Rapid and Quantitative Prediction of Tea Pigments Content During the Rolling of Black Tea by Multi-Source Information Fusion and System Analysis Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Tea Pigments Content Quantitative Analysis
2.3. Image and NIRS Information Acquisition
2.4. Data Set Partitioning
2.5. Image Feature Information Preprocessing
2.6. Spectral Characteristic Information Preprocessing
2.7. Data Information Fusion Strategy
2.8. Establishment of Prediction Models
2.9. Evaluation Indexes of Prediction Models
3. Results and Discussion
3.1. Results Analysis of Tea Pigments Content
3.2. Image Color Features Responses Analysis and Features Extraction
3.3. Results of Prediction Models Based on Image Information
3.4. Spectral Characteristic Responses Analysis
3.5. Results of Prediction Models Based on Spectral Characteristic
3.6. Prediction Models Based on Multi-Source Information Fusion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Yu, S.; Yang, S.; Ni, D.; Jiang, X.; Zhang, D.; Zhou, J.; Li, C.; Yu, Z. Study on taste quality formation and leaf conducting tissue changes in six types of tea during their manufacturing processes. Food Chem.-X 2023, 18, 100731. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Chang, H.; Fan, Z.; Ma, S.; Chen, Q.; Liu, Z. Monitoring changes in constituents during black tea fermentation using snapshot multispectral imaging and 1D-CNN enhanced with data augmentation. Comput. Electron. Agric. 2025, 237, 110643. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Lai, X.; Hao, M.; Sun, L.; Li, Q.; Chen, R.; Li, Q.; Sun, S.; Wang, B.; et al. Effects of fermentation duration on the flavour quality of large leaf black tea based on metabolomics. Food Chem. 2024, 444, 138680. [Google Scholar] [CrossRef] [PubMed]
- Long, P.; Kanyasiri, R.; Ho, C.; Zhang, L. Thearubigins: Formation, structure, health benefit and sensory property. Trends Food Sci. Technol. 2023, 133, 37–48. [Google Scholar] [CrossRef]
- Xu, A.; Chen, L.; Shi, Y.; Wang, H.; Ye, Q.; Wang, Y.; Liu, Z.; Xu, P. Oxidases and rolling dominate black tea polysaccharide conjugates formation: Enzymatic and non-enzymatic mechanisms. Food Chem. 2025, 145765, in press. [Google Scholar] [CrossRef]
- Huang, D.; Wang, H.; Wu, Y.; Sun, C.; Fu, M.; Zhang, Y.; Yang, Y.; Wan, X.; Li, Y.; Chen, Q. Comprehensive analysis reveals the contribution of “rolling-anaerobic” processing to the improved aroma, taste and color of GABA black tea. Lwt-Food Sci. Technol. 2024, 212, 116966. [Google Scholar] [CrossRef]
- Chen, Q.; Fu, Y.; Heng, W.; Yu, S.; Xie, F.; Dong, F.; Lin, Z.; Dai, W.; Fu, H. Re-rolling treatment in the fermentation process improves the taste and liquor color qualities of black tea. Food Chem.-X 2024, 21, 101143. [Google Scholar] [CrossRef]
- Zhao, T.; Huang, X.; Zhao, J.; Yang, C.; Zhang, S.; Huang, J.; Wang, K.; Liu, Z.; Zhu, M. Theaflavins: An underexploited functional compound in black tea. Trends Food Sci. Tech. 2024, 154, 104755. [Google Scholar] [CrossRef]
- Zou, H.; Shen, S.; Lan, T.; Sheng, X.; Zan, J.; Jiang, Y.; Du, Q.; Yuan, H. Prediction Method of the Moisture Content of Black Tea during Processing Based on the Miniaturized Near-Infrared Spectrometer. Horticulturae 2022, 8, 1170. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, X.; Yan, B.; Ren, F.; Chen, B.; Han, Z.; Yao, X.; He, S.; Liu, H. Evaluation and categorization of various pea cultivars utilizing near-infrared spectroscopy in conjunction with multivariate statistical techniques. Food Chem. 2025, 474, 143268. [Google Scholar] [CrossRef]
- Zou, H.; Lan, T.; Jiang, Y.; Yu, X.-L.; Yuan, H. Research on Rapid Detection Methods of Tea Pigments Content During Rolling of Black Tea Based on Machine Vision Technology. Foods 2024, 13, 3718. [Google Scholar] [CrossRef] [PubMed]
- Gan, N.; Wang, Y.; Ren, G.; Li, M.; Ning, J.; Zhang, Z.; Quan, L. Design and testing of a machine-vision-based air-blow sorting platform for famous tea fresh leaves production. Comput. Electron. Agric. 2023, 214, 108334. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, R.; Yang, C.; Hu, B.; Luo, X.; Li, Y.; Dong, C. Research on moisture content detection method during green tea processing based on machine vision and near-infrared spectroscopy technology. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 271, 120921. [Google Scholar] [CrossRef] [PubMed]
- An, T.; Jiang, Y.; Zou, H.; Xuan, X.; Zhang, J.; Yuan, H. Evaluation of Withering Quality of Black Tea Based on Multi-Information Fusion Strategy. Foods 2025, 14, 1442. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, Y.; Wu, L. Advancing tea detection with artificial intelligence: Strategies, progress, and future prospects. Trends Food Sci. Tech. 2024, 153, 104731. [Google Scholar] [CrossRef]
- Xia, Z.; Zhou, Q.; Yang, S.; Song, F.; Li, Z.; Wang, J.; Ling, C.; Song, C. Optimization strategy for black tea digital blending by fusing image and spectral information. Food Res. Int. 2025, 202, 115563. [Google Scholar] [CrossRef]
- Wang, S.; Altaner, C.; Feng, L.; Liu, P.; Song, Z.; Li, L.; Gui, A.; Wang, X.; Ning, J.; Zheng, P. A review: Integration of NIRS and chemometric methods for tea quality control-principles, spectral preprocessing methods, machine learning algorithms, research progress, and future directions. Food Res. Int. 2025, 205, 115870. [Google Scholar] [CrossRef]
- Liu, H.; Chen, F.; Zhang, L.; Meng, D.; Sun, H. Improvement method for tea leaf moisture content prediction using VIS-NIR spectrum based on transfer learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 343, 126571. [Google Scholar] [CrossRef]
- Shi, S.; Feng, J.; Yang, L.; Xing, J.; Pan, G.; Tang, J.; Wang, J.; Liu, J.; Cao, C.; Jiang, Y. Combination of NIR spectroscopy and algorithms for rapid differentiation between one-year and two-year stored rice. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 291, 122343. [Google Scholar] [CrossRef]
- Liu, M.; Wang, R.; Shi, D.; Cao, R. Non-destructive prediction of tea polyphenols during Pu-erh tea fermentation using NIR coupled with chemometrics methods. J. Food Compos. Anal. 2024, 131, 106247. [Google Scholar] [CrossRef]
- Hu, Y.; Sheng, W.; Adade, S.Y.-S.S.; Wang, J.; Li, H.; Chen, Q. Comparison of machine learning and deep learning models for detecting quality components of vine tea using smartphone-based portable near-infrared device. Food Control 2025, 174, 111244. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Li, L.; Ning, J.; Zhang, Z. Green analytical assay for the quality assessment of tea by using pocket-sized NIR spectrometer. Food Chem. 2021, 345, 128816. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Guo, J.; Xia, H.; Ma, C.; Qiao, X. A black tea quality testing method for scale production using CV and NIRS with TCN for spectral feature extraction. Food Chem. 2025, 464, 141567. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Cheng, J.; Wang, J.; Sun, X.; Sun, S.; Zhang, Z. Enhanced cross-category models for predicting the total polyphenols, caffeine and free amino acids contents in Chinese tea using NIR spectroscopy. Lwt-Food Sci. Technol. 2018, 96, 90–97. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, R.; Xiang, J.; Lin, Z.; Chen, C.; Yu, W. Progress of near infrared spectroscopy in tea research. Food Chem. 2025, 487, 144691. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, M.; Chen, K.; Jiang, X.; Ding, Z.; Zhang, H.; Lu, M.; Qi, D.; Dong, C. Predictive models for sensory score and physicochemical composition of Yuezhou Longjing tea using near-infrared spectroscopy and data fusion. Talanta 2024, 273, 125892. [Google Scholar] [CrossRef]
- Yuan, L.-M.; Mao, F.; Huang, G.; Chen, X.; Wu, D.; Li, S.; Zhou, X.; Jiang, Q.; Lin, D.; He, R. Models fused with successive CARS-PLS for measurement of the soluble solids content of Chinese bayberry by vis-NIRS technology. Plant Physiol. Bioch. 2020, 169, 111308. [Google Scholar] [CrossRef]
- Ren, G.; Yin, L.; Wu, R.; Ning, J. Rapid detection of ash content in black tea using a homemade miniature near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 308, 123740. [Google Scholar] [CrossRef]
- Wen, M.; Deng, B.; Cao, D.; Yun, Y.; Yang, R.; Lu, H.; Liang, Y. The model adaptive space shrinkage (MASS) approach: A new method for simultaneous variable selection and outlier detection based on model population analysis. Analyst 2016, 141, 5586–5597. [Google Scholar] [CrossRef]
- Zhang, H.; He, Q.; Yang, C.; Lu, M.; Liu, Z.; Zhang, X.; Li, X.; Dong, C. Research on the Detection Method of Organic Matter in Tea Garden Soil Based on Image Information and Hyperspectral Data Fusion. Sensors 2023, 23, 9684. [Google Scholar] [CrossRef]
- Li, M.; Dong, S.; Cao, S.; Cui, Q.; Chen, Q.; Ning, J.; Li, L. A rapid aroma quantification method: Colorimetric sensor-coupled multidimensional spectroscopy applied to black tea aroma. Talanta 2023, 263, 124622. [Google Scholar] [CrossRef]
- He, Q.; Guo, Y.; Li, X.; He, Y.; Lin, Z.; Zeng, H. Spectral Fingerprinting of Tencha Processing: Optimising the Detection of Total Free Amino Acid Content in Processing Lines by Hyperspectral Analysis. Foods 2024, 13, 3862. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, L.; Liu, Y.; Cui, Q.; Ning, J.; Zhang, Z. Enhanced quality monitoring during black tea processing by the fusion of NIRS and computer vision. J. Food Eng. 2021, 304, 110599. [Google Scholar] [CrossRef]
- Kutsanedzie, F.; Chen, Q.; Hassan, M.; Yang, M.; Sun, H.; Rahman, M. Near infrared system coupled chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution. Food Chem. 2018, 240, 231–238. [Google Scholar] [CrossRef]
Model Selection | Predictive Indicators | Pretreatment Methods | Training Set | Testing Set | |||
---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | |||
PLSR | TFs | Z-score | 0.9104 | 0.0897 | 0.9032 | 0.1280 | 1.9682 |
Z-score + PCA | 0.9240 | 0.0842 | 0.9124 | 0.0818 | 2.1542 | ||
TRs | Z-score | 0.8956 | 0.5836 | 0.8828 | 0.5508 | 1.9820 | |
Z-score + PCA | 0.9246 | 0.5055 | 0.9191 | 0.5516 | 2.3890 | ||
TBs | Z-score | 0.9161 | 0.5555 | 0.9021 | 0.5111 | 1.6003 | |
Z-score + PCA | 0.9363 | 0.4057 | 0.9289 | 0.4566 | 2.2239 |
Model Selection | Predictive Indicators | Pretreatment Methods | Training Set | Testing Set | |||
---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | |||
SVR | TFs | Z-score + PCA | 0.9488 | 0.0689 | 0.9314 | 0.0761 | 2.4706 |
TRs | 0.9483 | 0.4198 | 0.9404 | 0.4901 | 2.4640 | ||
TBs | 0.9486 | 0.3747 | 0.9352 | 0.4473 | 2.4890 | ||
LSSVR | TFs | 0.9565 | 0.0863 | 0.9468 | 0.0820 | 2.6070 | |
TRs | 0.9473 | 0.4015 | 0.9451 | 0.4645 | 2.8988 | ||
TBs | 0.9557 | 0.3635 | 0.9440 | 0.4451 | 2.7910 |
Predictive Indicators | Pretreatment Methods | Training Set | Testing Set | |||
---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | ||
TFs | Raw | 0.8698 | 0.1192 | 0.8179 | 0.1166 | 1.4196 |
SG | 0.8945 | 0.0966 | 0.8508 | 0.1123 | 1.4780 | |
MSC | 0.8950 | 0.1031 | 0.8554 | 0.1057 | 1.5802 | |
SNV | 0.9117 | 0.0868 | 0.8871 | 0.1049 | 1.9764 | |
Max-min | 0.8443 | 0.1129 | 0.8374 | 0.1352 | 1.4495 | |
Detrend | 0.9065 | 0.0964 | 0.8627 | 0.1155 | 1.8653 | |
S-G-1st | 0.9036 | 0.0938 | 0.8612 | 0.1397 | 1.7433 | |
S-G-2nd | 0.8966 | 0.1046 | 0.8537 | 0.1207 | 1.7210 | |
TRs | Raw | 0.9011 | 0.5743 | 0.8509 | 0.6618 | 1.7021 |
SG | 0.9151 | 0.5093 | 0.8825 | 0.6263 | 1.9353 | |
MSC | 0.9357 | 0.4499 | 0.9108 | 0.5486 | 2.4130 | |
SNV | 0.9042 | 0.6021 | 0.8725 | 0.5911 | 1.8735 | |
Max-min | 0.8850 | 0.5865 | 0.8254 | 0.7868 | 1.7433 | |
Detrend | 0.9253 | 0.5647 | 0.8800 | 0.6672 | 1.9817 | |
S-G-1st | 0.8833 | 0.6253 | 0.8341 | 0.7672 | 1.6213 | |
S-G-2nd | 0.8925 | 0.5461 | 0.8388 | 0.7619 | 1.7510 | |
TBs | Raw | 0.8750 | 0.6030 | 0.8539 | 0.5898 | 1.7476 |
SG | 0.9446 | 0.4290 | 0.9326 | 0.5314 | 2.2306 | |
MSC | 0.9179 | 0.4704 | 0.8822 | 0.5626 | 2.0572 | |
SNV | 0.9003 | 0.5395 | 0.8817 | 0.5751 | 1.6276 | |
Max-min | 0.9082 | 0.5137 | 0.8742 | 0.5665 | 2.0304 | |
Detrend | 0.9193 | 0.4951 | 0.8715 | 0.6161 | 1.9551 | |
S-G-1st | 0.9109 | 0.5039 | 0.8784 | 0.5866 | 2.0458 | |
S-G-2nd | 0.8824 | 0.5463 | 0.8779 | 0.6610 | 1.6151 |
Model Selection | Pretreatment Methods | Predictive Indicators | Training Set | Testing Set | |||
---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | |||
SVR | SNV | TFs | 0.9389 | 0.0731 | 0.9186 | 0.0896 | 2.2474 |
MSC | TRs | 0.9450 | 0.4061 | 0.9377 | 0.5144 | 2.4189 | |
SG | TBs | 0.9498 | 0.4218 | 0.9340 | 0.4356 | 2.5134 | |
LSSVR | SNV | TFs | 0.9475 | 0.0698 | 0.9287 | 0.0799 | 2.3814 |
MSC | TRs | 0.9542 | 0.3776 | 0.9405 | 0.4259 | 2.7297 | |
SG | TBs | 0.9529 | 0.3565 | 0.9470 | 0.4021 | 2.5627 |
Predictive Indicators | Pretreatment Methods | Training Set | Testing Set | |||
---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | ||
TFs | SNV + BOSS | 0.9203 | 0.0858 | 0.9117 | 0.0929 | 2.0002 |
SNV + i-VISSA | 0.9414 | 0.0751 | 0.9279 | 0.0862 | 2.1081 | |
SNV + MASS | 0.9520 | 0.0685 | 0.9323 | 0.0784 | 2.6718 | |
SNV + CARS | 0.9451 | 0.0719 | 0.9289 | 0.0827 | 2.3434 | |
TRs | MSC + BOSS | 0.9227 | 0.5121 | 0.9139 | 0.5150 | 2.0690 |
MSC + i-VISSA | 0.9329 | 0.4985 | 0.9216 | 0.4690 | 2.2400 | |
MSC + MASS | 0.9605 | 0.3711 | 0.9476 | 0.4100 | 3.0596 | |
MSC + CARS | 0.9572 | 0.4338 | 0.9411 | 0.4656 | 2.9377 | |
TBs | SG + BOSS | 0.9297 | 0.4385 | 0.9160 | 0.4904 | 2.2078 |
SG + i-VISSA | 0.9247 | 0.4831 | 0.9177 | 0.4571 | 2.0680 | |
SG + MASS | 0.9569 | 0.3704 | 0.9476 | 0.3981 | 2.8427 | |
SG + CARS | 0.9532 | 0.3920 | 0.9266 | 0.4143 | 2.6225 |
Predictive Indicators | Data Fusion Strategy | Pretreatment Methods Combination | Training Set | Testing Set | |||
---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | |||
TFs | Low-level | SNV + Z-score | 0.9517 | 0.0650 | 0.9186 | 0.0865 | 2.4280 |
Middle-level | SNV + MASS Z-score + PCA | 0.9981 | 0.0134 | 0.9832 | 0.0390 | 5.4123 | |
TRs | Low-level | MSC + Z-score | 0.9539 | 0.3805 | 0.9360 | 0.4379 | 2.6639 |
Middle-level | MSC + MASS Z-score + PCA | 0.9931 | 0.1551 | 0.9855 | 0.2044 | 5.4344 | |
TBs | Low-level | SG + Z-score | 0.9460 | 0.3837 | 0.9160 | 0.4693 | 2.3284 |
Middle-level | SG + MASS Z-score + PCA | 0.9969 | 0.0905 | 0.9834 | 0.2288 | 5.2506 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, H.; Li, R.; Xuan, X.; Jiang, Y.; Yuan, H.; An, T. Rapid and Quantitative Prediction of Tea Pigments Content During the Rolling of Black Tea by Multi-Source Information Fusion and System Analysis Methods. Foods 2025, 14, 2829. https://doi.org/10.3390/foods14162829
Zou H, Li R, Xuan X, Jiang Y, Yuan H, An T. Rapid and Quantitative Prediction of Tea Pigments Content During the Rolling of Black Tea by Multi-Source Information Fusion and System Analysis Methods. Foods. 2025; 14(16):2829. https://doi.org/10.3390/foods14162829
Chicago/Turabian StyleZou, Hanting, Ranyang Li, Xuan Xuan, Yongwen Jiang, Haibo Yuan, and Ting An. 2025. "Rapid and Quantitative Prediction of Tea Pigments Content During the Rolling of Black Tea by Multi-Source Information Fusion and System Analysis Methods" Foods 14, no. 16: 2829. https://doi.org/10.3390/foods14162829
APA StyleZou, H., Li, R., Xuan, X., Jiang, Y., Yuan, H., & An, T. (2025). Rapid and Quantitative Prediction of Tea Pigments Content During the Rolling of Black Tea by Multi-Source Information Fusion and System Analysis Methods. Foods, 14(16), 2829. https://doi.org/10.3390/foods14162829