Genomic Insights into the Probiotic Functionality and Safety of Lactiplantibacillus pentosus Strain TBRC 20328 for Future Food Innovation
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Cultivation Condition
2.2. Plasmid and Genomic DNA Extractions
2.3. Whole-Genome Sequencing and Genome Assembly
2.4. Gene Prediction and Functional Annotation
2.5. Species Identification
2.6. Determination of Antimicrobial Resistance (AMR), Virulence Factors (VFs), Antibiotic Resistance Genes (ARG), and Undesirable Genes
2.7. Biosynthesis Gene Cluster Analysis
3. Results and Discussions
3.1. Genome Features and Species Identification of Lactiplantibacillus TBRC 20328
3.2. Absence of Antimicrobial Resistance Genes (AMR), Virulence Factors (VFs), Antibiotic Resistance Genes (ARG), and Mobile Genetic Elements
3.3. Biogenic Amine Biosynthesis Genes
3.4. Bile Salt Deconjugations
3.5. D-Lactic Acid Production
3.6. Biosynthesis Gene Clusters for Bacteriocin and Secondary Metabolite Production
3.7. The Phosphotransferase System (PTS) in Carbohydrate Uptake of Lp. pentosus TBRC 20328
3.8. Short-Chain Fatty Acid Biosynthesis Genes in Lp. pentosus TBRC 20328
3.9. Exopolysaccharides (EPS) Gene Clusters in Lp. pentosus TBRC 20328
3.10. Comparative Analysis of Lactiplantibacillus Genomes Exploring Unique Genetic Features of Lp. pentosus Strains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Acetyl-CoA carboxylase |
ACP | Acyl-carrier protein |
AMR | Antimicrobial resistance |
ANI | Average nucleotide identity |
AOI | Area of interest |
ARG | Antibiotic resistance gene |
AT | Acyltransferase |
BA | Biogenic amine |
BC | Acetyl-CoA carboxylase biotin carboxylase subunit |
BCCP | Biotin carboxyl carrier protein subunit |
BGC | Biosynthesis gene cluster |
BSH | Bile salt hydrolase |
COG | Clusters of Orthologous Group |
EPS FAS | Exopolysaccharide Fatty acid synthase |
KS | Ketosynthase |
KR | Ketoreductase |
LAB | Lactic acid bacteria |
Lar | Lactate racemase |
LDHD | D-lactate dehydrogenase |
LTTR | LysR-family transcriptional regulator |
PEP | Phosphoenolpyruvate |
PKS | Polyketide synthase |
PTS | Phosphotransferase system |
RiPP | Ribosomally synthesized and post-translationally modified peptides |
SCFA | Short-chain fatty acid |
VF | Virulence factor |
References
- Garcia-Gonzalez, N.; Battista, N.; Prete, R.; Corsetti, A. Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms 2021, 9, 349. [Google Scholar] [CrossRef]
- Yilmaz, B.; Bangar, S.P.; Echegaray, N.; Suri, S.; Tomasevic, I.; Manuel Lorenzo, J.; Melekoglu, E.; Rocha, J.M.; Ozogul, F. The impacts of Lactiplantibacillus plantarum on the functional properties of fermented foods, A review of current knowledge. Microorganisms 2022, 10, 826. [Google Scholar] [CrossRef]
- Ricciardi, A.; Parente, E.; Guidone, A.; Ianniello, R.G.; Zotta, T.; Abu Sayem, S.; Varcamonti, M. Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus. Int. J. Food Microbiol. 2012, 157, 278–285. [Google Scholar] [CrossRef]
- Chaudhary, A.; Saharan, B.S. Probiotic properties of Lactobacillus plantarum. J. Pure Appl. Microbiol. 2019, 13, 933–948. [Google Scholar] [CrossRef]
- Huang, J.Y.; Kao, C.Y.; Liu, W.S.; Fang, T.J. Characterization of high exopolysaccharide-producing Lactobacillus strains isolated from mustard pickles for potential probiotic applications. Int. Microbiol. 2017, 20, 75–84. [Google Scholar] [PubMed]
- Sionek, B.; Szydłowska, A.; Küçükgöz, K.; Kołożyn-Krajewska, D. Traditional and new microorganisms in lactic acid fermentation of food. Fermentation 2023, 9, 1019. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, M.J.; Park, S.H. Biotechnological potential of Lactiplantibacillus pentosus in food fermentation and preservation. J. Food Sci. 2020, 85, 1352–1360. [Google Scholar]
- Pimentel, T.C.; Almeida, D.; Mota, M. Probiotic and functional properties of Lactiplantibacillus pentosus, Applications in food and health. Probiotics Antimicro. 2021, 13, 10–22. [Google Scholar]
- Gänzle, M.G.; Follador, R.; Hertel, C. Lactic acid bacteria in fermented foods. Food Res. Int. 2016, 77, 441–451. [Google Scholar]
- Hasan, H.A.; Rahim, N.F.M.; Alias, J.; Ahmad, J.; Said, N.S.M.; Ramli, N.N.; Buhari, J.; Abdullah, S.R.S.; Othman, A.R.; Jusoh, H.H.W.; et al. A Review on the roles of extracellular polymeric substances (EPSs) in wastewater treatment: Source, mechanism study, bioproducts, limitations, and future challenges. Water 2024, 16, 2812. [Google Scholar] [CrossRef]
- Wang, W.; Ju, Y.; Liu, N.; Shi, S.; Hao, L. Structural characteristics of microbial exopolysaccharides in association with their biological activities: A review. Chem. Biol. Technol. Agric. 2023, 10, 137. [Google Scholar] [CrossRef]
- Gao, Y.; Li, D. Screening of lactic acid bacteria with cholesterol-lowering and triglyceride-lowering activity in vitro and evaluation of probiotic function. Ann. Microbiol. 2018, 68, 537–545. [Google Scholar] [CrossRef]
- Rocha-Ramírez, L.M.; Pérez-Solano, R.A.; Castañón-Alonso, S.L.; Moreno Guerrero, S.S.; Pacheco, A.R.; Garibay, M.G.; Eslava, C. Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages. J. Immunol. Res. 2017, 2017, 4607491. [Google Scholar] [CrossRef]
- Magaldi, S.; Mata-Essayag, S.; Hartung de Capriles, C.; Perez, C.; Colella, M.T.; Olaizola, C.; Ontiveros, Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004, 8, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.S.; Alexander, D.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2, functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0, a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; A Syed, S.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022, a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.F.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrobl. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Doster, E.; Lakin, S.M.; Dean, C.J.; Wolfe, C.; Young, J.G.; Boucher, C.; E Belk, K.; Noyes, N.R.; Morley, P.S. MEGARes 2.0, a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020, 48, D561–D569. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Voldby Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. ABRicate. Github. Available online: https://github.com/tseemann/abricate (accessed on 25 January 2024).
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualization. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef] [PubMed]
- Skinnider, M.A.; Johnston, C.W.; Gunabalasingam, M.; Merwin, N.J.; Kieliszek, A.M.; MacLellan, R.J.; Li, H.; Ranieri, M.R.M.; Webster, A.L.H.; Cao, M.P.T.; et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat. Commun. 2020, 11, 6058. [Google Scholar] [CrossRef] [PubMed]
- van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4, a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar]
- Emms, D.M.; Kelly, S. OrthoFinder, phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update, Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Nishimura, O.; Hara, Y.; Kuraku, S. Evaluating genome assemblies and gene models using gVolante. Methods Mol. Biol. 2019, 1962, 247–256. [Google Scholar]
- Park, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Galperin, M.Y.; Wolf, Y.I.; Makarova, K.S.; Alvarez, R.V.; Landsman, D.; Koonin, E.V. COG database update, focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2021, 49, D274–D281. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Cumsille, A.; Durán, R.E.; Rodríguez-Delherbe, A.; Saona-Urmeneta, V.; Cámara, B.; Seeger, M.; Araya, M.; Jara, N.; Buil-Aranda, C.; Ioshikhes, I. GenoVi, an open-source automated circular genome visualizer for bacteria and archaea. PLoS Comput. Biol. 2023, 19, e1010998. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Wishart, D.S.; Han, S.; Saha, S.; Oler, E.; Peters, H.; Grant, J.R.; Stothard, P.; Gautam, V. PHASTEST, faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023, 51, W443–W450. [Google Scholar] [CrossRef]
- Li, L.; Dechesne, A.; Madsen, J.S.; Nesme, J.; Sorensen, S.J.; Smets, B.F. Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME J. 2020, 14, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria, a review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Turna, N.S.; Chung, R.; McIntyre, L. A review of biogenic amines in fermented foods, occurrence and health effects. Heliyon 2024, 10, e24501. [Google Scholar] [CrossRef] [PubMed]
- Chokesajjawatee, N.; Santiyanont, P.; Chantarasakha, K.; Kocharin, K.; Thammarongtham, C.; Lertampaiporn, S.; Vorapreeda, T.; Srisuk, T.; Wongsurawat, T.; Jenjaroenpun, P.; et al. Safety assessment of a Nham starter culture Lactobacillus plantarum BCC9546 via whole-genome analysis. Sci. Rep. 2020, 10, 10241. [Google Scholar] [CrossRef]
- Brashears, M.M.; Gilliland, S.E.; Buck, L.M. Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. J. Dairy Sci. 1998, 81, 2103–2110. [Google Scholar] [CrossRef]
- Ahn, Y.T.; Kim, G.B.; Lim, K.S.; Baek, Y.J.; Kim, H.U. Deconjugation of bile salts by Lactobacillus acidophilus isolates. Int. Dairy J. 2003, 13, 303–311. [Google Scholar] [CrossRef]
- Dong, Z.; Lee, B.H. Bile salt hydrolases, structure and function, substrate preference, and inhibitor development. Protein Sci. 2018, 27, 1742–1754. [Google Scholar] [CrossRef]
- Prete, R.; Long, S.L.; Gallardo, A.L.; Gahan, C.G.; Corsetti, A.; Joyce, S.A. Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci. Rep. 2020, 10, 1165. [Google Scholar] [CrossRef]
- Goffin, P.; Deghorain, M.; Mainardi, J.L.; Tytgat, I.; Champomier-Vergès, M.C.; Kleerebezem, M.; Hols, P. Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J. Bacteriol. 2005, 187, 6750–6761. [Google Scholar] [CrossRef]
- Pohanka, M. D-lactic acid as a metabolite, toxicology, diagnosis, and detection. Biomed. Res. Int. 2020, 2020, 3419034. [Google Scholar] [CrossRef]
- Remund, B.; Yilmaz, B.; Sokollik, C. D-Lactate, Implications for gastrointestinal diseases. Children 2023, 10, 945. [Google Scholar] [CrossRef]
- Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Girones, R.; Koutsoumanis, K.; Herman, L.; Lindqvist, R.; Nørrung, B.; et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 5, Suitability of taxonomic units notified to EFSA until September 2016. EFSA J. 2017, 15, e04663. [Google Scholar]
- Medema, M.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; de Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C.; et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 2015, 11, 625–631. [Google Scholar] [CrossRef]
- Ekblad, B.; Kyriakou, P.L.; Oppegard, C.; Nissen-Meyer, J.; Kaznessis, Y.N.; Kristiansen, P.E. Structure-function analysis of the two-peptide bacteriocin plantaricin EF. Biochemistry 2016, 55, 5106–5116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, Y.; Shang, N.; Li, P. Synergistic inhibition of plantaricin E/F and lactic acid against Aeromonas hydrophila LPL-1 reveals the novel potential of class IIb bacteriocin. Front. Microbiol. 2022, 13, 774184. [Google Scholar] [CrossRef]
- Xue, W.; Liu, C.; Liu, Y.; Ding, H.; An, C.; Zhang, S.; Ma, S.; Zhang, Q. Probiotic evaluation of Lactiplantibacillus pentosus 68-1, a rutin conversion strain isolated from Jiangshui, by genomic analysis and tests In Vitro. Fermentation 2024, 10, 87. [Google Scholar] [CrossRef]
- Kareem, R.A.; Razavi, S.H. Plantaricin bacteriocins, as safe alternative antimicrobial peptides in food preservation—A review. J. Food Saf. 2020, 40, e12735. [Google Scholar] [CrossRef]
- Van Reenen, C.A.; Chikindas, M.L.; Van Zyl, W.H.; Dicks, L.M. Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int. J. Food Microbiol. 2003, 81, 29–40. [Google Scholar] [CrossRef]
- Lim, Y.P.; Go, M.K.; Yew, W.S. Exploiting the biosynthetic potential of type III polyketide synthases. Molecules 2016, 21, 806. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.M.; Dhanasekaran, D. Biosynthetic gene cluster analysis in Lactobacillus species using antiSMASH. In Advances in Probiotics; Academic Press: Cambridge, MA, USA, 2021; pp. 113–120. [Google Scholar]
- Okoye, C.O.; Dong, K.; Wang, Y.; Gao, L.; Li, X.; Wu, Y.; Jiang, J. Comparative genomics reveals the organic acid biosynthesis metabolic pathways among five lactic acid bacterial species isolated from fermented vegetables. N. Biotechnol. 2022, 70, 73–83. [Google Scholar] [CrossRef]
- Liou, G.F.; Khosla, C. Building-block selectivity of polyketide synthases. Curr. Opin. Chem. Biol. 2003, 7, 279–284. [Google Scholar] [CrossRef]
- West, A.R.; Bailey, C.B. Crosstalk between primary and secondary metabolism, Interconnected fatty acid and polyketide biosynthesis in prokaryotes. Bioorg. Med. Chem. Lett. 2023, 91, 129377. [Google Scholar] [CrossRef] [PubMed]
- Zacharof, M.P.; Lovitt, R.W. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia 2012, 2, 50–56. [Google Scholar] [CrossRef]
- Demirgül, F.; Kaya, H.İ.; Ucar, R.A.; Mitaf, N.A.; Şimşek, Ö. Expanding layers of bacteriocin applications: From food preservation to human health interventions. Fermentation 2025, 11, 142. [Google Scholar] [CrossRef]
- Shen, B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 2003, 7, 285–295. [Google Scholar] [CrossRef]
- Kotrba, P.; Masayuki, I.; Yukawa, H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J. Biosci. Bioeng. 2001, 92, 502–517. [Google Scholar] [CrossRef]
- Deutscher, J.; Francke, C.; Postma, P.W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 2006, 70, 939–1031. [Google Scholar] [CrossRef] [PubMed]
- McCoy, J.G.; Levin, E.J.; Zhou, M. Structural insight into the PTS sugar transporter EIIC. Biochim. Biophys. Acta. 2015, 1850, 577–585. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, M.; Zheng, Y.; Miao, K.; Qu, X. The carbohydrate metabolism of Lactiplantibacillus plantarum. Int. J. Mol. Sci. 2021, 22, 13452. [Google Scholar] [CrossRef] [PubMed]
- Kleerebezem, M.; Boekhorst, J.; van Kranenburg, R.; Molenaar, D.; Kuipers, O.P.; Leer, R.; Tarchini, R.; Peters, S.A.; Sandbrink, H.M.; Fiers, M.W.; et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 2003, 100, 1990–1995. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liang, Q.; Song, X.; Zhang, Y. Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of eps gene clusters. Front. Microbiol. 2023, 14, 1146566. [Google Scholar] [CrossRef] [PubMed]
- Thananimit, S.; Pahumunto, N.; Teanpaisan, R. Characterization of short chain fatty acids produced by selected potential probiotic Lactobacillus strains. Biomolecules 2022, 12, 1829. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-chain fatty-acid-producing bacteria, Key components of the human gut microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef] [PubMed]
- Thirabunyanon, M.; Hongwittayakorn, P. Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl. Biochem. Biotechnol. 2013, 169, 511–525. [Google Scholar] [CrossRef]
- LeBlanc, J.G.; Chain, F.; Martín, R.; Bermúdez-Humarán, L.G.; Courau, S.; Langella, P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 2017, 16, 79. [Google Scholar] [CrossRef]
- Jawed, K.; Mattam, A.J.; Fatma, Z.; Wajid, S.; Abdin, M.Z.; Yazdani, S.S. Engineered production of short chain fatty acid in Escherichia coli using fatty acid synthesis pathway. PLoS ONE 2016, 11, e0160035. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, H.; Zhang, Y.; Li, Y. Discovery of potential genes contributing to the biosynthesis of short-chain fatty acids and lactate in gut microbiota from systematic investigation in E. coli. npj Biofilms. Microbiomes 2019, 5, 19. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 277. [Google Scholar]
- Li, B.; Ye, L.; Chen, Y.; Zhang, H. Genomic insights into probiotic metabolism of dietary carbohydrates, proteins, and fats. Curr. Opin. Food Sci. 2025, 61, 101241. [Google Scholar] [CrossRef]
- Xu, Y.M.; Cui, Y.L.; Yue, F.F.; Liu, L.H.; Shan, Y.Y. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocoll. 2019, 94, 475–499. [Google Scholar] [CrossRef]
- Rahbar Saadat, Y.; Yari Khosroushahi, A.; Pourghassem Gargari, B. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr. Polym. 2019, 217, 79–89. [Google Scholar] [CrossRef]
- Thoda, C.; Touraki, M. Probiotic-derived bioactive compounds in colorectal cancer treatment. Microorganisms 2023, 11, 1898. [Google Scholar] [CrossRef]
- Xu, X.; Qiao, Y.; Peng, Q.; Shi, B.; Dia, V.P. Antioxidant and immunomodulatory properties of partially purified exopolysaccharide from Lactobacillus casei isolated from Chinese northeast sauerkraut. Immunol. Investig. 2021, 51, 748–765. [Google Scholar] [CrossRef]
- El-Dein, A.N.; Nour El-Deen, A.M.; El-Shatoury, E.H.; Awad, G.A.; Ibrahim, M.K.; Awad, H.M.; Farid, M.A. Assessment of exopolysaccharides, bacteriocins and in vitro and in vivo hypocholesterolemic potential of some Egyptian Lactobacillus spp. Int. J. Biol. Macromol. 2021, 173, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Fanning, S.; Hall, L.J.; Cronin, M.; Zomer, A.; MacSharry, J.; Goulding, D.; O’Connell, M.; Shanahan, F.; Nally, K.; Dougan, G.; et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl. Acad. Sci. USA 2012, 109, 2108–2113. [Google Scholar] [CrossRef]
- Anukam, K.C.; Macklaim, J.M.; Gloor, G.B.; Reid, G.; Boekhorst, J.; Renckens, B.; van Hijum, S.A.F.T.; Siezen, R.J.; Planet, P.J. Genome sequence of Lactobacillus pentosus KCA1, Vaginal isolate from a healthy premenopausal woman. PLoS ONE 2013, 8, e59239. [Google Scholar] [CrossRef]
- Peng, H.L.; Shiou, S.R.; Chang, H.Y. Characterization of mdcR, a regulatory gene of the malonate catabolic system in Klebsiella pneumoniae. J. Bacteriol. 1999, 181, 2302–2306. [Google Scholar] [CrossRef] [PubMed]
- Schell, M.A. Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 1993, 47, 597–626. [Google Scholar] [CrossRef] [PubMed]
- Chohnan, S.; Akagi, K.; Takamura, Y. Functions of malonate decarboxylase subunits from Pseudomonas putida. Biosci. Biotechnol. Biochem. 2003, 67, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Chohnan, S.; Takamura, Y. Malonate decarboxylase in bacteria and its application for determination of intracellular acyl-CoA thioesters. Microbes Environ. 2004, 19, 179–189. [Google Scholar] [CrossRef]
- Maldonado-Barragán, A.; Caballero-Guerrero, B.; Lucena-Padrós, H.; Ruiz-Barba, J.L. Genome sequence of Lactobacillus pentosus IG1, a strain isolated from Spanish-style green olive fermentations. J. Bacteriol. 2011, 193, 5605. [Google Scholar] [CrossRef]
- Cronan, J.E., Jr.; Waldrop, G.L. Multi-subunit acetyl-CoA carboxylases. Prog. Lipid Res. 2002, 41, 407–435. [Google Scholar] [CrossRef]
- Bachhawat, A.K.; Yadav, S. The glutathione cycle, glutathione metabolism beyond the γ-glutamyl cycle. IUMBM Life 2018, 70, 585–592. [Google Scholar] [CrossRef]
- Niehaus, T.D.; Elbadawi-Sidhu, M.; de Crécy-Lagard, V.; Fiehn, O.; Hanson, A.D. Discovery of a widespread prokaryotic 5-oxoprolinase that was hiding in plain sight. J. Biol. Chem. 2017, 292, 16360–16367. [Google Scholar] [CrossRef] [PubMed]
Genomic | Plasmid A | Plasmid B | Plasmid C | Plasmid D | Plasmid E | Total | |
---|---|---|---|---|---|---|---|
Total base (bp) | 3,491,384 | 70,426 | 68,335 | 48,057 | 55,487 | 6885 | 3,740,574 |
A (bp) | 932,443 | 20,620 | 20,892 | 15,051 | 14,869 | 2133 | 1,006,008 |
T (bp) | 932,054 | 22,020 | 19,008 | 14,340 | 17,651 | 2112 | 1,007,185 |
G (bp) | 813,600 | 13,556 | 14,549 | 9448 | 11,106 | 1306 | 863,565 |
C (bp) | 813,287 | 14,230 | 13,886 | 9218 | 11,861 | 1334 | 863,816 |
GC content (%) | 46.60 | 39.45 | 41.61 | 38.84 | 41.39 | 38.34 | 46.18 |
No. of protein-coding genes | 3056 | 79 | 81 | 54 | 62 | 8 | 3340 |
Avg. gene length (bp) | 919 | 708 | 691 | 649 | 798 | 328 | 900 |
No. of tRNA genes | 63 | - | - | - | - | - | 63 |
No. of tmRNA genes | 1 | - | - | - | - | - | 1 |
No. of rRNA genes | 16 | - | - | - | - | - | 16 |
Repeat regions | 3 | - | - | - | - | - | 3 |
Plasmid | Start | End | PlasmidFinder Annotation | Origin | Identity (%) |
---|---|---|---|---|---|
A | 44,904 | 45,785 | rep38_2_repA (LBPp1) | Lp. plantarum P-8 | 96.19 |
D | 21,409 | 22,435 | rep38_1_rep (pLBUC03) | L. buchneri NRRL B-30929 | 86.50 |
GeneID | Length (aa) | NCBI Accession | Species | Length (aa) | Gene | Gene Function | Homology (%) |
---|---|---|---|---|---|---|---|
EPS gene Cluster 1 | |||||||
Orf00270 | 376 | ADN98210 | Lp. plantarum ST-III | 359 | eps3I | O-acetyltransferase | 267/360 (74%) |
Orf00271 | 367 | ADN98209 | Lp. plantarum ST-III | 369 | eps3H | polysaccharide biosynthesis protein | 287/367 (78%) |
Orf00272 | 393 | ADN98208 | Lp. plantarum ST-III | 406 | eps3F | polysaccharide polymerase | 301/388 (78%) |
Orf00273 | 207 | ADN98207 | Lp. plantarum ST-III | 210 | eps3E | polysaccharide biosynthesis protein | 141/207 (68%) |
Orf00274 | 375 | ADN98206 | Lp. plantarum ST-III | 377 | eps3D | polysaccharide biosynthesis protein | 248/375 (66%) |
Orf00276 | 310 | ADN98204 | Lp. plantarum ST-III | 310 | eps3B | glycosyltransferase | 308/310 (99%) |
Orf00277 | 303 | ADN98203 | Lp. plantarum ST-III | 303 | eps3A | glycosyltransferase | 294/303 (97%) |
EPS gene Cluster 2 | |||||||
Orf00292 | 225 | ADN98183 | Lp. plantarum ST-III | 200 | eps2E | priming glycosyltransferase | 200/200 (100%) |
Orf00294 | 271 | ADN98181 | Lp. plantarum ST-III | 257 | eps2C | exopolysaccharide biosynthesis protein | 252/257 (98%) |
Orf00295 | 242 | ADN98180 | Lp. plantarum ST-III | 242 | eps2B | exopolysaccharide biosynthesis protein | 241/242 (99%) |
Orf00296 | 256 | ADN98179 | Lp. plantarum ST-III | 256 | eps2A | exopolysaccharide biosynthesis protein | 254/256 (99%) |
EPS gene Cluster 3 | |||||||
Orf00286 | 460 | ADN98188 | Lp. plantarum ST-III | 460 | wxz | exopolysacharide protein Wzx | 451/460 (98%) |
Orf00288 | 319 | ADN98187 | Lp. plantarum ST-III | 319 | eps4I | glycosyltransferase | 314/319 (98%) |
Orf00289 | 424 | ADN98186 | Lp. plantarum ST-III | 424 | eps4H | polysaccharide polymerase | 421/424 (99%) |
Orf00290 | 343 | ADN98185 | Lp. plantarum ST-III | 345 | eps4G | glycosyltransferase | 341/343 (99%) |
Orf00291 | 364 | ADN98184 | Lp. plantarum ST-III | 364 | eps4F | glycosyltransferase | 359/364 (99%) |
Orf02621 | 251 | ADN98956 | Lp. plantarum ST-III | 252 | eps4A | exopolysaccharide biosynthesis protein | 194/253 (77%) |
Orf02622 | 238 | ADN98955 | Lp. plantarum ST-III | 235 | eps4B | capsular exopolysaccharide family protein | 193/234 (82%) |
WP_015640554 | Lp. plantarum JDM1 | 235 | epsD/ epsB/ epsF | CpsD/CapB family tyrosine-protein kinase | 192/234 (82%) | ||
WDQ20187 | Lp. plantarum SMB758 | 235 | epsD/epsB | CpsD/CapB family tyrosine-protein kinase | 193/234 (82%) | ||
Orf02623 | 259 | ADN98954 | Lp. plantarum ST-III | 273 | eps4C | phosphotyrosine-protein phosphatase | 184/259 (71%) |
Orf02625 | 221 | ADN98952 | Lp. plantarum ST-III | 223 | eps4E | priming glycosyltransferase | 171/221 (77%) |
Orf02630 | 481 | ADN98947 | Lp. plantarum ST-III | 483 | eps4J | repeat unit transporter | 353/481 (73%) |
Specific EPS gene | |||||||
Orf00813 | 245 | WP_003643865 | Lp. plantarum JDM1 | 245 | epsF | WecB/TagA/CpsF family glycosyltransferase | 225/245 (92%) |
WDQ21455 | Lp. plantarum SMB758 | 245 | epsF | WecB/TagA/CpsF family glycosyltransferase | 225/245 (92%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorapreeda, T.; Rampai, T.; Chamkhuy, W.; Nopgasorn, R.; Wannawilai, S.; Laoteng, K. Genomic Insights into the Probiotic Functionality and Safety of Lactiplantibacillus pentosus Strain TBRC 20328 for Future Food Innovation. Foods 2025, 14, 2973. https://doi.org/10.3390/foods14172973
Vorapreeda T, Rampai T, Chamkhuy W, Nopgasorn R, Wannawilai S, Laoteng K. Genomic Insights into the Probiotic Functionality and Safety of Lactiplantibacillus pentosus Strain TBRC 20328 for Future Food Innovation. Foods. 2025; 14(17):2973. https://doi.org/10.3390/foods14172973
Chicago/Turabian StyleVorapreeda, Tayvich, Tanapawarin Rampai, Warinthon Chamkhuy, Rujirek Nopgasorn, Siwaporn Wannawilai, and Kobkul Laoteng. 2025. "Genomic Insights into the Probiotic Functionality and Safety of Lactiplantibacillus pentosus Strain TBRC 20328 for Future Food Innovation" Foods 14, no. 17: 2973. https://doi.org/10.3390/foods14172973
APA StyleVorapreeda, T., Rampai, T., Chamkhuy, W., Nopgasorn, R., Wannawilai, S., & Laoteng, K. (2025). Genomic Insights into the Probiotic Functionality and Safety of Lactiplantibacillus pentosus Strain TBRC 20328 for Future Food Innovation. Foods, 14(17), 2973. https://doi.org/10.3390/foods14172973