Integrating a Soft Pneumatic Gripper in a Robotic System for High-Speed Stable Handling of Raw Oysters
Abstract
1. Introduction
2. Materials and Methods
2.1. Configuration of Robotic System for Raw-Oyster Handling
2.1.1. Robotic System
2.1.2. Soft Pneumatic Gripper
2.1.3. Conveyor Belt
2.2. Setup of Finite Element Analysis
2.2.1. FEA of Actuation Pressure Effect on Finger Deflection
2.2.2. FEA of Actuation Pressure Effect on Grasping Force
2.2.3. Evaluation of Optimal Actuation Pressure
2.3. Setup for Raw-Oyster Experiments
3. Results
3.1. Results of Motion Measurement
3.2. Results of Finite Element Analysis
3.2.1. FEA of Actuation Pressure Effect on Finger Deflection
3.2.2. FEA of Actuation Pressure Effect on Grasping Force
3.2.3. Results of Optimal Actuation Pressure
3.3. Results of Raw Oyster Experiments
3.3.1. Experimental Results of Different Actuation Pressures
3.3.2. Experimental Results of Different Oyster Orientation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | Weight [g] | Length L [mm] | Wide W [mm] | Height H [mm] |
---|---|---|---|---|
1 | 13 | 59.5 | 25.8 | 16.9 |
2 | 12 | 59.0 | 23.8 | 14.6 |
3 | 12 | 59.5 | 27.9 | 17.6 |
4 | 14 | 52.2 | 28.2 | 19.7 |
5 | 15 | 54.8 | 29.2 | 17.0 |
6 | 14 | 61.3 | 25.2 | 15.8 |
7 | 12 | 57.5 | 26.1 | 16.7 |
8 | 13 | 59.2 | 25.3 | 19.5 |
9 | 12 | 48.5 | 24.2 | 18.0 |
10 | 13 | 55.8 | 26.2 | 17.5 |
References
- Boyd, C.E.; McNevin, A.A.; Davis, R.P. The contribution of fisheries and aquaculture to the global protein supply. Food Secur. 2022, 14, 805–827. [Google Scholar] [CrossRef]
- Domech, P.C.; Cooney, R.; Tahar, A.; Kennedy, A.; Wan, A.H.; Clifford, E. Oysters, a sustainable bluefood? npj Sustain. Agric. 2025, 3, 24. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Y.; Wang, L.; Lee, J.H. Oysters. In Genome Mapping and Genomics in Fishes and Aquatic Animals; Springer: Berlin/Heidelberg, Germany, 2008; pp. 163–175. [Google Scholar]
- Sun, X.; Filgueira, R.; Sun, Y.; Han, M.; Tang, Q.; Sun, Y. Intensive oyster farming enhances carbon storage in sediments over decades. Commun. Earth. Environ. 2025, 6, 383. [Google Scholar] [CrossRef]
- Fajrin, M. Oyster Farming Management. J. Fish Health 2025, 5, 388–393. [Google Scholar] [CrossRef]
- Hasegawa, N.; Dumbauld, B.R.; Hori, M.; Watanabe, S.; Rust, M.; Forster, Z. Comparative study of the impact of environmental changes on oyster culture between USA and Japan, as collaborative research under UJNR. Bull. Jpn. Fish. Res. Educ. Agency 2021, 50, 115–121. [Google Scholar]
- Zhang, R.; Chen, X.; Wan, Z.; Wang, M.; Xiao, X. Deep learning-based oyster packaging system. Appl. Sci. 2023, 13, 13105. [Google Scholar] [CrossRef]
- Cui, T.; Gine, G.R.; Lei, Y.; Shi, Z.; Jiang, B.; Yan, Y.; Zhang, H. Ready-to-cook foods: Technological developments and future trends—A systematic review. Foods 2024, 13, 3454. [Google Scholar] [CrossRef]
- Payal, A.; Nimbkar, S.; Bharathi, R.M.; Moses, J.A.; Anandharamakrishnan, C. Robotics and automation in the food industry. In Emerging Technologies for the Food Industry, 1st ed.; Anandharamakrishnan, C., Moses, J.A., Eds.; Apple Academic Press: New York, NY, USA, 2024; Volume 3, pp. 31–62. [Google Scholar]
- Zhang, Y.; Wang, Z. Review of robotic grippers for high-speed handling of fragile foods. Adv. Robotics 2025, 1–17. [Google Scholar] [CrossRef]
- Qu, H.R.; Wang, J.; Lei, L.R.; Su, W.H. Computer Vision-Based Robotic System Framework for the Real-Time Identification and Grasping of Oysters. Appl. Sci. 2025, 15, 3971. [Google Scholar] [CrossRef]
- Abdullayev, H.; Huseynzade, E. Robotic grippers in food industry: A short review. J. Eng. Manag. Inf. 2025, 3, 239–244. [Google Scholar]
- Love, D.C.; Lane, R.M.; Davis, B.J.; Clancy, K.; Fry, J.P.; Harding, J.; Hudson, B. Performance of cold chains for Chesapeake Bay farmed oysters and modeled growth of Vibrio parahaemolyticus. J. Food Protect. 2019, 82, 168–178. [Google Scholar] [CrossRef]
- Bi, J. Aquatic Food Products: Processing Technology and Quality Control. Foods 2024, 13, 2806. [Google Scholar] [CrossRef]
- Alarcón Elvira, F.; Pardío Sedas, V.T.; Martínez Herrera, D.; Quintana Castro, R.; Oliart Ros, R.M.; López Hernández, K.; Flores Primo, A.; Ramírez Elvira, K. Comparative survival and the cold-induced gene expression of pathogenic and nonpathogenic vibrio parahaemolyticus from tropical Eastern oysters during cold storage. Int. J. Environ. Res. Public Health 2020, 17, 1836. [Google Scholar] [CrossRef]
- Dabic-Miletic, S. The challenges of integrating AI and robotics in sustainable WMS to improve supply chain economic resilience. J. Ind. Int. 2024, 2, 119–131. [Google Scholar] [CrossRef]
- Rajalahti, R. Agricultural Innovation in Developing East Asia: Productivity, Safety, and Sustainability, 1st ed.; World Bank Publications: Washington, DC, USA, 2021; pp. 48–49. [Google Scholar]
- Feist, L. Imbalances Between Supply and Demand: Recent Causes of Labour Shortages in Advanced Economies; ILO: Geneva, Switzerland, 2024. [Google Scholar]
- Lal, S.; Ahirwar, S.B.; Kanojia, S.; Rai, S.; Vidhya, C.S.; Gupta, S.; Nautiyal, C.T.; Nautiyal, P. Robot-assisted Aquaculture and Sustainable Seafood Production for Enhanced Food Security. Int. J. Environ. Clim. Chang. 2024, 14, 215–220. [Google Scholar] [CrossRef]
- Wang, Z.; Hirai, S.; Kawamura, S. Challenges and opportunities in robotic food handling: A review. Front. Robot. AI 2022, 8, 789107. [Google Scholar] [CrossRef] [PubMed]
- İflazoglu, N.; Can, I.I. The role of robotization in reducing the perception of unskilled labor in food and beverage businesses. Worldw. Hosp. Tour. Themes 2024, 16, 634–645. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Singh, S.; Bahmid, N.A.; Sasidharan, A. Applying innovative technological interventions in the preservation and packaging of fresh seafood products to minimize spoilage-A systematic review and meta-analysis. Heliyon 2024, 10, e29066. [Google Scholar] [CrossRef]
- Martins, F.N. Smart Robotics for Automation. Sensors 2024, 24, 3900. [Google Scholar] [CrossRef]
- Da Silva, B.A.; de Fátima Henriques Lourenço, L.; Silva Silva, N.; de Jesus Costa Fernandes, G.; Da Rocha, K.S.; Joele, M.R.S.P.; Araújo, E.A.F. The Evaluation of Oyster Marinating (Crassostrea gasar) and Pasteurization Process in Vacuum Packaging during Storage. J. Culin. Sci. Technol. 2023, 21, 759–776. [Google Scholar] [CrossRef]
- Wang, Z.; Kanegae, R.; Hirai, S. Circular shell gripper for handling food products. Soft Robot. 2021, 8, 542–554. [Google Scholar] [CrossRef]
- Chakravorty, A. Food and Industry 5.0: Transforming the Food System for a Sustainable Future, 1st ed.; Springer: Cham, Switzerland, 2025; pp. 107–129. [Google Scholar]
- Xavier, M.S.; Tawk, C.D.; Fleming, A.; Zolfagharian, A.; Pinskier, J.; Howard, D.; Young, T.; Lai, J.; Harrison, S.M.; Yong, Y.K.; et al. Soft pneumatic actuators: A review of design, fabrication, modeling, sensing, control and applications. IEEE Access 2022, 10, 59442–59485. [Google Scholar] [CrossRef]
- Zhang, Y.; Kutani, K.; Wang, Z. Durability Testing of Soft Pneumatic Actuators with A Portable Device. In Proceedings of the 2024 International Conference on Advanced Mechatronic Systems, Shiga, Japan, 26–30 November 2024. [Google Scholar]
- Wang, Q.; Zhang, Y.; Liu, W.; Li, Q.; Zhang, J.; Knoll, A.; Zhou, M.; Jiang, H.; Ying, Y. Toward Damage-Less Robotic Fragile Fruit Grasping: A Closed-Loop Force Control Method for Pneumatic-Driven Soft Gripper. Soft Robot 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R. The Stability and Shelf Life of Food, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 43–76. [Google Scholar]
- Li, T.; Yan, Y.; Yu, C.; An, J.; Wang, Y.; Chen, G. A comprehensive review of robot intelligent grasping based on tactile perception. Robot. Cim-Int. Manuf. 2024, 90, 102792. [Google Scholar] [CrossRef]
- Elsamanty, M.; Korany, S.K.; Sokar, M. Advanced Geometric Optimization and Simulation of 2-DOF Soft Pneumatic Grippers. Eng. Res. J. 2024, 183, 24–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Hashizume, S.; Wang, Z. Stiffness Evaluation of the Robotic Gripper for High-Speed Handling of the Deformable Object. In Proceedings of the 2025 IEEE International Conference on Real-time Computing and Robotics, Toyama, Japan, 1–6 June 2025. [Google Scholar]
- Liu, Y.; Hou, J.; Li, C.; Wang, X. Intelligent soft robotic grippers for agricultural and food product handling: A brief review with a focus on design and control. Adv. Intell. Syst. 2023, 5, 2300233. [Google Scholar] [CrossRef]
- Vashishth, R.; Pandey, A.K.; Kaur, P.; Semwal, A.D. Smart Technologies in Food Manufacturing, 1st ed.; Springer: Singapore, 2022; pp. 125–155. [Google Scholar]
- Amend, J.; Cheng, N.; Fakhouri, S.; Culley, B. Soft robotics commercialization: Jamming grippers from research to product. Soft Robot. 2016, 3, 213–222. [Google Scholar] [CrossRef]
- Kondoyanni, M.; Loukatos, D.; Maraveas, C.; Drosos, C.; Arvanitis, K.G. Bio-inspired robots and structures toward fostering the modernization of agriculture. Biomimetics 2022, 7, 69. [Google Scholar] [CrossRef]
- Chua, P.Y.; Ilschner, T.; Caldwell, D.G. Robotic manipulation of food products–a review. Ind. Robot. 2003, 30, 345–354. [Google Scholar] [CrossRef]
- Subash, A.; Ramanathan, H.N.; Šostar, M. From catch to consumer: Enhancing seafood processing management with Industry 4.0 innovations. Discov. Food 2024, 4, 43. [Google Scholar] [CrossRef]
- Sun, Q.; Yuan, Y.; Xu, B.; Gao, S.; Zhai, X.; Xu, F.; Shi, J. Innovative Technologies Reshaping Meat Industrialization: Challenges and Opportunities in the Intelligent Era. Foods 2025, 1413, 2230. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Kutani, K.; Kawamura, S. A Soft-Containing Gripper for High-Speed Handling of Breadcrumb-Coated Oysters. J. Field. Robot. 2024, 42, 1–15. [Google Scholar] [CrossRef]
- Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R.F.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C.J.; Whitesides, G.M. Pneumatic Networks for Soft Robotics That Actuate Rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170. [Google Scholar] [CrossRef]
- Xavier, M.S.; Fleming, A.J.; Yong, Y.K. Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments. Adv. Intell. Syst. 2021, 3, 2000187. [Google Scholar] [CrossRef]
- Wang, Z.; Or, K.; Hirai, S. A Dual-Mode Soft Gripper for Food Packaging. Robot. Auton. Syst. 2020, 125, 103427. [Google Scholar] [CrossRef]
- Marques, D.M.C.; Jabouille, M.; Gusmão, A.; Leite, M.; Sanjuan-Alberte, P.; Ferreira, F.C. Microalgae-enriched (bio) inks for 3D bioprinting of cultured seafood. npj Sci. Food 2025, 9, 23. [Google Scholar] [CrossRef]
- Mredha, M.T.I.; Zhang, X.; Nonoyama, T.; Nakajima, T.; Kurokawa, T.; Takagi, Y.; Gong, J.P. Swim bladder collagen forms hydrogel with macroscopic superstructure by diffusion induced fast gelation. J. Mater. Chem. B 2015, 3, 7658–7666. [Google Scholar] [CrossRef] [PubMed]
- St. Pierre, S.R.; Darwin, E.C.; Adil, D.; Aviles, M.C.; Date, A.; Dunne, R.A.; Lall, Y.; Vallecillo, M.P.; Medina, V.A.P.; Linka, K.; et al. The mechanical and sensory signature of plant-based and animal meat. npj Sci. Food 2024, 8, 94. [Google Scholar] [CrossRef]
- Ichnowski, J.; Avigal, Y.; Liu, Y.; Goldberg, K. Gomp-fit: Grasp-optimized motion planning for fast inertial transport. In Proceedings of the 2022 International Conference on Robotics and Automation, Philadelphia, PA, USA, 23–27 May 2022. [Google Scholar]
- Rashid, S.; Bashir, O.; Majid, I. Different mechanical conveyors in food processing. In Transporting Operations of Food Materials Within Food Factories, 1st ed.; Jafari, S.M., Malekjani, N., Eds.; Woodhead Publishing: Cambridge, UK, 2023; pp. 253–263. [Google Scholar]
Parameter | Material and Value |
---|---|
Shape | Smooth and glossy |
Material (front/back) | PU/PET |
60 kPa | 12.33% |
Surface friction coefficient | 0.15 |
Actuation Pressure (kPa) | (%) |
---|---|
10 | 138.69 |
20 | 72.28 |
30 | 46.91 |
40 | 31.75 |
50 | 20.11 |
60 | 12.33 |
70 | 6.61 |
80 | 2.78 |
Actuation Pressure (kPa) | Peak Force (N) | Average Force (N) |
---|---|---|
10 | 6.01 | 0.67 |
20 | 3.58 | 0.59 |
30 | 3.12 | 0.50 |
40 | 2.46 | 0.49 |
50 | 2.98 | 1.23 |
60 | 4.51 | 2.47 |
70 | 4.31 | 2.86 |
Actuation Pressure (kPa) | (N) | (N) | (N) |
---|---|---|---|
10 | 3.08 | 3.06 | 5.04 |
40 | 1.69 | 1.76 | 3.74 |
80 | 6.12 | 5.95 | 7.83 |
Actuation Pressure (kPa) | Success Rate of Handling |
---|---|
10 | 3/5 (I, II) |
20 | 4/5 (II) |
40 | 5/5 |
80 | 3/5 (II, III) |
Actuation Pressure (°) | Oyster Orientation 45° | Oyster Orientation 90° |
---|---|---|
20 | 2/5 (II) | 3/5 (II) |
40 | 5/5 | 5/5 |
80 | 3/5 (II, III) | 2/5 (II, III) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Z. Integrating a Soft Pneumatic Gripper in a Robotic System for High-Speed Stable Handling of Raw Oysters. Foods 2025, 14, 2875. https://doi.org/10.3390/foods14162875
Zhang Y, Wang Z. Integrating a Soft Pneumatic Gripper in a Robotic System for High-Speed Stable Handling of Raw Oysters. Foods. 2025; 14(16):2875. https://doi.org/10.3390/foods14162875
Chicago/Turabian StyleZhang, Yang, and Zhongkui Wang. 2025. "Integrating a Soft Pneumatic Gripper in a Robotic System for High-Speed Stable Handling of Raw Oysters" Foods 14, no. 16: 2875. https://doi.org/10.3390/foods14162875
APA StyleZhang, Y., & Wang, Z. (2025). Integrating a Soft Pneumatic Gripper in a Robotic System for High-Speed Stable Handling of Raw Oysters. Foods, 14(16), 2875. https://doi.org/10.3390/foods14162875