Effect of Nutrient Supplementation on the Biochemical Composition and Microbial Safety of Open-Pond Spirulina Cultivated in Cameroon
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Cultivation Conditions
2.2. Sample Collection and Processing
2.3. Monitoring Physicochemical Parameters in Spirulina Cultivation
2.4. Microscopic Morphological Evaluation
2.5. Bromatological Quality Assessment
2.6. Microbiological Quality Assessment
2.7. Statistical Analysis and Software
3. Results
3.1. Physicochemical Conditions and Temporal Variability of Spirulina Cultivation
3.2. Morphological and Microbial Profiling of Spirulina Cultures
3.3. Proximate Composition of Spirulina Under Different Nutrient Regimes
3.4. Microbiological Contamination Profile of Spirulina Biomass Across Nutrient Formulations
3.5. Correlation of Nutrient Inputs and Environmental Factors with Spirulina Biochemical and Microbial Profiles
4. Discussion
4.1. Nutrient Modulation and Its Impact on Spirulina’s Biochemical Composition
4.2. Microbiological Risk Under Open-Pond Conditions
4.3. Environmental Parameters as Modulators of Spirulina’s Functional Traits
4.4. Implications for Artisanal Spirulina Production and Public Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gopal, R.K.; Govindaraj, S. A study on the brewing of “prot-tea” by blending spirulina (Arthrospira platensis) with green tea. Cureus 2024, 16, e54906. [Google Scholar] [CrossRef]
- Sahil, S.; Bodh, S.; Verma, P. Spirulina platensis: A comprehensive review of its nutritional value, antioxidant activity and functional food potential. J. Cell. Biotechnol. 2024, 10, 159–172. [Google Scholar] [CrossRef]
- Getachew, E.; Negesse, T.; Nurfeta, A. Availability and nutritive value of spirulina (Arthrospira fusiformis) from Arenguade and Chitu lakes of Rift Valley of Ethiopia and farmers’ perception about its utilization. Open J. Anim. Sci. 2019, 9, 414–428. [Google Scholar] [CrossRef]
- Sinha, S.; Patro, N.; Patro, I. Maternal protein malnutrition: Current and future perspectives of spirulina supplementation in neuroprotection. Front. Neurosci. 2018, 12, 966. [Google Scholar] [CrossRef] [PubMed]
- Lucas, B.F.; Rosa, A.P.C.; Carvalho, L.F.; Morais, M.G.; Santos, T.D.; Costa, J.A.V. Snack bars enriched with spirulina for schoolchildren nutrition. Food Sci. Technol. 2020, 40, 146–152. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, V.; Das, S.; Patial, V.; Srivatsan, V. Arthrospira platensis (spirulina) fortified functional foods ameliorate iron and protein malnutrition by improving growth and modulating oxidative stress and gut microbiota in rats. Food Funct. 2023, 14, 1160–1178. [Google Scholar] [CrossRef] [PubMed]
- Kaunda, E.; Chimatiro, S. Study on the Potential of Aquaculture in Africa; Lilongwe University of Agriculture and Natural Resources (LUANAR)-Bunda: Lilongwe, Malawi, 2015. [Google Scholar]
- Podgórska-Kryszczuk, I. Spirulina—An invaluable source of macro- and micronutrients with broad biological activity and application potential. Molecules 2024, 29, 5387. [Google Scholar] [CrossRef]
- Tzachor, A.; Smidt-Jensen, A.; Ramel, A.; Geirsdóttir, M. Environmental impacts of large-scale spirulina (Arthrospira platensis) production in Hellisheidi Geothermal Park, Iceland: Life cycle assessment. Mar. Biotechnol. 2022, 24, 991–1001. [Google Scholar] [CrossRef]
- Spínola, M.P.; Mendes, A.R.; Prates, J.A.M. Chemical composition, bioactivities, and applications of spirulina (Limnospira platensis) in food, feed, and medicine. Foods 2024, 13, 3656. [Google Scholar] [CrossRef]
- Saxena, R.; Rodríguez-Jasso, R.M.; Chávez-González, M.L.; Aguilar, C.N.; Quijano, G.; Ruíz, H.A. Strategy development for microalgae Spirulina platensis biomass cultivation in a bubble photobioreactor to promote high carbohydrate content. Fermentation 2022, 8, 374. [Google Scholar] [CrossRef]
- Gaur, K.; Wal, A.; Sharma, P.; Parveen, A.; Singh, P.P.; Mishra, P.; Mishra, N.T.P. Exploring the nutritional and medicinal potential of spirulina. Nat. Resour. Hum. Health 2024, 4, 277–286. [Google Scholar] [CrossRef]
- Zrimec, M.B.; Sforza, E.; Pattaro, L.; Carecci, D.; Ficara, E.; Idà, A.; Reinhardt, R. Advances in Spirulina Cultivation: Techniques, Challenges, and Applications. Insights into Algae—Fundamentals, Culture Techniques and Biotechnological Uses of Microalgae and Cyanobacteria; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Rhoades, J.; Fotiadou, S.; Paschalidou, G.; Papadimitriou, T.; Ordóñez, A.Á.; Kormas, K.; Likotrafiti, E. Microbiota and cyanotoxin content of retail spirulina supplements and spirulina-supplemented foods. Microorganisms 2023, 11, 1175. [Google Scholar] [CrossRef]
- AlFadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F. Tendencies affecting the growth and cultivation of genus spirulina: An investigative review on current trends. Plants 2022, 11, 3063. [Google Scholar] [CrossRef] [PubMed]
- Pinchart, P.E.; Leruste, A.; Pasqualini, V.; Mastroleo, F. Microcystins and cyanobacterial contaminants in the French small-scale productions of spirulina (Limnospira sp.). Toxins 2023, 15, 354. [Google Scholar] [CrossRef] [PubMed]
- Marles, R.J.; Barrett, M.; Barnes, J.; Chavez, M.L.; Gardiner, P.; Ko, R.; Griffiths, J.C. United States Pharmacopeia safety evaluation of spirulina. Crit. Rev. Food Sci. Nutr. 2011, 51, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Sotiroudis, T.G.; Sotiroudis, G. Health aspects of spirulina (Arthrospira) microalga food supplement. J. Serb. Chem. Soc. 2013, 78, 395–405. [Google Scholar] [CrossRef]
- Miller, T.R.; Xiong, A.; Deeds, J.R.; Stutts, W.L.; Samdal, I.A.; Løvberg, K.E.; Miles, C.O. Microcystin toxins at potentially hazardous levels in algal dietary supplements revealed by a combination of bioassay, immunoassay, and mass spectrometric methods. J. Agric. Food Chem. 2020, 68, 8016–8025. [Google Scholar] [CrossRef]
- Abdulqader, G.; Barsanti, L.; Tredici, M.R. Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. J. Appl. Phycol. 2000, 12, 493–498. [Google Scholar] [CrossRef]
- Moejes, F.W.; Moejes, K.B. Algae for Africa: Microalgae as a source of food, feed, and fuel in Kenya. Afr. J. Biotechnol. 2017, 16, 288–301. [Google Scholar] [CrossRef]
- Soni, R.A.; Sudhakar, K.; Rana, R. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Rep. 2019, 5, 327–336. [Google Scholar] [CrossRef]
- Narsude, J.; Jadhav, J.; Rena, V.; Khan, A.; Chauhan, R.; Sonawane, R.; Kamble, P. Decontamination of sewage wastewater by an aeration method utilizing water hardness-reducing Spirulina platensis. Curr. Microbiol. 2025, 82, 196. [Google Scholar] [CrossRef]
- Bumandalai, O.; Bayliss, K.; Moheimani, N.R. Innovative processes for combating contaminants in fresh spirulina. Algal Res. 2024, 78, 103397. [Google Scholar] [CrossRef]
- Carrero-Colón, M.; Nakatsu, C.H.; Konopka, A. Effect of nutrient periodicity on microbial community dynamics. Appl. Environ. Microbiol. 2006, 72, 3175–3183. [Google Scholar] [CrossRef]
- Raugel, P.J. Rapid Food Analysis and Hygiene Monitoring: Kits, Instruments and Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Paquot, C.; Hautfenne, A. Standard Methods for the Analysis of Oils, Fats and Derivatives, 6th ed.; International Union of Pure and Applied Chemistry (IUPAC): Oxford, UK, 1979. [Google Scholar]
- De Lima, C.A. Caracterização, Propagação E Melhoramento Genético De Pitaya Comercial E Nativa Do Cerrado. Ph.D. Thesis, University of Brasilia, Brasilia, Brazil, 2013. [Google Scholar]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.
- Cole, M.; Kasuga, F.; Farber, J.M.; Anderson, W.; Anelich, L.; Bhilegaonkar, K.N.; Ross, T. Microorganisms in Food 7: Microbiological Testing on Food Safety; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- World Health Organization. WHO Global Strategy for Food Safety 2022–2030: Towards Stronger Food Safety Systems and Global Cooperation; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Deshmane, A.; Darandale, V.S.; Nimbalkar, D.; Nikam, T.D.; Ghole, V.S. Sugar mill effluent treatment using spirulina for recycling of water, saving energy and producing protein. Int. J. Environ. Sci. Technol. 2015, 13, 749–754. [Google Scholar] [CrossRef]
- Islam, M.S.; Rahman, M.M.; Saha, B.B. Full factorial experimental design for growth of Spirulina platensis and valuable products enhancement. In Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), Fukuoka, Japan, 22–23 October 2020; Volume 6, pp. 299–304. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Morsi, H.H.; Hassan, L.H. Growth enhancement of Spirulina platensis through optimization of media and nitrogen sources. Egypt. J. Bot. 2021, 61, 61–69. [Google Scholar] [CrossRef]
- Ruliaty, L.; Amalia, I.R.; Sari, R.I.; Aulia, R. Different nitrogen sources to improve the quality of Spirulina platensis culture in mass scale. IOP Conf. Ser. Earth Environ. Sci. 2022, 1118, 012015. [Google Scholar] [CrossRef]
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional composition, nutritional properties, and biological activities of Moroccan spirulina microalga. J. Food Qual. 2019, 2019, 3707219. [Google Scholar] [CrossRef]
- Andrade, L.; Barbosa, J.M.; Barrozo, M.A.; Vieira, L.G.M. A comparative study of the behavior of Chlamydomonas reinhardtii and Spirulina platensis in solar catalytic pyrolysis. Int. J. Energy Res. 2020, 44, 5397–5411. [Google Scholar] [CrossRef]
- Koli, D.; Rudra, S.G.; Bhowmik, A.; Pabbi, S. Nutritional, functional, textural and sensory evaluation of spirulina-enriched green pasta: A potential dietary and health supplement. Foods 2022, 11, 979. [Google Scholar] [CrossRef]
- Bhakar, R.N.; Brahmdutt, B.; Pabbi, S. Total lipid accumulation and fatty acid profiles of microalga Spirulina under different nitrogen and phosphorus concentrations. Egypt. J. Biol. 2014, 16, 57. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Bhat, A.G.; O’Keefe, J.H. Effects of spirulina on weight loss and blood lipids: A review. Open Heart 2020, 7. [Google Scholar] [CrossRef]
- Shaar-Moshe, L.; Hayouka, R.; Roessner, U.; Peleg, Z. Phenotypic and metabolic plasticity shapes life-history strategies under combinations of abiotic stresses. Plant Direct 2019, 3, e00113. [Google Scholar] [CrossRef] [PubMed]
- El-Hameed, M.A.; El-Maatti, S.A.; El-Saidy, S.; Ahmed, S. Effect of adding Spirulina platensis in pasta products (spaghetti). Zagazig J. Agric. Res. 2018, 45, 293–300. [Google Scholar] [CrossRef]
- Ruan, J.; Haerdter, R.; Gerendás, J. Impact of nitrogen supply on carbon/nitrogen allocation: A case study on amino acids and catechins in green tea (Camellia sinensis (L.) O. Kuntze) plants. Plant Biol. 2010, 12, 724–734. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Deng, R.; Chow, T.J. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc. Ther. 2010, 28, 33–45. [Google Scholar] [CrossRef]
- Masten Rutar, J.; Jagodic Hudobivnik, M.; Nečemer, M.; Vogel Mikuš, K.; Arčon, I.; Ogrinc, N. Nutritional quality and safety of the spirulina dietary supplements sold on the Slovenian market. Foods 2022, 11, 849. [Google Scholar] [CrossRef]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef]
- Becker, E.W. Microalgae for human and animal nutrition. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology; Wiley: Hoboken, NJ, USA, 2013; pp. 461–503. [Google Scholar] [CrossRef]
- FAO; WHO. General Principles of Food Hygiene; Codex Alimentarius Code of Practice No. CXC 1-1969; Codex Alimentarius Commission: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Priyadarshani, I.; Rath, B. Commercial and industrial applications of micro algae—A review. J. Algal Biomass Util. 2012, 3, 89–100. [Google Scholar]
- Posten, C.; Schaub, G. Microalgae and terrestrial biomass as source for fuels—A process view. J. Biotechnol. 2009, 142, 64–69. [Google Scholar] [CrossRef]
- Vonshak, A.; Cheung, S.M.; Chen, F. Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. J. Phycol. 2000, 36, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Georgakakis, D. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Appl. Energy 2011, 88, 3389–3401. [Google Scholar] [CrossRef]
- Thathsatani, A.; Arunakumara, K.K.I.U.; Marikar, F. Development of low-cost growing media with mungbean as a source of carbon for spirulina. Peruv. J. Agron. 2023, 7, 239–251. [Google Scholar] [CrossRef]
- Nyakundi, D.O.; Cleophas, P. Harnessing nutritional benefits of Spirulina platensis: Standardization of cultivating conditions of spirulina in Kilimanjaro. Tanz. J. Sci. 2021, 47, 1412–1423. [Google Scholar] [CrossRef]
- Danesi, E.D.G.; Rangel-Yagui, C.D.O.; de Carvalho, J.C.M.; Sato, S. An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 2002, 23, 261–269. [Google Scholar] [CrossRef]
- İsar, M.; Cirik, S.; Turan, G. Production of natural and functional pigments in Arthrospira (Spirulina) platensis cultivated in laboratory conditions. Bull. Biotechnol. 2022, 3, 11–15. [Google Scholar] [CrossRef]
- Jung, F.; Jung, C.G.; Krüger-Genge, A.; Waldeck, P.; Küpper, J. Factors influencing the growth of Spirulina platensis in closed photobioreactors under CO2–O2 conversion. J. Cell. Biotechnol. 2019, 5, 125–134. [Google Scholar] [CrossRef]
- Liu, S.; Ren, H.; Shen, L.; Lou, L.; Tian, G.; Zheng, P.; Hu, B. pH levels drive bacterial community structure in sediments of the Qiantang River as determined by 454 pyrosequencing. Front. Microbiol. 2015, 6, 285. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Kirk, M.F. pH as a primary control in environmental microbiology: 2. Kinetic perspective. Front. Environ. Sci. 2018, 6, 21. [Google Scholar] [CrossRef]
- Ruuskanen, M.O.; Pierre, K.A.S.; Louis, V.L.S.; Aris-Brosou, S.; Poulain, A.J. Physicochemical drivers of microbial community structure in sediments of Lake Hazen, Nunavut, Canada. Front. Microbiol. 2018, 9, 1138. [Google Scholar] [CrossRef] [PubMed]
- Santini, T.C.; Gramenz, L.; Southam, G.; Zammit, C. Microbial community structure is most strongly associated with geographical distance and pH in salt lake sediments. Front. Microbiol. 2022, 13, 920056. [Google Scholar] [CrossRef] [PubMed]
- Bature, A. An Investigation into the Feasibility and Potential Benefits of Integrating Microalgae Culture with Livestock Farming in Nigeria. Ph.D. Thesis, Birmingham City University, Birmingham, UK, 2021. [Google Scholar]
- Belay, A. Spirulina (Arthrospira): Production and quality assurance. In Spirulina in Human Nutrition and Health; CRC Press: Boca Raton, FL, USA, 2007; pp. 15–40. [Google Scholar]
- Lao, I.K.M.; Edullantes, B. Growth, Productivity, and Size Structure of Spirulina Strain Under Different Salinity Levels: Implications for Cultivation Optimization. Phycology 2025, 5, 31. [Google Scholar] [CrossRef]
Mineral (Chemical Compound) | Initial Inoculation (g/L) | Daily Supplementation (g/day) | ||
---|---|---|---|---|
Composition | ||||
A | B | C | ||
Sodium bicarbonate (NaHCO3) | 8 | 200 | 250 | 290 |
Sodium chloride (NaCl) | 5 | / | / | / |
Potassium nitrate (KNO3) | 2 | 40 | / | 30 |
Potassium sulfate (K2SO4) | 1 | / | 10 | / |
Urea (CO(NH2) 2) | / | 35 | 40 | / |
Monopotassium phosphate (KH2PO4) | 0.2 | 5 | 6 | 7 |
Magnesium sulfate (MgSO4·7H2O) | 0.2 | 5 | 6 | 7 |
Calcium hydroxide (Ca (OH)2) | / | / | / | 3 |
Calcium chloride (CaCl2·2H2O) | 0.1 | 2 | 2 | / |
Ferrous sulfate (FeSO4·7H2O) | 0.008 | 5 | 5 | 10 |
Component | PCA (g/L) | SS Agar (g/L) | MacConkey Agar (g/L) |
---|---|---|---|
Beef extract/infusion | / | 5.0 | / |
Peptone (casein and gelatin digest) | 5.0 | 2.5 (Casein), 2.5 (Animal tissue) | 1.5 (Casein), 17 (Gelatin), 1.5 (Tissue) |
Yeast extract | 2.5 | / | / |
Glucose | 1.0 | / | / |
Lactose | / | 10.0 | 10.0 |
Bile salts | / | 8.5 | 1.5 |
Sodium citrate | / | 8.5 | / |
Sodium thiosulfate | / | 8.5 | / |
Ferric citrate | / | 1.0 | / |
Sodium chloride (NaCl) | / | / | 5.0 |
Neutral red | / | 0.025 | 0.03 |
Crystal violet | / | / | 0.001 |
Brilliant green | / | 0.00033 | / |
Agar | 15.0 | 13.5 | 13.5 |
Final pH (25 °C) | 7.0 ± 0.2 | 7.2 ± 0.2 | 7.1 ± 0.2 |
Parameters | Mean ± SD | Min | Max |
---|---|---|---|
Temperature (°C) | 23.45 ± 0.80 | 21.4 | 24.9 |
Density (g/L) | 1015.87 ± 2.39 | 1012 | 1021 |
pH | 10.00 ± 0.10 | 10.0 | 10.5 |
Secchi (cm) | 4.57 ± 1.11 | 3.0 | 7.0 |
Salinity (g/L) | 20.16 ± 2.03 | 17.0 | 24.1 |
Experiment | Day | Moisture (%) | Proteins (%) | Carbohydrates (%) | Lipids (%) | Ash (%) |
---|---|---|---|---|---|---|
Control | 10 | 6.85 ± 0.07 | 44.80 ± 0.65 | 20.30 ± 0.44 | 1.50 ± 0.10 | 19.10 ± 0.30 |
20 | 6.70 ± 0.05 | 47.25 ± 0.58 | 22.15 ± 0.51 | 1.65 ± 0.12 | 19.30 ± 0.28 | |
30 | 6.60 ± 0.04 | 49.20 ± 0.55 | 24.10 ± 0.47 | 1.73 ± 0.09 | 19.55 ± 0.21 | |
Composition A | 10 | 5.10 ± 0.06 | 51.80 ± 0.70 | 14.00 ± 0.35 | 3.20 ± 0.18 | 18.90 ± 0.33 |
20 | 4.85 ± 0.04 | 56.20 ± 0.62 | 15.40 ± 0.28 | 3.10 ± 0.15 | 19.40 ± 0.30 | |
30 | 4.67 ± 0.00 | 60.38 ± 0.68 | 16.80 ± 0.23 | 3.07 ± 0.19 | 19.75 ± 0.35 | |
Composition B | 10 | 6.65 ± 0.09 | 47.00 ± 0.61 | 18.80 ± 0.40 | 1.95 ± 0.13 | 18.95 ± 0.32 |
20 | 6.45 ± 0.08 | 51.00 ± 0.70 | 21.10 ± 0.30 | 1.85 ± 0.10 | 19.30 ± 0.26 | |
30 | 6.25 ± 0.11 | 54.87 ± 0.68 | 23.67 ± 0.32 | 1.77 ± 0.05 | 19.69 ± 0.27 | |
Composition C | 10 | 6.90 ± 0.06 | 42.50 ± 0.55 | 22.90 ± 0.52 | 1.55 ± 0.18 | 19.50 ± 0.30 |
20 | 6.80 ± 0.05 | 46.20 ± 0.60 | 25.30 ± 0.45 | 1.42 ± 0.14 | 19.75 ± 0.22 | |
30 | 6.67 ± 0.00 | 50.51 ± 0.65 | 28.02 ± 0.41 | 1.36 ± 0.23 | 20.11 ± 0.16 |
MacConkey Agar | SS Agar | |||||
---|---|---|---|---|---|---|
Experiment | Day | Total Mesophilic Counts (CFU/g) | E. coli (CFU/g) | Salmonella/Shigella (×102 CFU/g) | Salmonella (×102 CFU/g) | Shigella (×102 CFU/g) |
Control | 10 | 3.2 ± 0.45 × 105 | 0.42 ± 0.12 × 103 | 1.03 ± 0.29 | 0.61 ± 0.14 | 0.42 ± 0.12 |
20 | 4.1 ± 0.67 × 106 | 0.65 ± 0.22 × 103 | 1.53 ± 0.37 | 0.91 ± 0.24 | 0.62 ± 0.20 | |
30 | 4.7 ± 0.89 × 106 | 0.81 ± 0.21 × 104 | 1.92 ± 0.45 | 1.20 ± 0.35 | 0.72 ± 0.24 | |
Composition A | 10 | 3.4 ± 0.51 × 105 | 0.47 ± 0.18 × 103 | 1.12 ± 0.41 | 0.70 ± 0.27 | 0.42 ± 0.16 |
20 | 4.2 ± 0.66 × 106 | 0.63 ± 0.20 × 103 | 1.63 ± 0.56 | 1.07 ± 0.30 | 0.56 ± 0.25 | |
30 | 5.0 ± 0.32 × 106 | 0.805 ± 0.235 × 104 | 2.07 ± 1.02 | 2.07 ± 0.71 | 0.30 ± 0.40 | |
Composition B | 10 | 3.8 ± 0.77 × 105 | 0.72 ± 0.25 × 103 | 2.20 ± 0.60 | 1.30 ± 0.44 | 0.90 ± 0.35 |
20 | 4.4 ± 1.10 × 106 | 0.92 ± 0.28 × 103 | 3.22 ± 0.97 | 2.10 ± 0.53 | 1.12 ± 0.56 | |
30 | 4.5 ± 1.47 × 106 | 1.05 ± 0.075 × 104 | 4.04 ± 1.33 | 4.09 ± 1.81 | 5.92 ± 3.15 | |
Composition C | 10 | 4.1 ± 0.68 × 105 | 0.61 ± 0.27 × 103 | 1.53 ± 0.58 | 0.80 ± 0.33 | 0.73 ± 0.30 |
20 | 5.0 ± 1.12 × 106 | 0.85 ± 0.32 × 103 | 1.83 ± 0.69 | 0.90 ± 0.39 | 0.93 ± 0.41 | |
30 | 6.1 ± 4.29 × 106 | 1.07 ± 1.01 × 104 | 2.00 ± 1.78 | 0.40 ± 0.35 | 1.05 ± 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noufeu, T.; Ming, T.; Zeng, X.; Xu, J.; Ngaba, M.J.Y.; Tchoumbougnang, F.; Pandong, A.N.; Mpondo, S.; Keyeya, T.; Gouife, M. Effect of Nutrient Supplementation on the Biochemical Composition and Microbial Safety of Open-Pond Spirulina Cultivated in Cameroon. Foods 2025, 14, 3009. https://doi.org/10.3390/foods14173009
Noufeu T, Ming T, Zeng X, Xu J, Ngaba MJY, Tchoumbougnang F, Pandong AN, Mpondo S, Keyeya T, Gouife M. Effect of Nutrient Supplementation on the Biochemical Composition and Microbial Safety of Open-Pond Spirulina Cultivated in Cameroon. Foods. 2025; 14(17):3009. https://doi.org/10.3390/foods14173009
Chicago/Turabian StyleNoufeu, Tchouli, Tinghong Ming, Xiaoqun Zeng, Jiajie Xu, Mbezele Junior Yannick Ngaba, François Tchoumbougnang, Achille Njomoue Pandong, Salle Mpondo, Tchoulabi Keyeya, and Moussa Gouife. 2025. "Effect of Nutrient Supplementation on the Biochemical Composition and Microbial Safety of Open-Pond Spirulina Cultivated in Cameroon" Foods 14, no. 17: 3009. https://doi.org/10.3390/foods14173009
APA StyleNoufeu, T., Ming, T., Zeng, X., Xu, J., Ngaba, M. J. Y., Tchoumbougnang, F., Pandong, A. N., Mpondo, S., Keyeya, T., & Gouife, M. (2025). Effect of Nutrient Supplementation on the Biochemical Composition and Microbial Safety of Open-Pond Spirulina Cultivated in Cameroon. Foods, 14(17), 3009. https://doi.org/10.3390/foods14173009