Cannabis Derivatives as Ingredients of Functional Foods to Combat the COVID-19 Pandemic
Abstract
1. Introduction
2. The Pharmacological and Bioactive Constituents in Cannabis
2.1. Cannabinoids
2.1.1. THC Type
2.1.2. CBD Type
2.1.3. CBG Type
2.1.4. CBC Type
2.1.5. CBL Type
2.1.6. CBE Type
2.1.7. CBN and CBT Type
2.1.8. Other Cannabinoids
2.2. Terpenoids
2.2.1. Monoterpene
2.2.2. β-Caryophyllene
2.2.3. Limonene
2.3. Flavonoid
2.4. Fatty Acids
3. Pharmacological Mechanisms of Cannabinoid Compounds
3.1. Antiviral
3.2. Immune Regulation
3.3. Anti-Inflammatory
3.4. Mental Health
4. Functional Food Applications
5. Challenges, Regulatory Issues, and Future Perspectives
5.1. Challenges and Strategies
5.2. Regulation
5.3. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kicman, A.; Pędzińska-Betiuk, A.; Kozłowska, H. The Potential of Cannabinoids and Inhibitors of Endocannabinoid Degradation in Respiratory Diseases. Eur. J. Pharmacol. 2021, 911, 174560. [Google Scholar] [CrossRef]
- Malinowska, B.; Baranowska-Kuczko, M.; Kicman, A.; Schlicker, E. Opportunities, Challenges and Pitfalls of Using Cannabidiol as an Adjuvant Drug in COVID-19. Int. J. Mol. Sci. 2021, 22, 1986. [Google Scholar] [CrossRef]
- Hu, B.; Huang, S.; Yin, L. The Cytokine Storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int. J. Biol. Sci. 2020, 16, 1708–1717. [Google Scholar] [CrossRef] [PubMed]
- Pisanti, S.; Bifulco, M. Medical Cannabis: A Plurimillennial History of an Evergreen. J. Cell. Physiol. 2019, 234, 8342–8351. [Google Scholar] [CrossRef]
- Lapierre, É.; Monthony, A.S.; Torkamaneh, D. Genomics-Based Taxonomy to Clarify Cannabis Classification. Genome 2023, 66, 202–211. [Google Scholar] [CrossRef]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A Comprehensive Ethnopharmacological Review of a Medicinal Plant with a Long History. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef]
- Yadav, S.P.S.; Kafle, M.; Ghimire, N.P.; Shah, N.K.; Dahal, P.; Pokhrel, S. An Overview of Phytochemical Constituents and Pharmacological Implications of Cannabis sativa L. J. Herb. Med. 2023, 42, 100798. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef]
- Lal, S.; Shekher, A.; Puneet; Narula, A.S.; Abrahamse, H.; Gupta, S.C. Cannabis and Its Constituents for Cancer: History, Biogenesis, Chemistry and Pharmacological Activities. Pharmacol. Res. 2021, 163, 105302. [Google Scholar] [CrossRef]
- André, A.; Leupin, M.; Kneubühl, M.; Pedan, V.; Chetschik, I. Evolution of the Polyphenol and Terpene Content, Antioxidant Activity and Plant Morphology of Eight Different Fiber-Type Cultivars of Cannabis sativa L. Cultivated at Three Sowing Densities. Plants 2020, 9, 1740. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.A.; Slade, D. Chemical Constituents of Marijuana: The Complex Mixture of Natural Cannabinoids. Life Sci. 2005, 78, 539–548. [Google Scholar] [CrossRef]
- Nelson, K.M.; Bisson, J.; Singh, G.; Graham, J.G.; Chen, S.-N.; Friesen, J.B.; Dahlin, J.L.; Niemitz, M.; Walters, M.A.; Pauli, G.F. The Essential Medicinal Chemistry of Cannabidiol (CBD). J. Med. Chem. 2020, 63, 12137–12155. [Google Scholar] [CrossRef] [PubMed]
- Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and Biosynthesis. Trends Plant Sci. 2020, 25, 985–1004. [Google Scholar] [CrossRef]
- Devane, W.A.; Dysarz, F.A.; Johnson, M.R.; Melvin, L.S.; Howlett, A.C. Determination and Characterization of a Cannabinoid Receptor in Rat Brain. Mol. Pharmacol. 1988, 34, 605–613. [Google Scholar] [CrossRef]
- Maccarrone, M.; Guzmán, M.; Mackie, K.; Doherty, P.; Harkany, T. Programming of Neural Cells by (Endo)Cannabinoids: From Physiological Rules to Emerging Therapies. Nat. Rev. Neurosci. 2014, 15, 786–801. [Google Scholar] [CrossRef]
- Liao, Y.-Y.; Zhang, H.; Shen, Q.; Cai, C.; Ding, Y.; Shen, D.-D.; Guo, J.; Qin, J.; Dong, Y.; Zhang, Y.; et al. Snapshot of the Cannabinoid Receptor 1-Arrestin Complex Unravels the Biased Signaling Mechanism. Cell 2023, 186, 5784–5797.e17. [Google Scholar] [CrossRef]
- Lee, S.; Weiss, T.; Bühler, M.; Mena, J.; Lottenbach, Z.; Wegmann, R.; Sun, M.; Bihl, M.; Augustynek, B.; Baumann, S.P.; et al. High-Throughput Identification of Repurposable Neuroactive Drugs with Potent Anti-Glioblastoma Activity. Nat. Med. 2024, 30, 3196–3208. [Google Scholar] [CrossRef]
- Huang, T.; Xu, T.; Wang, Y.; Zhou, Y.; Yu, D.; Wang, Z.; He, L.; Chen, Z.; Zhang, Y.; Davidson, D.; et al. Cannabidiol Inhibits Human Glioma by Induction of Lethal Mitophagy Through Activating TRPV4. Autophagy 2021, 17, 3592–3606. [Google Scholar] [CrossRef]
- Tummino, T.A.; Iliopoulos-Tsoutsouvas, C.; Braz, J.M.; O’Brien, E.S.; Stein, R.M.; Craik, V.; Tran, N.K.; Ganapathy, S.; Liu, F.; Shiimura, Y.; et al. Virtual Library Docking for Cannabinoid-1 Receptor Agonists with Reduced Side Effects. Nat. Commun. 2025, 16, 2237. [Google Scholar] [CrossRef]
- Hua, T.; Vemuri, K.; Pu, M.; Qu, L.; Han, G.W.; Wu, Y.; Zhao, S.; Shui, W.; Li, S.; Korde, A.; et al. Crystal Structure of the Human Cannabinoid Receptor CB1. Cell 2016, 167, 750–762.e14. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a Cannabinoid Receptor and Functional Expression of the Cloned cDNA. Nature 1990, 346, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Morales, P.; Hurst, D.P.; Reggio, P.H. Molecular Targets of the Phytocannabinoids: A Complex Picture. In Progress in the Chemistry of Organic Natural Products; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-45539-6. [Google Scholar]
- McPartland, J.M.; Duncan, M.; Di Marzo, V.; Pertwee, R.G. Are Cannabidiol and Δ9-tetrahydrocannabivarin Negative Modulators of the Endocannabinoid System? A Systematic Review. Br. J. Pharmacol. 2015, 172, 737–753. [Google Scholar] [CrossRef]
- Bolognini, D.; Costa, B.; Maione, S.; Comelli, F.; Marini, P.; Di Marzo, V.; Parolaro, D.; Ross, R.A.; Gauson, L.A.; Cascio, M.G.; et al. The Plant Cannabinoid Δ9-tetrahydrocannabivarin Can Decrease Signs of Inflammation and Inflammatory Pain in Mice. Br. J. Pharmacol. 2010, 160, 677–687. [Google Scholar] [CrossRef]
- Adams, R.; Pease, D.C.; Clark, J.H. Isolation of Cannabinol, Cannabidiol and Quebrachitol from Red Oil of Minnesota Wild Hemp. J. Am. Chem. Soc. 1940, 62, 2194–2196. [Google Scholar] [CrossRef]
- Mechoulam, R.; Gaoni, Y. The Absolute Configuration of Δ1-Tetrahydrocannabinol, the Major Active Constituent of Hashish. Tetrahedron Lett. 1967, 8, 1109–1111. [Google Scholar] [CrossRef]
- VanDolah, H.J.; Bauer, B.A.; Mauck, K.F. Clinicians’ Guide to Cannabidiol and Hemp Oils. Mayo Clin. Proc. 2019, 94, 1840–1851. [Google Scholar] [CrossRef]
- Vollner, L.; Bieniek, D.; Korte, F. Haschisch XX: Cannabidivarin, ein neuer Haschisch-Inhaltsstoff. Tetrahedron Lett. 1969, 10, 145–147. [Google Scholar] [CrossRef]
- Rosenthaler, S.; Pöhn, B.; Kolmanz, C.; Nguyen Huu, C.; Krewenka, C.; Huber, A.; Kranner, B.; Rausch, W.-D.; Moldzio, R. Differences in Receptor Binding Affinity of Several Phytocannabinoids Do Not Explain Their Effects on Neural Cell Cultures. Neurotoxicol. Teratol. 2014, 46, 49–56. [Google Scholar] [CrossRef]
- Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. The Origin and Biomedical Relevance of Cannabigerol. Int. J. Mol. Sci. 2022, 23, 7929. [Google Scholar] [CrossRef] [PubMed]
- Pollastro, F.; Caprioglio, D.; Del Prete, D.; Rogati, F.; Minassi, A.; Taglialatela-Scafati, O.; Munoz, E.; Appendino, G. Cannabichromene. Nat. Prod. Commun. 2018, 13, 1189–1194. [Google Scholar] [CrossRef]
- Sepulveda, D.E.; Vrana, K.E.; Kellogg, J.J.; Bisanz, J.E.; Desai, D.; Graziane, N.M.; Raup-Konsavage, W.M. The Potential of Cannabichromene (CBC) as a Therapeutic Agent. J. Pharmacol. Exp. Ther. 2024, 391, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Mechoulam, R.; Gaoni, Y. Recent Advances in the Chemistry of Hashish. In Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products/Progrès dans la Chimie des Substances Organiques Naturelles; Springer: Vienna, Austria, 1967; pp. 175–213. ISBN 978-3-7091-8166-9. [Google Scholar]
- Claussen, U.; Von Spulak, F.; Korte, F. Haschisch—XIV. Tetrahedron 1968, 24, 1021–1023. [Google Scholar] [CrossRef]
- Bercht, C.A.L.; Lousberg, R.J.J.; Küppers, F.J.E.M.; Salemink, C.A.; Vree, T.B.; Van Rossum, J.M. Cannabis. J. Chromatogr. A 1973, 81, 163–166. [Google Scholar] [CrossRef]
- Uliss, D.B.; Razdan, R.K.; Dalzell, H.C. Stereospecific Intramolecular Epoxide Cleavage by Phenolate Anion. Synthesis of Novel and Biologically Active Cannabinoids. J. Am. Chem. Soc. 1974, 96, 7372–7374. [Google Scholar] [CrossRef]
- Hartsel, S.; Loh, W.; Robertson, L. Biotransformation of Cannabidiol to Cannabielsoin by Suspension Cultures of Cannabis sativa and Saccharum officinarum. Planta Med. 1983, 48, 17–19. [Google Scholar] [CrossRef]
- Grote, H.; Spiteller, G. Neue cannabinoide. II. J. Chromatogr. A 1978, 154, 3–11. [Google Scholar] [CrossRef]
- Cahn, R.S. LXXXVI.—Cannabis Indica resin. Part II. J. Chem. Soc. 1931, 630–638. [Google Scholar] [CrossRef]
- Obata, Y.; Ishikawa, Y. Studies on the Constituents of Hemp Plant (Cannabis sativa L.): Part III. Isolation of a Gibbs-positive Compound from Japanese Hemp. Agric. Biol. Chem. 1966, 30, 619–620. [Google Scholar] [CrossRef]
- Radwan, M.M.; Chandra, S.; Gul, S.; ElSohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef]
- Tomko, A.M.; Whynot, E.G.; Ellis, L.D.; Dupré, D.J. Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers 2020, 12, 1985. [Google Scholar] [CrossRef]
- Citti, C.; Linciano, P.; Russo, F.; Luongo, L.; Iannotta, M.; Maione, S.; Laganà, A.; Capriotti, A.L.; Forni, F.; Vandelli, M.A.; et al. A Novel Phytocannabinoid Isolated from Cannabis sativa L. with an In Vivo Cannabimimetic Activity Higher than Δ9-Tetrahydrocannabinol: Δ9-Tetrahydrocannabiphorol. Sci. Rep. 2019, 9, 20335. [Google Scholar] [CrossRef] [PubMed]
- Koziol, A.; Stryjewska, A.; Librowski, T.; Salat, K.; Gawel, M.; Moniczewski, A.; Lochynski, S. An Overview of the Pharmacological Properties and Potential Applications of Natural Monoterpenes. Mini-Rev. Med. Chem. 2015, 14, 1156–1168. [Google Scholar] [CrossRef] [PubMed]
- Schofs, L.; Sparo, M.D.; Sánchez Bruni, S.F. The Antimicrobial Effect behind Cannabis sativa. Pharmacol. Res. Perspect. 2021, 9, e00761. [Google Scholar] [CrossRef]
- Procaccia, S.; Lewitus, G.M.; Lipson Feder, C.; Shapira, A.; Berman, P.; Meiri, D. Cannabis for Medical Use: Versatile Plant Rather Than a Single Drug. Front. Pharmacol. 2022, 13, 896940. [Google Scholar] [CrossRef] [PubMed]
- Maayah, Z.H.; Takahara, S.; Ferdaoussi, M.; Dyck, J.R.B. The Anti-Inflammatory and Analgesic Effects of Formulated Full-Spectrum Cannabis Extract in the Treatment of Neuropathic Pain Associated with Multiple Sclerosis. Inflamm. Res. 2020, 69, 549–558. [Google Scholar] [CrossRef]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- Meeran, M.F.N.; Al Taee, H.; Azimullah, S.; Tariq, S.; Adeghate, E.; Ojha, S. β-Caryophyllene, a Natural Bicyclic Sesquiterpene Attenuates Doxorubicin-Induced Chronic Cardiotoxicity via Activation of Myocardial Cannabinoid Type-2 (CB2) Receptors in Rats. Chem.-Biol. Interact. 2019, 304, 158–167. [Google Scholar] [CrossRef]
- Youssef, D.A.; El-Fayoumi, H.M.; Mahmoud, M.F. Beta-Caryophyllene Alleviates Diet-Induced Neurobehavioral Changes in Rats: The Role of CB2 and PPAR-γ Receptors. Biomed. Pharmacother. 2019, 110, 145–154. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.-K.; Moo, C.-L.; Song, A.A.-L.; Chong, C.-M.; Chong, C.-W.; Abushelaibi, A.; Lim, S.-H.E.; Lai, K.-S. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef]
- Corrêa, A.N.R.; Weimer, P.; Rossi, R.C.; Hoffmann, J.F.; Koester, L.S.; Suyenaga, E.S.; Ferreira, C.D. Lime and Orange Essential Oils and D-Limonene as a Potential COVID-19 Inhibitor: Computational, in Chemico, and Cytotoxicity Analysis. Food Biosci. 2023, 51, 102348. [Google Scholar] [CrossRef] [PubMed]
- Erasto, P.; Viljoen, A.M. Limonene—A Review: Biosynthetic, Ecological and Pharmacological Relevance. Nat. Prod. Commun. 2008, 3, 1193–1202. [Google Scholar] [CrossRef]
- Finlay, D.B.; Sircombe, K.J.; Nimick, M.; Jones, C.; Glass, M. Terpenoids from Cannabis Do Not Mediate an Entourage Effect by Acting at Cannabinoid Receptors. Front. Pharmacol. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B.; Marcu, J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–134. ISBN 978-0-12-811232-8. [Google Scholar]
- Flores-Sanchez, I.J.; Verpoorte, R. Secondary Metabolism in Cannabis. Phytochem. Rev. 2008, 7, 615–639. [Google Scholar] [CrossRef]
- Klein, T.W. Cannabinoid-Based Drugs as Anti-Inflammatory Therapeutics. Nat. Rev. Immunol. 2005, 5, 400–411. [Google Scholar] [CrossRef]
- Bautista, J.L.; Yu, S.; Tian, L. Flavonoids in Cannabis sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS Omega 2021, 6, 5119–5123. [Google Scholar] [CrossRef]
- Moreau, M.; Ibeh, U.; Decosmo, K.; Bih, N.; Yasmin-Karim, S.; Toyang, N.; Lowe, H.; Ngwa, W. Corrigendum: Flavonoid Derivative of Cannabis Demonstrates Therapeutic Potential in Preclinical Models of Metastatic Pancreatic Cancer. Front. Oncol. 2020, 10, 1434. [Google Scholar] [CrossRef]
- Bartkiene, E.; Schleining, G.; Krungleviciute, V.; Zadeike, D.; Zavistanaviciute, P.; Dimaite, I.; Kuzmaite, I.; Riskeviciene, V.; Juodeikiene, G. Development and Quality Evaluation of Lacto-Fermented Product Based on Hulled and Not Hulled Hempseed (Cannabis sativa L.). LWT—Food Sci. Technol. 2016, 72, 544–551. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; González-Fernández, M.J.; Fabrikov, D.; Torija-Isasa, E.; Sánchez-Mata, M.D.C.; Guil-Guerrero, J.L. Hemp (Cannabis sativa L.) Varieties: Fatty Acid Profiles and Upgrading of γ-Linolenic Acid–Containing Hemp Seed Oils. Eur. J. Lipid Sci. Technol. 2020, 122, 1900445. [Google Scholar] [CrossRef]
- Astani, A.; Reichling, J.; Schnitzler, P. Screening for Antiviral Activities of Isolated Compounds from Essential Oils. Evid.-Based Complement. Altern. Med. 2011, 2011, 253643. [Google Scholar] [CrossRef]
- Sofia, R.D.; Nalepa, S.D.; Harakal, J.J.; Vassar, H.B. Anti-Edema and Analgesic Properties of Δ9-Tetrahydrocannabinol (THC). J. Pharmacol. Exp. Ther. 1973, 186, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Cichewicz, D.L.; McCarthy, E.A. Antinociceptive Synergy between Δ9-Tetrahydrocannabinol and Opioids after Oral Administration. J. Pharmacol. Exp. Ther. 2003, 304, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Darmani, N.A.; Johnson, J.C. Central and Peripheral Mechanisms Contribute to the Antiemetic Actions of Delta-9-Tetrahydrocannabinol Against 5-Hydroxytryptophan-Induced Emesis. Eur. J. Pharmacol. 2004, 488, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Mick, G.; Douek, P. Clinical Benefits and Safety of Medical Cannabis Products: A Narrative Review on Natural Extracts. Pain Ther. 2024, 13, 1063–1094. [Google Scholar] [CrossRef]
- Crippa, J.A.; Guimarães, F.S.; Campos, A.C.; Zuardi, A.W. Translational Investigation of the Therapeutic Potential of Cannabidiol (CBD): Toward a New Age. Front. Immunol. 2018, 9, 2009. [Google Scholar] [CrossRef]
- Zuardi, A.W.; De Souza Crippa, J.A.; Hallak, J.E.C.; Campos, A.C.; Guimarães, F.S. The Anxiolytic Effects of Cannabidiol (CBD). In Handbook of Cannabis and Related Pathologies; Preedy, V.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 131–139. ISBN 978-0-12-800756-3. [Google Scholar]
- Lowin, T.; Tingting, R.; Zurmahr, J.; Classen, T.; Schneider, M.; Pongratz, G. Cannabidiol (CBD): A Killer for Inflammatory Rheumatoid Arthritis Synovial Fibroblasts. Cell Death Dis. 2020, 11, 714. [Google Scholar] [CrossRef]
- Krzyżewska, A.; Kloza, M.; Kozłowska, H. Comprehensive Mini-Review: Therapeutic Potential of Cannabigerol—Focus on the Cardiovascular System. Front. Pharmacol. 2025, 16, 1561385. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Malhi, N.K.; Huang, J.; Li, Q.; Zhou, Z.; Wang, R.; Peng, J.; Yin, T.; Wang, H. Cannabigerol (CBG): A Comprehensive Review of Its Molecular Mechanisms and Therapeutic Potential. Molecules 2024, 29, 5471. [Google Scholar] [CrossRef]
- Kho, D.T.; Glass, M.; Graham, E.S. Is the Cannabinoid CB 2 Receptor a Major Regulator of the Neuroinflammatory Axis of the Neurovascular Unit in Humans. In Advances in Pharmacology; Kendall, D., Alexander, S.P.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 367–396. ISBN 978-0-12-811232-8. [Google Scholar]
- Long, B.; Wang, N.; Hou, Z.; Shi, H.; Che, Y.; Wang, Y.; Peng, T.; Mao, Y.; Luo, T.; Mei, L.; et al. Design, Synthesis, and Biological Evaluation of Membrane-Active Cannabichromene Derivatives as Potent Antibacterial Agents. Eur. J. Med. Chem. 2025, 296, 117888. [Google Scholar] [CrossRef]
- Liang, Z.; Candib, A.; Soriano-Castell, D.; Fischer, W.; Finley, K.; Maher, P. Fragment-Based Drug Discovery and Biological Evaluation of Novel Cannabinol-Based Inhibitors of Oxytosis/Ferroptosis for Neurological Disorders. Redox Biol. 2024, 72, 103138. [Google Scholar] [CrossRef] [PubMed]
- Kundu, D.; Franchini, L.; Hasdemir, H.S.; Lloyd, E.; Maturano, J.; Rabl, K.; Denissiouk, A.N.; Schumacher, M.; Sarlah, D.; Hellman, J.; et al. Distinct Interactions of Cannabinol and Its Cytochrome P450-Generated Metabolites with Receptors and Sensory Neurons. J. Med. Chem. 2025, 68, 13935–13953. [Google Scholar] [CrossRef] [PubMed]
- Dar, N.J.; Currais, A.; Taguchi, T.; Andrews, N.; Maher, P. Cannabinol (CBN) Alleviates Age-Related Cognitive Decline by Improving Synaptic and Mitochondrial Health. Redox Biol. 2025, 84, 103692. [Google Scholar] [CrossRef] [PubMed]
- Abioye, A.; Ayodele, O.; Marinkovic, A.; Patidar, R.; Akinwekomi, A.; Sanyaolu, A. Δ9-Tetrahydrocannabivarin (THCV): A Commentary on Potential Therapeutic Benefit for the Management of Obesity and Diabetes. J. Cannabis Res. 2020, 2, 6. [Google Scholar] [CrossRef]
- Lai, S.; Zhang, L.; Tu, X.; Ma, X.; Song, Y.; Cao, K.; Li, M.; Meng, J.; Shi, Y.; Wu, Q.; et al. Termination of Convulsion Seizures by Destabilizing and Perturbing Seizure Memory Engrams. Sci. Adv. 2024, 10, eadk9484. [Google Scholar] [CrossRef]
- Huizenga, M.N.; Sepulveda-Rodriguez, A.; Forcelli, P.A. Preclinical Safety and Efficacy of Cannabidivarin for Early Life Seizures. Neuropharmacology 2019, 148, 189–198. [Google Scholar] [CrossRef]
- Rock, E.M.; Limebeer, C.L.; Parker, L.A. Effect of Cannabidiolic Acid and ∆9-Tetrahydrocannabinol on Carrageenan-Induced Hyperalgesia and Edema in a Rodent Model of Inflammatory Pain. Psychopharmacology 2018, 235, 3259–3271. [Google Scholar] [CrossRef]
- Rock, E.M.; Parker, L.A. The Role of 5-HT1A Receptor, and Nausea and Vomiting Relief by Cannabidiol (CBD), Cannabidiolic Acid (CBDA), and Cannabigerol (CBG). In Handbook of Cannabis and Related Pathologies; Preedy, V.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 703–712. ISBN 978-0-12-800756-3. [Google Scholar]
- Moldzio, R.; Pacher, T.; Krewenka, C.; Kranner, B.; Novak, J.; Duvigneau, J.C.; Rausch, W.-D. Effects of Cannabinoids Δ(9)-Tetrahydrocannabinol, Δ(9)-Tetrahydrocannabinolic Acid and Cannabidiol in MPP+ Affected Murine Mesencephalic Cultures. Phytomedicine 2012, 19, 819–824. [Google Scholar] [CrossRef]
- Formato, M.; Crescente, G.; Scognamiglio, M.; Fiorentino, A.; Pecoraro, M.T.; Piccolella, S.; Catauro, M.; Pacifico, S. (-)-Cannabidiolic Acid, a Still Overlooked Bioactive Compound: An Introductory Review and Preliminary Research. Molecules 2020, 25, 2638. [Google Scholar] [CrossRef]
- Busquets-García, A.; Bolaños, J.P.; Marsicano, G. Metabolic Messengers: Endocannabinoids. Nat. Metab. 2022, 4, 848–855. [Google Scholar] [CrossRef]
- Schadich, E.; Kaczorová, D.; Béres, T.; Džubák, P.; Hajdúch, M.; Tarkowski, P.; Ćavar Zeljković, S. Secondary Metabolite Profiles and Anti-SARS-CoV-2 Activity of Ethanolic Extracts from Nine Genotypes of Cannabis sativa L. Arch. Pharm. 2025, 358, e2400607. [Google Scholar] [CrossRef]
- González-Maldonado, P.; Alvarenga, N.; Burgos-Edwards, A.; Flores-Giubi, M.E.; Barúa, J.E.; Romero-Rodríguez, M.C.; Soto-Rifo, R.; Valiente-Echeverría, F.; Langjahr, P.; Cantero-González, G.; et al. Screening of Natural Products Inhibitors of SARS-CoV-2 Entry. Molecules 2022, 27, 1743. [Google Scholar] [CrossRef]
- Bukowska, B. Current and Potential Use of Biologically Active Compounds Derived from Cannabis sativa L. in the Treatment of Selected Diseases. Int. J. Mol. Sci. 2024, 25, 12738. [Google Scholar] [CrossRef]
- Polat, H.U.; Yalcin, H.A.; Köm, D.; Aksoy, Ö.; Abaci, I.; Ekiz, A.T.; Serhatli, M.; Onarici, S. Antiviral Effect of Cannabidiol on K18-hACE2 Transgenic Mice Infected with SARS-CoV-2. J. Cell. Mol. Med. 2024, 28, e70030. [Google Scholar] [CrossRef]
- Wang, B.; Kovalchuk, A.; Li, D.; Rodriguez-Juarez, R.; Ilnytskyy, Y.; Kovalchuk, I.; Kovalchuk, O. In Search of Preventative Strategies: Novel High-CBD Cannabis sativa Extracts Modulate ACE2 Expression in COVID-19 Gateway Tissues. Aging 2020, 12, 22425–22444. [Google Scholar] [CrossRef]
- Raj, V.; Park, J.G.; Cho, K.-H.; Choi, P.; Kim, T.; Ham, J.; Lee, J. Assessment of Antiviral Potencies of Cannabinoids Against SARS-CoV-2 Using Computational and In Vitro Approaches. Int. J. Biol. Macromol. 2021, 168, 474–485. [Google Scholar] [CrossRef]
- Pitakbut, T.; Nguyen, G.-N.; Kayser, O. Activity of THC, CBD, and CBN on Human ACE2 and SARS-CoV1/2 Main Protease to Understand Antiviral Defense Mechanism. Planta Med. 2022, 88, 1047–1059. [Google Scholar] [CrossRef]
- Van Breemen, R.B.; Muchiri, R.N.; Bates, T.A.; Weinstein, J.B.; Leier, H.C.; Farley, S.; Tafesse, F.G. Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. J. Nat. Prod. 2022, 85, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.K.R.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential Oils as Antiviral Agents, Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Int. J. Mol. Sci. 2020, 21, 3426. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.C.; Yang, D.; Nicolaescu, V.; Best, T.J.; Gula, H.; Saxena, D.; Gabbard, J.D.; Chen, S.-N.; Ohtsuki, T.; Friesen, J.B.; et al. Cannabidiol Inhibits SARS-CoV-2 Replication Through Induction of the Host ER Stress and Innate Immune Responses. Sci. Adv. 2022, 8, eabi6110. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; F.K. Alghetaa, H.; Miranda, K.; Wilson, K.; Singh, N.P.; Cai, G.; Putluri, N.; Nagarkatti, P.; Nagarkatti, M. Δ9-Tetrahydrocannabinol Prevents Mortality from Acute Respiratory Distress Syndrome through the Induction of Apoptosis in Immune Cells, Leading to Cytokine Storm Suppression. Int. J. Mol. Sci. 2020, 21, 6244. [Google Scholar] [CrossRef]
- Roy, A.V.; Chan, M.; Banadyga, L.; He, S.; Zhu, W.; Chrétien, M.; Mbikay, M. Quercetin Inhibits SARS-CoV-2 Infection and Prevents Syncytium Formation by Cells Co-Expressing the Viral Spike Protein and Human ACE2. Virol. J. 2024, 21, 29. [Google Scholar] [CrossRef]
- Wu, W.; Wang, W.; Liang, L.; Chen, J.; Sun, S.; Wei, B.; Zhong, Y.; Huang, X.-R.; Liu, J.; Wang, X.; et al. SARS-CoV-2 N Protein Induced Acute Kidney Injury in Diabetic db/db Mice is Associated with a Mincle-Dependent M1 Macrophage Activation. Front. Immunol. 2023, 14, 1264447. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wei, J.; Huang, T.; Lei, L.; Shen, C.; Lai, J.; Yang, M.; Liu, L.; Yang, Y.; Liu, G.; et al. Resveratrol Inhibits the Replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Cultured Vero Cells. Phytother. Res. 2021, 35, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-Y.; Ma, Y.-X.; Liu, Y.; Peng, X.-J.; Chen, X.-Z. A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity. Molecules 2023, 28, 2735. [Google Scholar] [CrossRef]
- Reiss, C.S. Cannabinoids and Viral Infections. Pharmaceuticals 2010, 3, 1873–1886. [Google Scholar] [CrossRef] [PubMed]
- Almogi-Hazan, O.; Or, R. Cannabis, the Endocannabinoid System and Immunity—The Journey from the Bedside to the Bench and Back. Int. J. Mol. Sci. 2020, 21, 4448. [Google Scholar] [CrossRef]
- Nichols, J.M.; Kaplan, B.L.F. Immune Responses Regulated by Cannabidiol. Cannabis Cannabinoid Res. 2020, 5, 12–31. [Google Scholar] [CrossRef]
- Herring, A.C.; Koh, W.S.; Kaminski, N.E. Inhibition of the Cyclic AMP Signaling Cascade and Nuclear Factor Binding to CRE and κB Elements by Cannabinol, a Minimally CNS-Active Cannabinoid. Biochem. Pharmacol. 1998, 55, 1013–1023. [Google Scholar] [CrossRef]
- Faubert, B.L.; Kaminski, N.E. AP-1 Activity is Negatively Regulated by Cannabinol Through Inhibition of Its Protein Components, c-fos and c-jun. J. Leukoc. Biol. 2000, 67, 259–266. [Google Scholar] [CrossRef]
- Hernández-Cervantes, R.; Méndez-Díaz, M.; Prospéro-García, Ó.; Morales-Montor, J. Immunoregulatory Role of Cannabinoids during Infectious Disease. Neuroimmunomodulation 2017, 24, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Marcellin, F.; Lions, C.; Rosenthal, E.; Roux, P.; Sogni, P.; Wittkop, L.; Protopopescu, C.; Spire, B.; Salmon-Ceron, D.; Dabis, F.; et al. No Significant Effect of Cannabis Use on the Count and Percentage of Circulating CD4 T-Cells in HIV-HCV Co-infected Patients (ANRS CO13-HEPAVIH French Cohort). Drug Alcohol Rev. 2017, 36, 227–238. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Suryavanshi, S.V.; Kovalchuk, I.; Kovalchuk, O. Cannabinoids as Key Regulators of Inflammasome Signaling: A Current Perspective. Front. Immunol. 2021, 11, 613613. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.M.; Shalev, N.; Vinayaka, A.C.; Nadarajan, S.; Namdar, D.; Belausov, E.; Shoval, I.; Mani, K.A.; Mechrez, G.; Koltai, H. Cannabis Compounds Exhibit Anti-Inflammatory Activity In Vitro in COVID-19-Related Inflammation in Lung Epithelial Cells and Pro-Inflammatory Activity in Macrophages. Sci. Rep. 2021, 11, 1462. [Google Scholar] [CrossRef]
- Corpetti, C.; Del Re, A.; Seguella, L.; Palenca, I.; Rurgo, S.; De Conno, B.; Pesce, M.; Sarnelli, G.; Esposito, G. Cannabidiol Inhibits SARS-Cov-2 Spike (S) Protein-Induced Cytotoxicity and Inflammation Through a PPARγ-Dependent TLR4/NLRP3/Caspase-1 Signaling Suppression in Caco-2 Cell Line. Phytother. Res. 2021, 35, 6893–6903. [Google Scholar] [CrossRef]
- Khodadadi, H.; Salles, É.L.; Jarrahi, A.; Chibane, F.; Costigliola, V.; Yu, J.C.; Vaibhav, K.; Hess, D.C.; Dhandapani, K.M.; Baban, B. Cannabidiol Modulates Cytokine Storm in Acute Respiratory Distress Syndrome Induced by Simulated Viral Infection Using Synthetic RNA. Cannabis Cannabinoid Res. 2020, 5, 197–201. [Google Scholar] [CrossRef]
- Pagano, E.; Romano, B.; Iannotti, F.A.; Parisi, O.A.; D’Armiento, M.; Pignatiello, S.; Coretti, L.; Lucafò, M.; Venneri, T.; Stocco, G.; et al. The Non-Euphoric Phytocannabinoid Cannabidivarin Counteracts Intestinal Inflammation in Mice and Cytokine Expression in Biopsies from UC Pediatric Patients. Pharmacol. Res. 2019, 149, 104464. [Google Scholar] [CrossRef]
- Bailey, K.L.; Wyatt, T.A.; Katafiasz, D.M.; Taylor, K.W.; Heires, A.J.; Sisson, J.H.; Romberger, D.J.; Burnham, E.L. Alcohol and Cannabis Use Alter Pulmonary Innate Immunity. Alcohol 2019, 80, 131–138. [Google Scholar] [CrossRef]
- Beji, C.; Loucif, H.; Telittchenko, R.; Olagnier, D.; Dagenais-Lussier, X.; Van Grevenynghe, J. Cannabinoid-Induced Immunomodulation during Viral Infections: A Focus on Mitochondria. Viruses 2020, 12, 875. [Google Scholar] [CrossRef]
- Archie, S.R.; Cucullo, L. Cerebrovascular and Neurological Dysfunction under the Threat of COVID-19: Is There a Comorbid Role for Smoking and Vaping? Int. J. Mol. Sci. 2020, 21, 3916. [Google Scholar] [CrossRef]
- Wang, B.; Li, D.; Fiselier, A.; Kovalchuk, I.; Kovalchuk, O. New AKT-Dependent Mechanisms of Anti-COVID-19 Action of High-CBD Cannabis sativa Extracts. Cell Death Discov. 2022, 8, 110. [Google Scholar] [CrossRef]
- Khalsa, J.H.; Bunt, G.; Maggirwar, S.B.; Kottilil, S. COVID-19 and Cannabidiol (CBD). J. Addict. Med. 2021, 15, 355–356. [Google Scholar] [CrossRef]
- Rossi, R.; Socci, V.; Pacitti, F.; Di Lorenzo, G.; Di Marco, A.; Siracusano, A.; Rossi, A. Mental Health Outcomes Among Frontline and Second-Line Health Care Workers During the Coronavirus Disease 2019 (COVID-19) Pandemic in Italy. JAMA Netw. Open 2020, 3, e2010185. [Google Scholar] [CrossRef]
- Reznik, S.E.; Gardner, E.L.; Ashby, C.R. Cannabidiol: A Potential Treatment for Post Ebola Syndrome? Int. J. Infect. Dis. 2016, 52, 74–76. [Google Scholar] [CrossRef]
- Elms, L.; Shannon, S.; Hughes, S.; Lewis, N. Cannabidiol in the Treatment of Post-Traumatic Stress Disorder: A Case Series. J. Altern. Complement. Med. 2019, 25, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Kavuluru, R. Social Media Surveillance for Perceived Therapeutic Effects of Cannabidiol (CBD) Products. Int. J. Drug Policy 2020, 77, 102688. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, J.C.; Souza, J.D.S.; Hallak, J.E.C.; Osório, F.D.L.; Campos, A.C.; Guimarães, F.S.; Zuardi, A.W.; Crippa, J.A.S. Cannabidiol as a Treatment for Mental Health Outcomes Among Health Care Workers During the Coronavirus Disease Pandemic. J. Clin. Psychopharmacol. 2021, 41, 327–329. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.E.; Stevenson, C.W.; Laviolette, S.R. Could Cannabidiol Be a Treatment for Coronavirus Disease-19-Related Anxiety Disorders? Cannabis Cannabinoid Res. 2021, 6, 7–18. [Google Scholar] [CrossRef]
- Wheeler, M.; Merten, J.W.; Gordon, B.T.; Hamadi, H. CBD (Cannabidiol) Product Attitudes, Knowledge, and Use Among Young Adults. Subst. Use Misuse 2020, 55, 1138–1145. [Google Scholar] [CrossRef]
- Rasera, G.B.; Ohara, A.; De Castro, R.J.S. Innovative and Emerging Applications of Cannabis in Food and Beverage Products: From an Illicit Drug to a Potential Ingredient for Health Promotion. Trends Food Sci. Technol. 2021, 115, 31–41. [Google Scholar] [CrossRef]
- Kanabus, J.; Bryła, M.; Roszko, M.; Modrzewska, M.; Pierzgalski, A. Cannabinoids—Characteristics and Potential for Use in Food Production. Molecules 2021, 26, 6723. [Google Scholar] [CrossRef] [PubMed]
- Thurgur, H.; Lynskey, M.; Schlag, A.K.; Croser, C.; Nutt, D.J.; Iveson, E. Feasibility of a Cannabidiol-Dominant Cannabis-Based Medicinal Product for the Treatment of Long COVID Symptoms: A Single-Arm Open-Label Feasibility Trial. Br. J. Clin. Pharmacol. 2024, 90, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Pan, Z. Cannabidiol and Terpenes from Hemp—Ingredients for Future Foods and Processing Technologies. J. Future Foods 2021, 1, 113–127. [Google Scholar] [CrossRef]
- Cerino, P.; Buonerba, C.; Cannazza, G.; D’Auria, J.; Ottoni, E.; Fulgione, A.; Di Stasio, A.; Pierri, B.; Gallo, A. A Review of Hemp as Food and Nutritional Supplement. Cannabis Cannabinoid Res. 2021, 6, 19–27. [Google Scholar] [CrossRef]
- Dickinson, A.; Blatman, J.; El-Dash, N.; Franco, J.C. Consumer Usage and Reasons for Using Dietary Supplements: Report of a Series of Surveys. J. Am. Coll. Nutr. 2014, 33, 176–182. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch based gluten-free bread. LWT 2017, 84, 143–150. [Google Scholar] [CrossRef]
- Wang, X.; Ke, J.; Cheng, R.; Xian, H.; Li, J.; Chen, Y.; Wu, B.; Han, M.; Wu, Y.; Jia, W.; et al. Malnutrition is Associated with Severe Outcome in Elderly Patients Hospitalised with COVID-19. Sci. Rep. 2024, 14, 24367. [Google Scholar] [CrossRef]
- Menezes, R.; Rodriguez-Mateos, A.; Kaltsatou, A.; González-Sarrías, A.; Greyling, A.; Giannaki, C.; Andres-Lacueva, C.; Milenkovic, D.; Gibney, E.; Dumont, J.; et al. Impact of Flavonols on Cardiometabolic Biomarkers: A Meta-Analysis of Randomized Controlled Human Trials to Explore the Role of Inter-Individual Variability. Nutrients 2017, 9, 117. [Google Scholar] [CrossRef]
- Cannabis Cultivation Market Size, Share & Trends Analysis Report by Biomass (Hemp, Marijuana), by Application, by Region, and Segment Forecasts, 2023–2030. Available online: https://www.grandviewresearch.com/industry-analysis/Cannabis-cultivation-market# (accessed on 15 July 2025).
- Lachenmeier, D.W.; Walch, S.G. Analysis and Toxicological Evaluation of Cannabinoids in Hemp Food Products—A Review. Electron. J. Environ. Agric. Food Chem. 2005, 4, 812–826. [Google Scholar] [CrossRef]
- Larsen, M.R.; Holmen Olofsson, E.T.; Spangenberg, J. Analyzing Homogeneity of Highly Viscous Polymer Suspensions in Change Can Mixers. Polymers 2024, 16, 2675. [Google Scholar] [CrossRef]
- The Global Cannabis Report: 5th Edition. Available online: https://prohibitionpartners.com/reports/the-global-cannabis-report-5th-edition/ (accessed on 15 July 2025).
- Cannabis Law and Legislation in China. Available online: https://cms.law/en/int/expert-guides/cms-expert-guide-to-a-legal-roadmap-to-cannabis/china (accessed on 15 July 2025).
- World Drug Report 2025. Available online: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2025.html (accessed on 15 July 2025).
- McClements, D.J. Advances in Edible Nanoemulsions: Digestion, Bioavailability, and Potential Toxicity. Prog. Lipid Res. 2021, 81, 101081. [Google Scholar] [CrossRef]
- Vardanega, R.; Lüdtke, F.L.; Loureiro, L.; Toledo Hijo, A.A.C.; Martins, J.T.; Pinheiro, A.C.; Vicente, A.A. Enhancing Cannabidiol Bioaccessibility Using Ionic Liquid as Emulsifier to Produce Nanosystems: Characterization of Structures, Cytotoxicity Assessment, and In Vitro Digestion. Food Res. Int. 2024, 188, 114498. [Google Scholar] [CrossRef]
- Anderson, L.L.; Hawkins, N.A.; Yip, K.L.; Udoh, M.; Kearney, J.A.; Arnold, J.C. Preclinical Evidence for a Drug–Drug Interaction Between Cannabinol and Melatonin. Basic Clin. Pharmacol. Toxicol. 2025, 136, e14120. [Google Scholar] [CrossRef]
- Cannabis Edibles Business Analysis Report 2024–2030. Available online: https://www.globenewswire.com/news-release/2025/07/01/3108584/0/en/Cannabis-Edibles-Business-Analysis-Report-2024-2030-Premium-and-Gourmet-Cannabis-Edibles-Strengthen-Market-Position-for-High-End-Products.html (accessed on 15 July 2025).
Drug Name | Approval Agency | Approval Time | Primary Indication(s) and Mechanism |
---|---|---|---|
Epidiolex® (CBD oral solution) | FDA (USA) EMA (EU) | 2018 (FDA) 2019 (EMA) | Reduces seizures in Lennox–Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex-related epilepsy by modulating neurotransmitter release and ion channels |
Dronabinol (synthetic THC) | FDA (USA) | 1985 | Anti-emetic for chemotherapy-induced nausea/vomiting; appetite stimulant for AIDS wasting syndrome |
Nabilone (synthetic cannabinoid) | FDA (USA) Health Canada | 1985 | Treatment of chemotherapy-resistant nausea and vomiting |
Sativex ® (THC = 1:1 oromucosal spray) | EMA (EU) Health Canada | 2010 (Canada) 2011 (EU) | Relieves muscle spasticity in multiple sclerosis; adjunctive therapy for advanced cancer pain by dual cannabinoid receptor modulation |
Cesamet ™ (Nabilone) (synthetic cannabinoid analogue) | FDA (USA) Health Canada | 1985 (USA) 1981 (Canada) | Anti-emetic for chemotherapy-induced nausea/vomiting |
Cannabinoid Name | Molecular Formula | Structural Features | Medical Applications | Research Status |
---|---|---|---|---|
Δ9-Tetrahydrocannabinol (THC) | C21H30O2 | Analgesic [65,66] Antiemetic [67] Appetite stimulation [68] | Clinically synthetic THC (Dronabinol) 1992, FDA | |
Cannabidiol (CBD) | C21H30O2 | Anticonvulsant [69] Anxiolytic [70] Anti-inflammatory [71] | Clinically CBD oral solution (Epidiolex®) 2018, FDA | |
Cannabigerol (CBG) | C21H32O2 | Antibacterial [72] Neuroprotective [73] | In vitro and in vivo In vitro | |
Cannabichromene (CBC) | C21H30O2 | Anti-inflammatory [74] Anti-cancer [75] | In vitro and in vivo | |
Cannabinol (CBN) | C21H26O2 | Sedative [76] Anti-oxidant defense [77] Antiaging [78] | In vivo In vitro and in vivo In vitro and in vivo | |
Tetrahydrocannabivarin (THCV) | C19H26O2 | Appetite suppressant [79] Anticonvulsant [80] | In vitro and in vivo | |
Cannabidivarin (CBDV) | C19H26O2 | Antiepileptic [81] | In vitro, in vivo, and ongoing-clinically (GW Pharmaceuticals) | |
Cannabidiolic acid (CBDA) | C22H30O4 | Anti-inflammatory [82] Antiemetic [83] | In vitro and in vivo In vivo | |
Tetrahydrocannabinolic acid (THCA) | C22H30O4 | Neuroprotective [84] Antiproliferative [85] | In vivo In vitro | |
Cannabicyclol (CBL) | C21H30O2 | Potential antioxidant [86] | Research ongoing |
Compound | Key Anti-COVID-19 Mechanisms | Research Stage |
---|---|---|
Cannabinoids (e.g., CBD) | Inhibits viral entry by binding spike protein; modulates ACE2 and cytokine storms (e.g., IL-6 reduction) [96,97] | Preclinical/early clinical |
Quercetin | Blocks viral proteases (3CLpro, PLpro); stabilizes mast cells to reduce inflammation [98] | Mixed clinical trial results |
Resveratrol | Suppresses viral replication via SIRT1 activation; inhibits NLRP3 inflammasome [99] | In vitro and animal models |
EGCG | Binds spike protein to block viral entry; modulates TMPRSS2 activity [100,101] | In vitro |
Food Type | Key Ingredients | Regions of Availability | Authoritative Rules |
---|---|---|---|
Cookies/Candy | THC (≤10 mg/pkg), CBD | Canada, USA, Thailand | Canada: Plain packaging, child-resistant, THC content labels; Thailand: THC ≤ 0.0032% in seasonings |
Beverages | THC (≤10 mg/pkg), CBD | Canada, USA | Prohibited with caffeine/alcohol; mandatory THC/CBD labeling |
Chocolate | THC, CBD | Canada, USA | Canada: Prohibits health claims; bans appealing designs |
Baked Goods | THC (≤10 mg/pkg), Hemp extracts | Canada, Thailand | Thailand: Requires FDA registration for commercial sales |
Dietary Supplements | CBD (THC < 0.3%) | USA, Japan | USA: FDA restricts therapeutic claims; Japan: THC-free CBD only |
Seasonings/Oils | Hemp seed oil (THC < 0.3%) | Thailand, EU | Thailand: Revised THC limits for non-retail ingredients; EU: Industrial hemp (THC < 0.2%) |
Topical Cosmetics | CBD isolates (THC-free) | USA, Canada | China: Bans all cannabis cosmetics; Canada: ≤1000 mg THC per package |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Yang, X.; Deng, Y.; Guo, L.; Li, Z.; Yang, X.; Hou, C. Cannabis Derivatives as Ingredients of Functional Foods to Combat the COVID-19 Pandemic. Foods 2025, 14, 2830. https://doi.org/10.3390/foods14162830
Qin X, Yang X, Deng Y, Guo L, Li Z, Yang X, Hou C. Cannabis Derivatives as Ingredients of Functional Foods to Combat the COVID-19 Pandemic. Foods. 2025; 14(16):2830. https://doi.org/10.3390/foods14162830
Chicago/Turabian StyleQin, Xiaoli, Xiai Yang, Yanchun Deng, Litao Guo, Zhimin Li, Xiushi Yang, and Chunsheng Hou. 2025. "Cannabis Derivatives as Ingredients of Functional Foods to Combat the COVID-19 Pandemic" Foods 14, no. 16: 2830. https://doi.org/10.3390/foods14162830
APA StyleQin, X., Yang, X., Deng, Y., Guo, L., Li, Z., Yang, X., & Hou, C. (2025). Cannabis Derivatives as Ingredients of Functional Foods to Combat the COVID-19 Pandemic. Foods, 14(16), 2830. https://doi.org/10.3390/foods14162830