Green Synthesis of Selenium Nanoparticles by Grape Seed Extract Synergized with Ascorbic Acid: Preparation Optimization, Structural Characterization, and Functional Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of GSE
2.3. Green Synthesis and Optimization of Preparation Parameters for GSE-SeNPs
2.4. Characterization of GSE-SeNPs
2.4.1. Morphological and Structural Observation
TEM
SEM
2.4.2. Surface Element Composition and Functional Group Analysis
SEM-EDX
FT-IR
XPS Analysis
XRD Analysis
2.5. Stability Testing of GSE-SeNPs
2.5.1. Thermal Stability
2.5.2. Centrifugal Stability
2.6. In Vitro Functional Evaluation of GSE-SeNPs
2.6.1. DPPH Radical Scavenging Capacity Assay
2.6.2. ABTS Radical Scavenging Capacity Assay
2.6.3. Hydroxyl Radical Scavenging Capacity Assay
2.6.4. Antibacterial Activity Assay
2.7. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Optimization of GSE-SeNP Synthesis Process
3.2. Particle Size Distribution and Morphological Analysis
3.3. Surface Element Composition and Structural Characteristic Analysis
3.4. Particle Charge Characteristic Analysis
3.5. Crystalline Characteristic Analysis
3.6. Thermal and Centrifugal Stability Evaluation of GSE-SeNPs
3.7. Antioxidant and Antibacterial Activity Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Şahin, S.; Kurtulbaş, E. Green extraction and valorization of by-products from food processing. Foods 2024, 13, 1589. [Google Scholar] [CrossRef]
- Ansari, S.A.; Kumar, T.; Sawarkar, R.; Gobade, M.; Khan, D.; Singh, L. Valorization of food waste: A comprehensive review of individual technologies for producing bio-based products. J. Environ. Manag. 2024, 364, 121439. [Google Scholar] [CrossRef]
- Almanza-Oliveros, A.; Bautista-Hernández, I.; Castro-López, C.; Aguilar-Zárate, P.; Meza-Carranco, Z.; Rojas, R.; Michel, M.R.; Martínez-Ávila, G.C.G. Grape Pomace—Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods 2024, 13, 580. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Zheng, L.; Li, J. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chem. 2015, 186, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Hegedüs, I.; Andreidesz, K.; Szentpéteri, J.L.; Kaleta, Z.; Szabó, L.; Szigeti, K.; Gulyás, B.; Padmanabhan, P.; Budan, F.; Máthé, D. The utilization of physiologically active molecular components of grape seeds and grape marc. Int. J. Mol. Sci. 2022, 23, 11165. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, H. Phytochemical constituents, health benefits, and industrial applications of grape seeds: A mini-review. Antioxidants 2017, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Chedea, V.S.; Tomoiagǎ, L.L.; Macovei, Ş.O.; Mǎgureanu, D.C.; Iliescu, M.L.; Bocsan, I.C.; Buzoianu, A.D.; Voşloban, C.M.; Pop, R.M. Antioxidant/pro-oxidant actions of polyphenols from grapevine and wine by-products-base for complementary therapy in ischemic heart diseases. Front. Cardiovasc. Med. 2021, 8, 750508. [Google Scholar] [CrossRef] [PubMed]
- Foshati, S.; Rouhani, M.H.; Amani, R. The effect of grape seed extract supplementation on oxidative stress and inflammation: A systematic review and meta-analysis of controlled trials. Int. J. Clin. Pract. 2021, 75, 69. [Google Scholar] [CrossRef]
- Tarek, K.; Farid, A.; Safwat, G. Extraction of grape seeds by different solvents affects the activities of the resultant extract. AMB Express 2025, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Dey, S.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Grape seed extract: Having a potential health benefits. J. Food Sci. Technol. 2019, 57, 1205–1215. [Google Scholar] [CrossRef]
- Kitsiou, M.; Purk, L.; Gutierrez-Merino, J.; Karatzas, K.A.; Klymenko, O.V.; Velliou, E. A systematic quantitative determination of the antimicrobial efficacy of grape seed extract against foodborne bacterial pathogens. Foods 2023, 12, 929. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, F.; Gao, Y.; Chen, Z.; Wei, Y.; Xu, Y. Construction and characterization of selenium nanoparticles stabilized by cranberry polyphenols with protective effects on erythrocyte hemolysis. Food Biosci. 2024, 61, 104925. [Google Scholar] [CrossRef]
- Pyrzynska, K. Plant extracts for production of functionalized selenium nanoparticles. Materials 2024, 17, 3748. [Google Scholar] [CrossRef]
- Sentkowska, A.; Konarska, J.; Szmytke, J.; Grudniak, A. Herbal polyphenols as selenium reducers in the green synthesis of selenium nanoparticles: Antibacterial and antioxidant capabilities of the obtained SeNPs. Molecules 2024, 29, 1686. [Google Scholar] [CrossRef]
- Golub, N.; Galić, E.; Špada, V.; Radić, K.; Čepo, D.V. Utilizing tomato pomace-based pectins in the fabrication of selenium nanoformulations—Functional characterization and gastrointestinal stability. Food Res. Int. 2025, 211, 116434. [Google Scholar] [CrossRef]
- Pattnaik, R.; Panda, S.K.; Biswas, S.; De, S.; Satahrada, S.; Kumar, S. Prospects and challenges of nanomaterials in sustainable food preservation and packaging: A review. Discov. Nano 2024, 19, 178. [Google Scholar] [CrossRef]
- Ao, B.; Du, Q.; Liu, D.; Shi, X.; Tu, J.; Xia, X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front. Microbiol. 2023, 14, 1229838. [Google Scholar] [CrossRef]
- Hernández-Díaz, J.A.; Garza-García, J.J.; León-Morales, J.M.; Zamudio-Ojeda, A.; Arratia-Quijada, J.; Velázquez-Juárez, G.; López-Velázquez, J.C.; García-Morales, S. Antibacterial activity of biosynthesized selenium nanoparticles using extracts of Calendula officinalis against potentially clinical bacterial strains. Molecules 2021, 26, 5929. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhao, P.; Wei, Y.; Lei, Y.; Guo, X.; Deng, X.; Zhang, J. Preparation and characterization study of zein–sodium caseinate nanoparticle delivery systems loaded with allicin. Foods 2024, 13, 3111. [Google Scholar] [CrossRef]
- Baluken, P.; Kamiloglu, A.; Kutlu, N. Green synthesis of selenium nanoparticles using green coffee beans: An optimization study. Chem. Biodivers. 2024, 21, e202301250. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhong, J.; Li, G.; Wang, X.; Chang, S.; Yu, Y.; Wang, L. Preparation, characterization and antibacterial activity of blueberry pomace polyphenol-selenium nanoparticles. Food Sci. 2023, 44, 9–15. [Google Scholar] [CrossRef]
- Long, B.; Xuan, X.; Yang, C.; Zhang, L.; Cheng, Y.; Wang, J. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control. Chemosphere 2019, 225, 460–469. [Google Scholar] [CrossRef]
- Mekkawy, A.I.; Fathy, M.; Mohamed, H.B. Evaluation of different surface coating agents for selenium nanoparticles: Enhanced anti-inflammatory activity and drug loading capacity. Drug Des. Dev. Ther. 2022, 16, 1811–1825. [Google Scholar] [CrossRef]
- Masoudipour, E.; Kashanian, S.; Azandaryani, A.H.; Omidfar, K.; Bazyar, E. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner. Cellulose 2017, 24, 4217–4234. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, Y.; Yue, P.; Li, H.; Wu, Y.; Hao, X.; Peng, F. Structure, stability, antioxidant activity, and controlled-release of selenium nanoparticles decorated with lichenan from Usnea longissima. Carbohydr. Polym. 2023, 299, 120219. [Google Scholar] [CrossRef]
- Garza-García, J.J.O.; Hernández-Díaz, J.A.; León-Morales, J.M.; Velázquez-Juárez, G.; Zamudio-Ojeda, A.; Arratia-Quijada, J.; Reyes-Maldonado, O.K.; López-Velázquez, J.C.; García-Morales, S. Selenium nanoparticles based on Amphipterygium glaucum extract with antibacterial, antioxidant, and plant biostimulant properties. J. Nanobiotechnol. 2023, 21, 252. [Google Scholar] [CrossRef]
- Cittrarasu, V.; Kaliannan, D.; Dharman, K.; Maluventhen, V.; Easwaran, M.; Liu, W.C.; Balasubramanian, B.; Arumugam, M. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci. Rep. 2021, 11, 1032. [Google Scholar] [CrossRef]
- Anu, K.; Singaravelu, G.; Murugan, K.; Benelli, G. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterization and cytotoxicity on vero cells. J. Clust. Sci. 2016, 28, 551–563. [Google Scholar] [CrossRef]
- Zhang, Z.; Miller, L.M.; He, H.; Nadagouda, M.N.; Borch, T.; O’Shea, K.E.; Dionysiou, D.D. Molecular insights into the bonding mechanisms between selenium and dissolved organic matter. Sci. Total Environ. 2024, 915, 169429. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pan, Y.; Liu, X.; Han, Z.; Chen, S. Constructing selenium nanoparticles with enhanced storage stability and antioxidant activities via conformational transition of curdlan. Foods 2023, 12, 563. [Google Scholar] [CrossRef]
- Tao, L.; Guan, C.; Wang, Z.; Wang, Y.; Gesang, Q.; Sheng, J.; Dai, J.; Tian, Y. Selenium nanoparticles derived from Moringa oleifera Lam. polysaccharides: Construction, stability, and in vitro antioxidant activity. Foods 2025, 14, 918. [Google Scholar] [CrossRef]
- Tendenedzai, J.T.; Chirwa, E.M.N.; Brink, H.G. Harnessing selenium nanoparticles (SeNPs) for enhancing growth and germination, and mitigating oxidative stress in Pisum sativum L. Sci. Rep. 2023, 13, 20379. [Google Scholar] [CrossRef]
- Mellinas, C.; Jiménez, A.; Garrigós, M.d.C. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules 2019, 24, 4048. [Google Scholar] [CrossRef]
- Vundela, S.R.; Kalagatur, N.K.; Nagaraj, A.; Kadirvelu, K.; Chandranayaka, S.; Kondapalli, K.; Hashem, A.; Abd_Allah, E.F.; Poda, S. Multi-biofunctional properties of phytofabricated selenium nanoparticles from Carica papaya fruit extract: Antioxidant, antimicrobial, antimycotoxin, anticancer, and biocompatibility. Front. Microbiol. 2022, 12, 891. [Google Scholar] [CrossRef]
- Bai, K.; Hong, B.; He, J.; Hong, Z.; Tan, R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int. J. Nanomed. 2017, 12, 4527–4539. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiu, W.; Sun, L.; Ding, Z.; Yan, J. Preparation, characterization, and antioxidant capacities of selenium nanoparticles stabilized using polysaccharide–protein complexes from Corbicula fluminea. Food Biosci. 2018, 26, 177–184. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Hu, Y.; Zhang, D.; Xu, W.; Chen, L.; He, J.; Cheng, S.; Cai, J. Selenium nanoparticles synergistically stabilized by starch microgel and EGCG: Synthesis, characterization, and bioactivity. Foods 2022, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Bhiri, N.; Masquelez, N.; Nasri, M.; Nasri, R.; Hajji, M.; Li, S. Synthesis, characterization, and stability study of selenium nanoparticles coated with purified polysaccharides from Ononis natrix. Nanomaterials 2025, 15, 435. [Google Scholar] [CrossRef]
- Hu, R.; Wang, X.; Han, L.; Lu, X. The developments of surface-functionalized selenium nanoparticles and their applications in brain diseases therapy. Biomimetics 2023, 8, 259. [Google Scholar] [CrossRef]
- Ge, Y.; Xue, Y.; Zhao, X.; Liu, J.; Xing, W.; Hu, S.; Gao, H. Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms. Int. J. Biol. Macromol. 2024, 254, 127971. [Google Scholar] [CrossRef] [PubMed]
- Serov, D.A.; Khabatova, V.V.; Vodeneev, V.; Li, R.; Gudkov, S.V. A review of the antibacterial, fungicidal and antiviral properties of selenium nanoparticles. Materials 2023, 16, 5363. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cheng, H.; Xia, W. Progress in the surface functionalization of selenium nanoparticles and their potential application in cancer therapy. Antioxidants 2022, 11, 1965. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Zhang, J.; Xu, J.; Pi, J. The advancing of selenium nanoparticles against infectious diseases. Front. Pharmacol. 2021, 12, 682284. [Google Scholar] [CrossRef]
- Al-Wakeel, A.H.; Elbahnaswy, S.; Eldessouki, E.A.; Risha, E.; Zahran, E. Dietary biogenic selenium nanoparticles improve growth and immune-antioxidant indices without inducing inflammatory responses in Nile tilapia. Sci. Rep. 2024, 14, 21990. [Google Scholar] [CrossRef]
- Aftab, A.; Ali, M.; Yousaf, Z.; Binjawhar, D.N.; Hyder, S.; Aftab, Z.H.; Maqbool, Z.; Shahzadi, Z.; Eldin, S.M.; Iqbal, R.; et al. Shelf-life extension of Fragaria × ananassa Duch. using selenium nanoparticles synthesized from Cassia fistula Linn. leaves. Food Sci. Nutr. 2023, 11, 3464–3484. [Google Scholar] [CrossRef]
- Liu, J.; Qi, W.; Chen, H.; Song, C.; Li, Q.; Wang, S. Selenium nanoparticles as an innovative selenium fertilizer exert less disturbance to soil microorganisms. Front. Microbiol. 2021, 12, 746046. [Google Scholar] [CrossRef]
Sample Name | Average Particle Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
GSE-SeNPs | 74.860 ± 6.071 | 0.159 ± 0.028 | −30.417 ± 0.538 |
Element | Spectrum 23 | Spectrum 24 | ||||
---|---|---|---|---|---|---|
wt.% | wt.% Sigma | At% | wt.% | wt.% Sigma | At% | |
C | 17.06 | 0.47 | 52.91 | 18.08 | 0.46 | 54.34 |
O | 4.29 | 0.15 | 9.99 | 4.57 | 0.15 | 10.31 |
Se | 78.65 | 0.46 | 37.10 | 77.34 | 0.45 | 35.35 |
Total | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Wang, L.; Jia, S.; Wang, L.; Cheng, S.; Lu, Y.; Li, L. Green Synthesis of Selenium Nanoparticles by Grape Seed Extract Synergized with Ascorbic Acid: Preparation Optimization, Structural Characterization, and Functional Activity. Foods 2025, 14, 3002. https://doi.org/10.3390/foods14173002
Cheng H, Wang L, Jia S, Wang L, Cheng S, Lu Y, Li L. Green Synthesis of Selenium Nanoparticles by Grape Seed Extract Synergized with Ascorbic Acid: Preparation Optimization, Structural Characterization, and Functional Activity. Foods. 2025; 14(17):3002. https://doi.org/10.3390/foods14173002
Chicago/Turabian StyleCheng, Hua, Li Wang, Shuqing Jia, Lu Wang, Shuiyuan Cheng, Yingtang Lu, and Linling Li. 2025. "Green Synthesis of Selenium Nanoparticles by Grape Seed Extract Synergized with Ascorbic Acid: Preparation Optimization, Structural Characterization, and Functional Activity" Foods 14, no. 17: 3002. https://doi.org/10.3390/foods14173002
APA StyleCheng, H., Wang, L., Jia, S., Wang, L., Cheng, S., Lu, Y., & Li, L. (2025). Green Synthesis of Selenium Nanoparticles by Grape Seed Extract Synergized with Ascorbic Acid: Preparation Optimization, Structural Characterization, and Functional Activity. Foods, 14(17), 3002. https://doi.org/10.3390/foods14173002