Antimicrobial Resistance of Salmonella and Characterization of Two Mcr-1-Harboring Isolates from Pork Products in Guangdong, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Salmonella Isolation
2.2. Salmonella Genomic DNA Extraction
2.3. Multi-Locus Sequence Typing of Salmonella Isolates
2.4. Antimicrobial Susceptibility Testing (AST) of Salmonella Isolates
2.5. Mcr Gene Screening
2.6. Whole-Genome Sequencing of Mcr-1-Positive Salmonella Isolates
2.7. Conjugation Experiments of the Mcr-1 Gene
2.8. Phylogenetic Tree Analysis of Mcr-1-Positive Salmonella Isolates and IncI2 Plasmids
2.9. Data Availability Statement
2.10. Statistical Analysis
3. Results
3.1. Prevalence Characteristics of Salmonella Isolates from Pork Product Samples
3.2. Antimicrobial Susceptibility Analysis of Salmonella Isolates
3.3. Genomic Characteristics of Two Mcr-1-Positive S. Kentucky Isolates
3.4. Phylogenetic Relationship of Mcr-1-Positive S. Kentucky Isolates and IncI2 Plasmids
3.5. Molecular Characteristics of the Multidrug Resistance Region and Salmonella Genomic Island 1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lamichhane, B.; Mawad, A.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J.; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H. Salmonellosis: An overview of epidemiology, pathogenesis, and innovative approaches to mitigate the antimicrobial resistant infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Parisi, A.; Sarkar, K.; Blacker, B.F.; Reiner, R.C.; Hay, S.I.; Nixon, M.R.; Dolecek, C.; James, S.L.; Mokdad, A.H. The global burden of non-typhoidal Salmonella invasive disease: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 1312–1324. [Google Scholar] [CrossRef] [PubMed]
- Zizza, A.; Fallucca, A.; Guido, M.; Restivo, V.; Roveta, M.; Trucchi, C. Foodborne infections and Salmonella: Current primary prevention tools and future perspectives. Vaccines 2024, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Delahoy, M.J. Preliminary incidence and trends of infections caused by pathogens transmitted commonly through food—Foodborne diseases active surveillance network, 10 US sites, 2022. Morb. Mortal. Wkly. Rep. 2023, 72, 701–706. [Google Scholar] [CrossRef]
- Zhan, Z.; He, S.; Chang, J.; Hu, M.; Zhang, Z.; Cui, Y.; Shi, X. Characterization of novel mutations involved in the development of resistance to colistin in Salmonella isolates from retail pork in Shanghai, China. Int. J. Food Microbiol. 2025, 430, 111027. [Google Scholar] [CrossRef]
- Li, P.; Zhan, L.; Wang, H.; Gao, W.; Gao, L.; Lv, S.; Zhang, X.; Zhu, G.; Yan, Y. First identification and limited dissemination of mcr-1 colistin resistance in Salmonella isolates from Jiaxing. J. Food Prot. 2022, 85, 213–219. [Google Scholar] [CrossRef]
- Tanyitiku, M.N.; Nicholas, G.; Petcheu, I.C.N.; Sullivan, J.J.; On, S.L. Public health risk of foodborne pathogens in edible African land snails, Cameroon. Emerg. Infect. Dis. 2022, 28, 1715. [Google Scholar] [CrossRef]
- Soliani, L.; Rugna, G.; Prosperi, A.; Chiapponi, C.; Luppi, A. Salmonella infection in pigs: Disease, prevalence, and a link between swine and human health. Pathogens 2023, 12, 1267. [Google Scholar] [CrossRef]
- Vigre, H.; Barfoed, K.; Swart, A.N.; Simons, R.R.; Hill, A.A.; Snary, E.L.; Hald, T. Characterization of the human risk of salmonellosis related to consumption of pork products in different EU countries based on a QMRA. Risk Anal. 2016, 36, 531–545. [Google Scholar] [CrossRef]
- Karnwal, A.; Jassim, A.Y.; Mohammed, A.A.; Al-Tawaha, A.R.M.S.; Selvaraj, M.; Malik, T. Addressing the global challenge of bacterial drug resistance: Insights, strategies, and future directions. Front. Microbiol. 2025, 16, 1517772. [Google Scholar] [CrossRef] [PubMed]
- Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2022, 170, 106103. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Sharma, E.; Chen, Y.; Kelso, C.; Sivakumar, M.; Jiang, G. Carbapenems and colistin as last-resort antibiotics: A review of challenging environmental impacts and analytical methods. Soil Environ. Health 2024, 2, 100058. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-H.; Liu, Y.-Y.; Shen, Y.-B.; Yang, J.; Walsh, T.R.; Wang, Y.; Shen, J. Plasmid-mediated colistin-resistance genes: Mcr. Trends Microbiol. 2024, 32, 365–378. [Google Scholar] [CrossRef]
- Portes, A.B.; Rodrigues, G.; Leitão, M.P.; Ferrari, R.; Conte Junior, C.A.; Panzenhagen, P. Global distribution of plasmid—Mediated colistin resistance mcr gene in Salmonella: A systematic review. J. Appl. Microbiol. 2022, 132, 872–889. [Google Scholar] [CrossRef]
- Janssen, A.B.; van Hout, D.; Bonten, M.J.; Willems, R.J.; van Schaik, W. Microevolution of acquired colistin resistance in Enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. J. Antimicrob. Chemother. 2020, 75, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Xiaomin, S.; Yiming, L.; Yuying, Y.; Zhangqi, S.; Yongning, W.; Shaolin, W. Global impact of mcr-1-positive Enterobacteriaceae bacteria on “one health”. Crit. Rev. Microbiol. 2020, 46, 565–577. [Google Scholar] [CrossRef]
- Sheng, H.; Suo, J.; Dai, J.; Wang, S.; Li, M.; Su, L.; Cao, M.; Cao, Y.; Chen, J.; Cui, S.; et al. Prevalence, antibiotic susceptibility and genomic analysis of Salmonella from retail meats in Shaanxi, China. Int. J. Food Microbiol. 2023, 403, 110305. [Google Scholar] [CrossRef]
- Zhan, Z.; He, S.; Hu, M.; Cui, Y.; Tai, C.; Shi, X. High Prevalence of Multidrug-resistant Salmonella from Retail Meat in Shanghai and the Molecular Characterization of blaNDM-9-carrying Plasmid. J. Future Foods 2025, in press. [Google Scholar] [CrossRef]
- Buddhasiri, S.; Sukjoi, C.; Tantibhadrasapa, A.; Mongkolkarvin, P.; Boonpan, P.; Pattanadecha, T.; Onton, N.; Laisiriroengrai, T.; Coratat, S.; Khantawa, B. Clinical characteristics, antimicrobial resistance, virulence genes and multi-locus sequence typing of non-typhoidal Salmonella Serovar typhimurium and enteritidis strains isolated from patients in Chiang Mai, Thailand. Microorganisms 2023, 11, 2425. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Lubbers, B.; Diaz-Campos, D.; Schwarz, S.; Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Supplement VET01S; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Nguyen, S.V.; Liu, C.; Liu, C.; Gan, X.; Wang, W.; Dong, Y.; Xu, J.; Li, F. Antimicrobial resistance of Salmonella Indiana from retail chickens in China and emergence of an mcr-1-harboring isolate with concurrent resistance to ciprofloxacin, cefotaxime, and colistin. Front. Microbiol. 2022, 13, 955827. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Alikhan, N.-F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, Y.; Huang, Y.; Liang, B.; Xu, X.; Xie, J.; Du, X.; Yang, C.; Liu, H.; Liu, H. Genetic characterization of mcr-1-positive multidrug-resistant Salmonella enterica serotype typhimurium isolated from intestinal infection in children and pork offal in China. Front. Microbiol. 2022, 12, 774797. [Google Scholar] [CrossRef]
- Hall, B.G.; Nisbet, J. Building phylogenetic trees from genome sequences with kSNP4. Mol. Biol. Evol. 2023, 40, msad235. [Google Scholar] [CrossRef]
- Subedi, P.; Paxman, J.J.; Wang, G.; Hor, L.; Hong, Y.; Verderosa, A.D.; Whitten, A.E.; Panjikar, S.; Santos-Martin, C.F.; Martin, J.L. Salmonella enterica BcfH is a trimeric thioredoxin-like bifunctional enzyme with both thiol oxidase and disulfide isomerase activities. Antioxid. Redox Signal. 2021, 35, 21–39. [Google Scholar] [CrossRef]
- Ledeboer, N.A.; Frye, J.G.; McClelland, M.; Jones, B.D. Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect. Immun. 2006, 74, 3156–3169. [Google Scholar] [CrossRef]
- She, Y.; Jiang, Y.; Luo, M.; Duan, X.; Xie, L.; Yang, C.; Xu, L.; Fu, Y.; Lv, Z.; Cai, R. Emergence of chromosomally located blaCTX-M-14b and qnrS1 in Salmonella enterica serotype Kentucky ST198 in China. Int. J. Antimicrob. Agents 2023, 62, 106896. [Google Scholar] [CrossRef]
- Wang, G.; Kang, X.; Wang, S.; Meng, C.; Gu, D.; Song, L.; Jiao, X.; Pan, Z. Prevalence and Characteristics of Salmonella from Tibetan Pigs in Tibet, China. Foodborne Pathog. Dis. 2024, 21, 560–569. [Google Scholar] [CrossRef]
- Gonçalves, C.; Silveira, L.; Rodrigues, J.; Furtado, R.; Ramos, S.; Nunes, A.; Pista, Â. Phenotypic and genotypic characterization of Escherichia coli and Salmonella spp. isolates from pigs at slaughterhouse and from commercial pork meat in Portugal. Antibiotics 2024, 13, 957. [Google Scholar] [CrossRef]
- Kim, T.; Kim, Y.; Kim, H.; San Moon, J.; Chon, J.; Song, K.-Y.; Seo, K.-H. Prevalence of Salmonella serotypes isolated from clinical samples in chicken farms and meat in slaughterhouses in South Korea. Poult. Sci. 2025, 104, 105147. [Google Scholar] [CrossRef]
- Garcia, L.N.H.; da Cunha Dias, S.; Costa, L.R.M.; de Melo Tavares, R.; da Silva Rodrigues, R.; Tiba-Casas, M.R.; Cossi, M.V.C.; Nero, L.A.; Yamatogi, R.S. Cross-contamination and antimicrobial resistance in diarrheagenic Escherichia coli and Salmonella spp. from a mixed bovine and swine slaughterhouse. Food Control. 2025, 176, 111406. [Google Scholar] [CrossRef]
- Siddi, G.; Piras, F.; Meloni, M.P.; Migoni, M.; Cuccu, M.; Simbula, F.; Serra, E.; Crobu, L.; Casula, M.; Manca, F. Salmonella and Yersinia enterocolitica through the pig meat chain in Sardinia: Occurrence, antimicrobial resistance and genetic insight. Ital. J. Food Saf. 2024, 14, 13199. [Google Scholar] [CrossRef] [PubMed]
- Tăbăran, A.; Dan, S.D.; Colobaţiu, L.M.; Mihaiu, M.; Condor, S.; Mărgăoan, R.; Crişan-Reget, O.L. Evaluation of Multidrug Resistance of Salmonella Isolated from Pork Meat Obtained from Traditional Slaughter Systems in Romania. Microorganisms 2024, 12, 2196. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, G.; Yang, C.; Nychas, G.-J.E.; Zhang, Y.; Mao, Y. The prevalence, distribution, and diversity of Salmonella isolated from pork slaughtering processors and retail outlets in the Shandong Province of China. Meat Sci. 2025, 221, 109734. [Google Scholar] [CrossRef] [PubMed]
- Kivali, V.; Roesel, K.; Dohoo, I.; Alinaitwe, L.; Bugeza, J.K.; Hoona, J.J.; Mugizi, D.R.; Kankya, C.; Dang-Xuan, S.; Szabo, I. Non-typhoidal Salmonella among slaughterhouse workers and in the pork value chain in selected districts of Uganda. Front. Vet. Sci. 2024, 11, 1427773. [Google Scholar] [CrossRef] [PubMed]
- Frey, E.; Stapleton, G.S.; Nichols, M.C.; Gollarza, L.M.; Birhane, M.; Chen, J.C.; McCullough, A.; Carleton, H.A.; Trees, E.; Hise, K.B. Antimicrobial resistance in multistate outbreaks of nontyphoidal Salmonella infections linked to animal contact—United States, 2015–2018. J. Clin. Microbiol. 2024, 62, e00981-23. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Dandachi, I.; Baron, S.A.; Daoud, Z.; Morand, S.; Rolain, J.-M. Banning colistin in feed additives: A small step in the right direction. Lancet Infect. Dis. 2021, 21, 29–30. [Google Scholar] [CrossRef]
- Taglialegna, A. Reviving colistin. Nat. Rev. Microbiol. 2023, 21, 411. [Google Scholar] [CrossRef]
- Nang, S.C.; Azad, M.A.; Velkov, T.; Zhou, Q.T.; Li, J. Rescuing the last-line polymyxins: Achievements and challenges. Pharmacol. Rev. 2021, 73, 679–728. [Google Scholar] [CrossRef]
- Li, C.; Gu, X.; Zhang, L.; Liu, Y.; Li, Y.; Zou, M.; Liu, B. The occurrence and genomic characteristics of mcr-1-harboring Salmonella from retail meats and eggs in Qingdao, China. Foods 2022, 11, 3854. [Google Scholar] [CrossRef]
- Hu, Y.; Nguyen, S.V.; Liu, C.; Wang, W.; Dong, Y.; Fanning, S.; Li, F. Complete genome and plasmid sequences of seven isolates of Salmonella enterica subsp. enterica harboring the mcr-1 gene obtained from food in China. Microbiol. Resour. Announc. 2019, 8, e00114-19. [Google Scholar] [CrossRef]
- Li, R.; Yu, H.; Xie, M.; Chen, K.; Dong, N.; Lin, D.; Chan, E.W.-C.; Chen, S. Genetic basis of chromosomally-encoded mcr-1 gene. Int. J. Antimicrob. Agents 2018, 51, 578–585. [Google Scholar] [CrossRef]
- Snesrud, E.; McGann, P.; Chandler, M. The birth and demise of the IS Apl1-mcr-1-IS Apl1 composite transposon: The vehicle for transferable colistin resistance. MBio 2018, 9, e02381-17. [Google Scholar] [CrossRef]
- Snesrud, E.; He, S.; Chandler, M.; Dekker, J.P.; Hickman, A.B.; McGann, P.; Dyda, F. A model for transposition of the colistin resistance gene mcr-1 by IS Apl1. Antimicrob. Agents Chemother. 2016, 60, 6973–6976. [Google Scholar] [CrossRef]
- Li, X.; Xie, Y.; Liu, M.; Tai, C.; Sun, J.; Deng, Z.; Ou, H.Y. oriTfinder: A web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 2018, 46, W229–W234. [Google Scholar] [CrossRef]
- Humphries, A.D.; Raffatellu, M.; Winter, S.; Weening, E.H.; Kingsley, R.A.; Droleskey, R.; Zhang, S.; Figueiredo, J.; Khare, S.; Nunes, J. The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol. Microbiol. 2003, 48, 1357–1376. [Google Scholar] [CrossRef]
- Clayton, D.J.; Bowen, A.J.; Hulme, S.D.; Buckley, A.M.; Deacon, V.L.; Thomson, N.R.; Barrow, P.A.; Morgan, E.; Jones, M.A.; Watson, M. Analysis of the role of 13 major fimbrial subunits in colonisation of the chicken intestines by Salmonella enterica serovar Enteritidis reveals a role for a novel locus. BMC Microbiol. 2008, 8, 228. [Google Scholar] [CrossRef]
- Nazari Moghadam, M.; Rahimi, E.; Shakerian, A.; Momtaz, H. Prevalence of Salmonella Typhimurium and Salmonella Enteritidis isolated from poultry meat: Virulence and antimicrobial-resistant genes. BMC Microbiol. 2023, 23, 168. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, M.; Holt, K.E.; Hall, R.M. The complete sequence of Salmonella genomic island SGI1-K. J. Antimicrob. Chemother. 2015, 70, 305–306. [Google Scholar] [CrossRef]
- Hall, R.M. Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol. 2010, 5, 1525–1538. [Google Scholar] [CrossRef] [PubMed]
Pig Slaughterhouses | Number of Samples | Number of Samples Positive for Salmonella | Percentage of Positive Samples (%) |
---|---|---|---|
One | 206 | 54 | 26.2 |
Two | 251 | 38 | 15.1 |
Total | 457 | 92 | 20.1 |
Antimicrobials | Number of Antimicrobial-Resistant Isolates Among (%) | ||||||
---|---|---|---|---|---|---|---|
All Salmonella (n = 92) | Typhimurium (n = 29) | Rissen (n = 29) | London (n = 20) | Derby (n = 11) | Kentucky (n = 2) | Corvallis (n = 1) | |
Folate pathway inhibitors | |||||||
Sulfisoxazole | 71 (77.2) | 27 (93.1) | 17 (58.6) | 14 (70.0) | 10 (90.9) | 2 (100) | 1 (100) |
Quinolones | |||||||
Nalidixic acid | 31 (33.7) | 16 (55.2) | 3 (10.3) | 3 (15.0) | 7 (63.6) | 2 (100) | 0 (0) |
Ofloxacin | 26 (28.3) | 12 (41.4) | 2 (6.9%) | 3 (15.0) | 7 (63.6) | 2 (100) | 0 (0) |
Ciprofloxacin | 26 (28.3) | 12 (41.4) | 2 (6.9%) | 3 (15.0) | 7 (63.6) | 2 (100) | 0 (0) |
β-Lactam | |||||||
Ampicillin | 54 (58.7) | 26 (89.7) | 11 (37.9) | 4 (20.0) | 10 (90.9) | 2 (100) | 1 (100) |
Cefotaxime | 2 (2.2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 0 (0) |
Cefepime | 2 (2.2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 0 (0) |
Tetracyclines | |||||||
Tetracycline | 82 (89.1) | 29 (100) | 26 (89.7) | 14 (70.0) | 10 (90.9) | 2 (100) | 1 (100) |
Tigecycline | 1 (1.1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (50.0) | 0 (0) |
Phenicols | |||||||
Chloramphenicol | 29 (31.5) | 15 (51.7) | 7 (24.1) | 2 (10.0) | 2 (18.2) | 2 (100) | 1 (100) |
Aminoglycosides | |||||||
Streptomycin | 29 (31.5) | 15 (51.7) | 7 (24.1) | 2 (10.0) | 2 (18.2) | 2 (100) | 1 (100) |
Gentamicin | 14 (15.2) | 1 (3.4) | 1 (3.4) | 2 (10.0) | 8 (72.7) | 2 (100) | 0 (0) |
Amikacin | 1 (1.1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (50.0) | 0 (0) |
Kanamycin | 14 (15.2) | 9 (31.0) | 3 (10.3) | 0 (0) | 0 (0) | 2 (100) | 0 (0) |
Polymyxins | |||||||
Colistin | 2 (2.2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 0 (0) |
Macrolides | |||||||
Azithromycin | 4 (4.3) | 0 (0) | 2 (6.9%) | 2 (10.0) | 0 (0) | 0 (0) | 0 (0) |
Fosfomycins | |||||||
Fosfomycin | 2 (2.2) | 0 (0) | 1 (3.4) | 1 (5.0) | 0 (0) | 0 (0) | 0 (0) |
Carbapenems | |||||||
Meropenem | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Multidrug resistance | 54 (58.7) | 26 (89.7) | 11 (37.9) | 4 (20.0) | 10 (90.9) | 2 (100.0) | 1 (100.0) |
Category | Antimicrobial Class | Antimicrobial Agent | Sal_P23040 | Sal_P23041 | ||
---|---|---|---|---|---|---|
MIC (mg/L) | Related Genes | MIC (mg/L) | Related Genes | |||
Antimicrobial susceptibility testing | Folate pathway inhibitors | Sulfisoxazole | >2048 | sul1 | >2048 | sul1 |
Quinolones | Nalidixic acid | >128 | qnrS1, gyrA (S83F, D87N), parC (S80I) | >128 | qnrS1, gyrA (S83F, D87N), parC (S80I) | |
Ofloxacin | 16 | 16 | ||||
Ciprofloxacin | 16 | 16 | ||||
β-Lactam | Ampicillin | >256 | blaCTX-M-55 | >256 | blaCTX-M-55 | |
Cefotaxime | 32 | 32 | ||||
Cefepime | 16 | 16 | ||||
Tetracyclines | Tetracycline | 128 | tet(A) | 64 | tet(A) | |
Tigecycline | 4 | <0.5 | ||||
Phenicols | Chloramphenicol | 128 | floR | 128 | floR | |
Aminoglycosides | Streptomycin | 128 | aac (6’)-Iaa, aadA7, aph (3’)-Ia | 128 | aac (6’)-Iaa, aadA7, aph (3’)-Ia | |
Gentamicin | 16 | 16 | ||||
Amikacin | 64 | <4 | ||||
Kanamycin | 256 | 256 | ||||
Polymyxins | Colistin | 4 | mcr-1.1 | 4 | mcr-1.1 | |
Macrolides | Azithromycin | <2 | <2 | |||
Fosfomycins | Fosfomycin | <4 | <4 | |||
Carbapenems | Meropenem | <0.25 | <0.25 | |||
Collection time | 2023 | 2023 | ||||
Serotype | Salmonella Kentucky | Salmonella Kentucky | ||||
Sequence type | ST198 | ST198 | ||||
mcr-1 location | IncI2 | IncI2 | ||||
Conjugation rate | (2.3 ± 0.23) × 10−3 | (1.8 ± 0.14) × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, Z.; Wei, L.; Shi, C.; Zhan, Z. Antimicrobial Resistance of Salmonella and Characterization of Two Mcr-1-Harboring Isolates from Pork Products in Guangdong, China. Foods 2025, 14, 2933. https://doi.org/10.3390/foods14172933
Mai Z, Wei L, Shi C, Zhan Z. Antimicrobial Resistance of Salmonella and Characterization of Two Mcr-1-Harboring Isolates from Pork Products in Guangdong, China. Foods. 2025; 14(17):2933. https://doi.org/10.3390/foods14172933
Chicago/Turabian StyleMai, Zifeng, Lusan Wei, Chunlei Shi, and Zeqiang Zhan. 2025. "Antimicrobial Resistance of Salmonella and Characterization of Two Mcr-1-Harboring Isolates from Pork Products in Guangdong, China" Foods 14, no. 17: 2933. https://doi.org/10.3390/foods14172933
APA StyleMai, Z., Wei, L., Shi, C., & Zhan, Z. (2025). Antimicrobial Resistance of Salmonella and Characterization of Two Mcr-1-Harboring Isolates from Pork Products in Guangdong, China. Foods, 14(17), 2933. https://doi.org/10.3390/foods14172933