; Shanmugam, A. Modifications to functional and biological properties of proteins of cowpea pulse crop by ultrasound-assisted extraction. Ultrason. Sonochem. 2023, 97, 106448. [Google Scholar] [CrossRef]
- Wang, L.; Mao, X.; Cheng, X.; Xiong, X.; Ren, F. Effect of enzyme type and hydrolysis conditions on the in vitro angiotensin I-converting enzyme inhibitory activity and ash content of hydrolysed whey protein isolate. Int. J. Food Sci. Technol. 2010, 45, 807–812. [Google Scholar] [CrossRef]
- Bijina, B.; Chellappan, S.; Krisgna, J.G.; Basheer, S.M.; Elyas, K.K.; Bahkali, A.H.; Chandrase-Karan, M. Protease inhibitor from moringa oleifera with potential for use as therapeutic drug and a seafood preservative. Saudi J. Biol. Sci. 2011, 18, 273–281. [Google Scholar] [CrossRef]
- Manzanilla-Valdez, M.L.; Ma, Z.; Mandor, M.; Hernandez-Alvarez, A. Decoding the duality of antinutrients: Assessing the impact of protein extraction methods on plant-based protein sources. J. Agric. Food Chem. 2024, 72, 12319–12339. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Martin, G.J.O.; Ashokkumar, M. Mechanism of low-frequency and high-frequency ultrasound-induced inactivation of soy trypsin inhibitors. Food Chem. 2021, 360, 130057. [Google Scholar] [CrossRef]
- Sa, A.G.A.; Pacheco, M.T.B.; Moreno, Y.M.F.; Carciofi, B.A.M. Processing effects on the protein quality and functional properties of cold-pressed pumpkin seed meal. Food Res. Int. 2023, 169, 112876. [Google Scholar] [CrossRef] [PubMed]
- Sa, A.G.A.; da Silva, D.C.; Pacheco, M.T.B.; Moreno, Y.M.F.; Carciof, B.A.M. Oilseed by-product as plant-based protein sources: Amino acid profile and digestibility. Future Foods 2021, 3, 100023. [Google Scholar] [CrossRef]
- Kunatsa, Y.; Chidewe, C.; Zvidzai, C.J. Phytochemical and anti-nutrient composition from selected marginalized Zimbabwean edible insects and vegetables. J. Agric. Food Res. 2020, 2, 100027. [Google Scholar] [CrossRef]
- Duque-Estrada, P.; Hardiman, K.; Dam, A.B.; Dodge, N.; Aaslyng, M.D.; Petersen, I.L. Protein blends and extrusion processing to improve the nutritional quality of plant proteins. Food Funct. 2023, 14, 7361. [Google Scholar] [CrossRef] [PubMed]
- Peraza-Juan, M.; Espinoza-Sanchez, E.A.; Lara-Reyes, J.A.; Sandate-Flores, L.; Méndez-Zamora, G.; Rascón-Cruz, Q.; Garcia-Zambrano, E.A.; Zavala-Garcia, F.; Sinagawa-Garcia, S.R. Characterization of seed storage protein of Moringa oleifera and analyses on their bioactive peptides nutraceutical properties. Acta Sci. Pol. Technol. Aliment. 2022, 21, 311–320. [Google Scholar] [CrossRef]
- Naik, M.; Natarajan, V.; Modupalli, N.; Thangaraj, S.; Rawson, A. Pulsed ultrasound-assisted extraction of protein from defatted bitter melon seeds (Momardica charantia L.) meal: Kinetics and quality measurements. LWT Food Sci. Technol. 2022, 155, 112997. [Google Scholar] [CrossRef]
- Akyuz, A.; Ersus, S. Optimization of enzyme-assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chem. 2021, 335, 127673. [Google Scholar] [CrossRef]
- Karki, S.; Prathumpai, W.; Anal, A.K. Microwave-assisted protein extraction from Foxtail millet: Optimization, structural characterization, techno-functional properties and bioactivity of peptides. Int. J. Biol. Macromol. 2025, 293, 139312. [Google Scholar] [CrossRef]
- Grossmann, L.; McClements, D.J. Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocoll 2023, 137, 108416. [Google Scholar] [CrossRef]
- Yang, C.; Liu, W.; Zhu, X.; Zhang, X.; Wei, Y.; Huang, J.; Yang, F.; Yang, F. Ultrasound-assisted enzymatic digestion for efficient extraction of proteins from quinoa. LWT Food Sci. Technol. 2024, 194, 115786. [Google Scholar] [CrossRef]
- Anyiam, P.N.; Nwuke, C.P.; Uhuo, E.N.; Ajah, O.; Uche, C.P.; Dike, O.G.; Onyemuchara, T.C. Influence of pH and salt conditions on extraction efficiency and functional properties of Macrotermes nigeriensis protein concentrate for food applications. Discov. Food 2024, 4, 100. [Google Scholar] [CrossRef]
- Perovic, M.N.; Knezevic Jugovic, Z.D.; Antov, M.G. Improved recovery of protein from soy grit by enzyme assisted alkaline extraction. J. Food Eng. 2020, 276, 109894. [Google Scholar] [CrossRef]
- Sharma, N.; Sahil; Madhumita, M.; Kumar, Y.; Prabhakar, P.K. Ultrasonic modulated rice bran protein concentrate: Induced effects on morphological, functional, rheological, and thermal characteristics. Innov. Food Sci. Emerg. Technol. 2023, 85, 103332. [Google Scholar] [CrossRef]
- Sun, X.; Ohanenye, I.C.; Ahmed, T.; Udenigwe, C.C. Microwave treatment increased protein digestibility of pigeon pea (Cajanus cajan) flour: Elucidation of underlying mechanisms. Food Chem. 2020, 329, 127196. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; Zhang, C.; Zheng, B.; Tian, Y. Effects of microwave-vacuum pretreatment with different power levels on the structural and emulsifying properties of lotus seed protein isolates. Food Chem. 2020, 311, 125932. [Google Scholar] [CrossRef]
- Sedlar, T.; Paskovic, I.; Dragojlovic, D.; Popovic, S.; Vidosavljevic, S.; Goreta Ban, S.; Popovic, L. Enzyme-assisted extraction of proteins from Cauliflower and Broccoli waste leaves. Horticulturae 2025, 11, 148. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Sarabandi, K.; Peighambardoust, S.H.; Sarabandi, R.; Kafil, H.S.; Hesarinejad, M.A. Enzymatic modification of cold pressed coconut meal protein: Nutritional, functional and biological properties. Sustain. Food Technol. 2024, 2, 1545. [Google Scholar] [CrossRef]
- Rao, M.V.; Sunil, C.K.; Venkatachalapathy, N. Effect of microwave and hot air radiofrequency treatments on physicochemical and functional properties of foxtail millet flour and its protein isolate. J. Cereal Sci. 2023, 114, 103774. [Google Scholar] [CrossRef]
- Yan, S.; Xu, J.; Zhang, S.; Li, Y. Effects of flexibility and surface hydrophobicity on emulsifying properties: Ultrasound-treated soybean protein isolate. LWT Food Sci. Technol. 2021, 142, 110881. [Google Scholar] [CrossRef]
- Ajayi, F.F.; Mudgil, P.; Maqsood, S. Unveiling differential impact of heat and microwave extraction treatments on the structure, functionality and digestibility of jack bean proteins extracted under varying extraction pH. Food Res. Int. 2024, 91, 114686. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.D.; Lee, K.S.; Lee, K.E.; Suh, H.J.; Kim, B.Y. Improved digestibility and bioavailability of pea protein following enzymatic treatment and fermentation by lactic acid bacteria. Food Sci. Biotechnol. 2024, 33, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, J.; Zhang, J.; Lv, Y.; Guo, S.; Van der Meeren, P. In vitro protein digestibility of different soy-based products: Effects of microstructure, physico-chemical properties and protein aggregation. Food Funct. 2023, 14, 10964–10976. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Okagu, O.D.; Yagoub, A.E.A.; Udenigwe, C.C. Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrason. Sonochem. 2021, 70, 105348. [Google Scholar] [CrossRef]
Sample | Moisture | Ash | Protein | Fat | Yield (%) | Recovery Rate (%) | Phytate (g/100 g) | TIA (TIU/mg Protein) |
---|---|---|---|---|---|---|---|---|
CE | 2.18 ± 0.10 c | 3.73 ± 0.72 a | 80.47 ± 0.42 d | 1.09 ± 0.24 b | 14.60 ± 1.13 d | 37.47 ± 4.25 d | 0.83 ± 0.04 a | 4.48 ± 0.69 a |
EAE | 2.96 ± 0.32 b | 2.44 ± 0.45 b | 80.57 ± 0.38 d | 0.66 ± 0.21 bc | 21.03 ± 0.75 c | 55.85 ± 1.74 c | 0.51 ± 0.02 c | 2.10 ± 0.28 c |
UAE | 4.18 ± 0.56 a | 3.24 ± 0.11 a | 83.56 ± 0.50 b | 0.85 ± 0.06 bc | 30.08 ± 2.60 a | 78.43 ± 3.93 a | 0.66 ± 0.14 b | 3.85 ± 0.29 a |
MAE | 2.29 ± 0.16 bc | 3.34 ± 0.12 a | 86.61 ± 0.80 c | 1.57 ± 0.38 a | 23.94 ± 8.80 b | 66.06 ± 2.31 b | 0.49 ± 0.13 c | 1.92 ± 0.06 c |
C-SPI | 3.01 ± 0.78 b | 1.62 ± 0.05 c | 94.30 ± 2.72 a | 0.40 ± 0.04 d | NA | NA | 0.38 ± 0.03 d | 2.19 ± 0.33 b |
Sample | Appearance | L* | a* | b* | YI | WI | ΔE |
---|---|---|---|---|---|---|---|
CE | 82.61 ± 0.14 b | 2.63 ± 0.25 a | 22.68 ± 0.22 b | 39.22 ± 0.32 b | 71.29 ± 0.07 c | 11.14 ± 3.52 a | |
EAE | 80.32 ± 0.19 c | 0.38 ± 0.15 b | 12.01 ± 0.18 c | 21.37 ± 0.30 c | 76.94 ± 0.14 b | 4.18 ± 0.41 b | |
UAE | 79.14 ± 0.27 e | 2.83 ± 0.35 a | 25.00 ± 0.42 a | 45.13 ± 0.88 a | 67.31 ± 0.46 d | 4.33 ± 5.91 b | |
MAE | 79.83 ± 0.10 d | 3.04 ± 0.47 a | 25.97 ± 2.47 a | 46.48 ± 4.48 a | 66.95 ± 2.05 d | 12.60 ± 7.58 a | |
C-SPI | 89.69 ± 0.20 a | 0.64 ± 0.09 c | 12.44 ± 0.09 e | 19.81 ± 0.19 d | 83.83 ± 0.20 a | NA |
Sample | WHC (g/g) | OHC (g/g) | FC (%) | FS (%) | EAI (m2/g) | ESI (%) | Ho (BPB Bound, μg) |
---|---|---|---|---|---|---|---|
CE | 2.01 ± 0.05 c | 2.11 ± 0.02 c | 27.11 ± 0.77 e | 37.01 ± 0.86b c | 50.46 ± 1.26 e | 37.87 ± 1.04 a | 69.91 ± 2.20 c |
EAE | 2.78 ± 0.17 b | 2.52 ± 0.11 b | 39.60 ± 1.57 b | 64.10 ± 4.42 a | 53.70 ± 0.25 d | 24.02 ± 0.87 c | 38.26 ± 1.03 d |
UAE | 2.73 ± 0.04 b | 2.62 ± 0.17 a | 36.77 ± 0.19 c | 36.90 ± 0.94 c | 56.80 ± 1.70 c | 33.63 ± 1.89 b | 70.74 ± 0.36 a |
MAE | 2.68 ± 0.01 b | 2.67 ± 0.02 a | 33.88 ± 0.96 d | 40.66 ± 1.15 b | 65.90 ± 0.78 b | 22.98 ± 0.40 c | 87.12 ± 0.80 c |
C-SPI | 6.46 ± 0.29 a | 2.49 ± 0.16 b | 59.33 ± 1.15 a | 65.77 ± 1.53 a | 96.91 ± 1.08 a | 37.67 ± 1.04 a | 84.42 ± 0.65 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyiam, P.N.; Tangjaidee, P.; Zhang, W.; Rawdkuen, S. A Comparative Study on Novel-Assisted Extraction Techniques for Retrieving Protein from Moringa oleifera Seeds. Foods 2025, 14, 3046. https://doi.org/10.3390/foods14173046
Anyiam PN, Tangjaidee P, Zhang W, Rawdkuen S. A Comparative Study on Novel-Assisted Extraction Techniques for Retrieving Protein from Moringa oleifera Seeds. Foods. 2025; 14(17):3046. https://doi.org/10.3390/foods14173046
Chicago/Turabian StyleAnyiam, Paul Ndubuisi, Pipat Tangjaidee, Wanli Zhang, and Saroat Rawdkuen. 2025. "A Comparative Study on Novel-Assisted Extraction Techniques for Retrieving Protein from Moringa oleifera Seeds" Foods 14, no. 17: 3046. https://doi.org/10.3390/foods14173046
APA StyleAnyiam, P. N., Tangjaidee, P., Zhang, W., & Rawdkuen, S. (2025). A Comparative Study on Novel-Assisted Extraction Techniques for Retrieving Protein from Moringa oleifera Seeds. Foods, 14(17), 3046. https://doi.org/10.3390/foods14173046