Colorimetric Food Freshness Indicators for Intelligent Packaging: Progress, Shortcomings, and Promising Solutions
Abstract
1. Introduction
2. CFFI Types Based on Application Object
2.1. Meats and Seafoods Freshness Indicators
Indicator Type | Indicator Components | Preparation Method | Food Type | Target Compound | Color Change | Ref. |
---|---|---|---|---|---|---|
Colorimetric films | Methyl red, bromocresol green | Immobilize | Beef | TVB-N | Red to yellow yellow to purple | [30] |
Methyl red, bromocresol blue | Casting-drying | Chicken breast | VOCs (e.g., CO2) | Green to orange yellow | [31] | |
Anthraquinone, azo chromophore | Screen printing | Crab cooked | VOCs (e.g., NH3, HCl) | Green to purple to red | [32] | |
Dual-emission carbon quantum dots | Electrospinning | Beef, pork and shrimp | TVB-N | Yellow green to blue | [33] | |
Silicon quantum dots and silver nanoclusters | Added onto a PVDF film | Beef | VOCs (e.g., H2S and CH3SH) | Purplish to cyan | [34] | |
Ag nanoparticles | Casting | Chicken breast and silver carp | VOCs (e.g., H2S) | Yellow to colorless | [35] | |
Curcumin | Electrochemical printing | Freshwater shrimp | pH | Yellow to red | [36] | |
Curcumin | Melting extrusion | Beef and silver carp | TVB-N | Light yellow to light brown | [37] | |
Colorimetric films | Alizarin | Dip-coating | Fish fillet | VOCs (e.g., ammonia) | Yellow to purple | [38] |
Cyanidin, alizarin | Casting-drying | Pork | VOCs (e.g., ammonia) | Red to blue/black | [12] | |
Alizarin | Casting-drying | Beef | VOCs (e.g., ammonia) | Yellow to purple | [39] | |
Alizarin | Electrospinning | Pork | TVB-N | Yellow to purple | [40] | |
Red radish anthocyanins | Electrochemical writing | Fish | TVB-N | Orange/red to green to yellow/green | [41] | |
Purple sweet potato anthocyanins | 3D-print | Beef and salmon | VOCs (e.g., volatile amines) | Red to purple | [42] | |
Red cabbage anthocyanins | Dip-coating | Pork, chicken, salmon, and shrimp | TVB-N | Pink to green | [14] | |
Mulberry anthocyanins | Electrochemical writing | Crucian | TVB-N | Pink to light green to yellow/green | [43] | |
Colorimetric sensor arrays | 16 chemically sensitive compounds | Drop-casting | Fish | VOCs (e.g., volatile amines) | Different dyes with different color changes | [44] |
8 pH indicators, 8 porphyrins | Drop-casting | Yao-meat | VOCs (e.g., trimethylamine) | Different dyes with different color changes | [15] | |
Nile red, zinc tetraphenylporphyrin and methyl red | Drop-casting | Chicken breast | pH and VOCs (e.g., ethanol, methanol, toluene) | Different dyes with different color changes | [45] | |
9 porphyrins or metalloporphyrins, bromocreslo green, bromocresol purple and neutral red | Drop-casting | Chicken | VOCs (e.g., ethanol, methanol, toluene) | Different dyes with different color changes | [46] | |
Colorimetric sensor arrays | 6 pH indicators, 9 porphyrin compounds, and 1 metal-phthalocyanine | Drop-casting | Fish | VOCs (e.g., ethanol, acetic acid, trimethylamine) | Different dyes with different color changes | [47] |
6 porphyrins and 3 hydrophobic pH indicators | Drop-casting | Pork | VOCs (e.g., acetaldehyde, H2S, and ammonia) | Different dyes with different color changes | [48] | |
12 porphyrin materials and 8 pH indicators | Drop-casting | Snakehead fillets | TVB-N | Different dyes with different color changes | [49] | |
3 pH markers and 9 metalloporphyrins | Drop-casting | Chicken meat | TVB-N | Different dyes with different color changes | [50] | |
Pyridylazo and porphyrin indicators | Drop-casting | Fish | Pb, Cd and Hg | Different dyes with different color changes | [51] | |
6 metalloporphyrins and 1 protoporphyrin | Drop-casting | Mackerel | VOCs (e.g., trimethylamine) | Different dyes with different color changes | [52] | |
4 pyridine azo compounds and 4 porphyrin compounds | Drop-casting | Large yellow croakers | Lead | Different dyes with different color changes | [53] |
2.2. Fruits and Vegetables Freshness Indicators
Indicator Type | Indicator Components | Preparation Method | Food Type | Target Compound | Color Change | Ref. |
---|---|---|---|---|---|---|
Colorimetric films | Methyl red, bromocresol blue | Casting–drying | Fresh cut green pepper | VOCs (e.g., CO2) | Yellow green to orange | [55] |
Methyl red and bromothymol blue | Casting–drying | Green bell pepper and greengrocery | VOCs (e.g., CO2) | Orange to red | [56] | |
Phenol red, bromothymol blue | Casting–drying | Fresh-cut apple | VOCs (e.g., CO2) | Purple red to yellow Dark blue to yellow | [57] | |
Ammonium molybdate | Casting–drying | Avocados | VOCs (e.g., ethylene) | Yellow to greenish yellow | [58] | |
Ammonium molybdate, palladium sulfate | Immerse | Apple | VOCs (e.g., ethylene) | Light yellow to dark blue | [59] | |
Red phenanthroline | Immerse | Kiwi fruit | VOCs (e.g., ethylene) | Beige to dark brown | [60] | |
Potassium dichromate and sulfuric acid | Immerse | Mango fermented | VOCs (e.g., ethylene) | Yellow to blue | [61] | |
Poly (Ethylene Glycol) bis(3-aminopropyl) terminated (amine-PEG), methyl red | Casting–drying | Kiwi fruit | VOCs (e.g., ethylene) | Yellow to orange to red | [62] | |
Methyl red, methyl red sodium salt | Printing inks | Apple | VOCs (e.g., ethylene) | Yellow to orange to red | [63] | |
Colorimetric films | Bromophenol blue | Immobilize | Guavas | VOCs (e.g., organic acids) | Blue to green | [64] |
Brazilian plant extract dye | Casting–drying | Banana | pH | Yellow to red | [65] | |
Bromothymol blue, methyl red | Casting–drying | Fresh-cut durian | pH | Red to orange | [66] | |
Purple sweet potato anthocyanins, Silver nanoparticles | Casting–drying | Strawberry | pH | Purple to yellow/purple | [67] | |
Red cabbage anthocyanins extract | Casting–drying | Mushroom | pH | Reddish brown to light brown | [68] | |
Anthocyanins | Casting–drying | Grape | pH | Yellow/brown to purple | [69] | |
Black wolfberry and red cabbage anthocyanins | Casting–drying | Fresh-cut pineapple | pH | Purple to red | [70] | |
Purple sweet potato anthocyanins | Casting–drying | Flammulina velutipes mushroom | pH | Green to purplish gray to yellow | [71] | |
Purple sweet potato anthocyanins | Immerse | White oyster mushrooms | pH | Dark purple to light purple to green | [72] | |
Colorimetric sensor arrays | 6 porphyrins and 6 pH indicators | Drop-casting | Potato | VOCs (e.g.,2,3-Butanediol and ethyl ester) | Different dyes with different color changes | [73] |
20 color-sensitive materials | Applied using a capillary | Soybeans | VOCs (e.g., acetic acid) | Different dyes with different color changes | [74] | |
4 pH indicators, 2 developed dyes, and 9 porphyrin compounds | Drop-casting | Mango | VOCs (e.g., ethylene) | Different dyes with different color changes | [75] | |
5 phages | Drop-casting | Banana | VOCs (e.g., 2-pentanone and 3-methyl-1-butanol) | Different dyes with different color changes | [76] | |
Colorimetric sensor arrays | Bromocresol purple, methyl orange, thymol blue, and bromocresol green | Dip | Bananas, apples, and pears | VOCs (e.g., acetaldehyde, propionaldehyde and acetone) | Different dyes with different color changes | [77] |
8 dye/MOF composites and 2 Pd2+/dye/MOF composites | Deposit | Banana | VOCs (e.g., ethylene, ethanol, and ethyl acetate) | Different dyes with different color changes | [78] | |
15 sensing materials | Garlic, green pepper, and nectarine | VOCs (e.g., sulfur-based volatiles) | Different dyes with different color changes | [79] | ||
Curcumin, puerarin, and fisetin | Drop-casting | Yardlong beans, spinach, and sweet corn | VOCs (e.g., indole, nitrogen-containing volatiles and acetic acid) | Different dyes with different color changes | [80] |
3. Current Main Shortcoming for CFFIs
3.1. Safety
3.2. Stability
3.2.1. Effect of Humidity
3.2.2. Effect of Light
3.2.3. Effect of Microorganism
3.2.4. Other Factors
3.3. Sensitivity and Selectivity
4. Promising Solutions
4.1. Safety Improvement: Biomaterials-Based Solutions
4.2. Stability Improvement
4.2.1. Chemical Modification
Types of Modification | Technique | Compounds | Principle | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|---|
Chemical Modification | Acetylate | Black rice anthocyanins (BRA), gellan gum (GG) | Changing the chemical structure of BRA using acetic acid | Enhance the thermal, photostability, and pH stability of anthocyanins | Acylation process is relatively complex; may slightly alter color response range | [160] |
Covalent crosslinking (polymer-polymer) and metal ion chelation | citric acid (CA), bovine bone gelatin, chitosan, anthocyanin-Fe2+ chelate | CA facilitates the crosslinking of BG and CS through polycondensation; BA-Fe2+ chelate incorporates into the crosslinked matrix through hydrogen bonds | Enhance the thermal stability and water barrier property | May reduce pH sensitivity slightly due to crosslinking density; metal ions may interfere with some color reactions | [166] | |
Covalent crosslinking (probe-polymer) | fluorescein isothiocyanate (FITC), protoporphyrin IX (PpIX), cellulose acetate (CA) | Covalently immobilize the FITC as indicator and PpIX as internal reference onto CA, respectively | Enhance stability, inhibit aggregation-caused quenching of probes | Require specific reaction conditions (e.g., precise control of pH, temperature, reaction time) | [167] | |
Metal Ion Crosslinking | Metal ions (Ca2+, Zn2+, and Mg2+), pectin, carboxymethyl cellulose sodium, anthocyanin | Crosslinking of metal cations with anionic polysaccharides; Metal ions chelate with anthocyanins | Enhance stability of the film under high humidity and the storage stability of anthocyanins | Safety concern regarding whether metal ions will migrate into food | [165] | |
Nanofiller incorporation | Nano cobalt metal/organic framework (Co-MOF), sodium alginate (SA) | Blending Co-MOF with SA matrix | Enhance long-term storage color stability | MOF synthesis is costly; may increase production complexity | [171] |
4.2.2. Physical Modification
Types of Modification | Technique | Compounds | Principle | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|---|
Physical Modification | MOF encapsulation | Alizarin, zeolitic imidazolate framework-8 (ZIF-8), polyvinyl alcohol (PVA), sodium alginate (SA) | Conjugation of alizarin with ZIF-8 (AL@ZIF-8), then blending with PVA/alginate | Enhance the stability under visible and UV light | Encapsulation efficiency may vary; ZIF-8 may limit mass transfer of target gases | [39] |
Emulsion encapsulation | Gelatin, alizarin, lavender essential oil (LEO) | LEO was emulsified into LEO Pickering emulsions (LEOPs); LEOPs and alizarin were then integrated into the 3D network gelatin matrix | Enhance the color stability | Require strict control of optimal concentration of active compound and emulsion incorporation | [176] | |
Layer-by-layer deposition | SA, anthocyanins, cellulose nanocrystal, nano silica (NS) | Impregnation of NS as waterproof layer | Enhance hydrophobicity and color stability | Additional layers may increase film thickness, potentially slowing gas diffusion | [181] | |
Electrospinning | Blueberry anthocyanin, petunia dye, chitosan, trehalose, PVA | Electrospinning to form nanofiber films with “sandwich” structure (PET film coating) | Enhance color uniformity and stability | High equipment cost; challenges in large-scale production | [183] | |
3D printing | Curcumin, oregano oil Pickering emulsion, potato starch (PS), PVA | Using curcumin/oregano oil Pickering emulsion/PS/PVA based gel as ink, the indicator film was developed by 3D printing technology | Enhance water resistance and stability | Printing parameters (e.g., nozzle size) require precise optimization | [184] |
4.3. Sensitivity and Selectivity Improvement
4.3.1. Porous Structures
4.3.2. Electrospinning
4.3.3. Three-Dimensional Printing
4.3.4. Composition Optimization
4.4. Commercial Value
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFFI | Colorimetric food freshness indicators |
IFP | Intelligent food packaging |
TTI | Time–temperature indicators |
RFID | Radio-frequency identification tags |
WCA | Water contact angle |
WVP | Water vapor permeability |
WS | Water solubility |
References
- Yam, K.L.; Takhistov, P.T.; Miltz, J. Intelligent Packaging: Concepts and Applications. J. Food Sci. 2005, 70, R1–R10. [Google Scholar] [CrossRef]
- Yao, Q.-B.; Huang, F.; Lu, Y.-H.; Huang, J.-M.; Ali, M.; Jia, X.-Z.; Zeng, X.-A.; Huang, Y.-Y. Polysaccharide-based food packaging and intelligent packaging applications: A comprehensive review. Trends Food Sci. Technol. 2024, 147, 104390. [Google Scholar] [CrossRef]
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zaitoon, A.; Lim, L.T. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2489–2519. [Google Scholar] [CrossRef]
- Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent food packaging: The next generation. Trends Food Sci. Technol. 2014, 39, 47–62. [Google Scholar] [CrossRef]
- Kechagias, E.P.; Gayialis, S.P.; Panayiotou, N.; Papadopoulos, G.A. A Holistic Framework for Evaluating Food Loss and Waste Due to Marketing Standards across the Entire Food Supply Chain. Foods 2024, 13, 3273. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Zhang, W.; Abedini, A.; Khezerlou, A.; Shariatifar, N.; Assadpour, E.; Zhang, F.; Jafari, S.M. Intelligent packaging systems for the quality and safety monitoring of meat products: From lab scale to industrialization. Food Control 2024, 160, 110359. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Yildiz, Z.; Yildiz, P.; Strachowski, P.; Forough, M.; Esmaeili, Y.; Naebe, M.; Abdollahi, M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int. J. Biol. Macromol. 2024, 261, 129647. [Google Scholar] [CrossRef]
- Pirayesh, H.; Park, B.-D.; Khanjanzadeh, H.; Park, H.-J.; Cho, Y.-J. Cellulosic material-based colorimetric films and hydrogels as food freshness indicators. Cellulose 2023, 30, 2791–2825. [Google Scholar] [CrossRef]
- Shao, Z.; Lan, W.; Xie, J. Colorimetric freshness indicators in aquatic products based on natural pigments: A review. Food Biosci. 2024, 58, 103624. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, L.; Qin, Z.; Wang, T. Review of Recent Advances in Intelligent and Antibacterial Packaging for Meat Quality and Safety. Foods 2025, 14, 1157. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Dai, J.; Cui, H.; Lin, L. A pH indicator film based on dragon fruit peel pectin/cassava starch and cyanidin/alizarin for monitoring the freshness of pork. Food Packag. Shelf Life 2023, 40, 101215. [Google Scholar] [CrossRef]
- Rashid, A.; Qayum, A.; Shah Bacha, S.A.; Liang, Q.; Liu, Y.; Kang, L.; Chi, Z.; Chi, R.; Han, X.; Ekumah, J.-N.; et al. Novel pullulan-sodium alginate film incorporated with anthocyanin-loaded casein-carboxy methyl cellulose nanocomplex for real-time fish and shrimp freshness monitoring. Food Hydrocoll. 2024, 156, 110356. [Google Scholar] [CrossRef]
- Zhai, X.; Xue, Y.; Song, W.; Sun, Y.; Shen, T.; Zhang, X.; Li, Y.; Zhang, D.; Zhou, C.; Zhang, J.; et al. Rapid and Facile Synthesis of Homoporous Colorimetric Films Using Leaf Vein-Mediated Emulsion Evaporation Method for Visual Monitoring of Food Freshness. J. Agric. Food Chem. 2024, 72, 21854–21868. [Google Scholar] [CrossRef] [PubMed]
- Xiao-wei, H.; Zhi-hua, L.; Xiao-bo, Z.; Ji-yong, S.; Han-ping, M.; Jie-wen, Z.; Li-min, H.; Holmes, M. Detection of meat-borne trimethylamine based on nanoporous colorimetric sensor arrays. Food Chem. 2016, 197, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Kang, W.-C.; Jin, H.-J.; Man, Z.-X.; Chen, Q.-S. Discrimination of Chinese Baijiu grades based on colorimetric sensor arrays. Food Sci. Biotechnol. 2020, 29, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-W.; Zou, X.-B.; Shi, J.-Y.; Li, Z.-H.; Zhao, J.-W. Colorimetric sensor arrays based on chemo-responsive dyes for food odor visualization. Trends Food Sci. Technol. 2018, 81, 90–107. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, F.; Huang, X.; Harrington Aheto, J.; Yu, S.; Wang, Y.; Zhang, X.; Ren, Y. Fast monitoring the dynamic change of total acids during apple vinegar fermentation process using a colorimetric IDA sensor array. Food Chem. 2022, 387, 132867. [Google Scholar] [CrossRef]
- Gao, T.; Tian, Y.; Zhu, Z.; Sun, D.-W. Modelling, responses and applications of time-temperature indicators (TTIs) in monitoring fresh food quality. Trends Food Sci. Technol. 2020, 99, 311–322. [Google Scholar] [CrossRef]
- Kim, J.U.; Ghafoor, K.; Ahn, J.; Shin, S.; Lee, S.H.; Shahbaz, H.M.; Shin, H.-H.; Kim, S.; Park, J. Kinetic modeling and characterization of a diffusion-based time-temperature indicator (TTI) for monitoring microbial quality of non-pasteurized angelica juice. LWT Food Sci. Technol. 2016, 67, 143–150. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Yu, Z.; Ye, C.; Pan, L.; Song, Y. Principle, development and application of time-temperature indicators for packaging. Packag. Technol. Sci. 2023, 36, 833–853. [Google Scholar] [CrossRef]
- Mataragas, M.; Bikouli, V.C.; Korre, M.; Sterioti, A.; Skandamis, P.N. Development of a microbial Time Temperature Indicator for monitoring the shelf life of meat. Innov. Food Sci. Emerg. Technol. 2019, 52, 89–99. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Wu, Y.; Chen, Z.-X.; Zhong, B.-C.; Liu, B. Intelligent food packaging materials: Principles, types, applications, and hydrophobization. Food Control 2025, 171, 111138. [Google Scholar] [CrossRef]
- Panwar, A.; Kumar, S.; Dhiman, A.; Kumar, V.; Gupta, D.; Sharma, A. pH sensitive indicator film based intelligent packaging systems of perishables: Developments and challenges of last decade. Microchem. J. 2024, 207, 111732. [Google Scholar] [CrossRef]
- Marappan, G.; Elrasheid, T.H.; Naymul, K.; Agasthiyaraj, L.; Islam, S.M.R.; Sulafa, B.H.H.; Alaa, K.M.K.; Suliman, K.; Huang, X.-W.; Yuvaraj, S.; et al. Natural Pigment-Based pH/Gas-Sensitive Intelligent Packaging Film for Freshness Monitoring of Meat and Seafood: Influencing Factors, Technological Advances, and Future Perspectives. Food Rev. Int. 2025, 1–38. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Xie, C.; Wang, C.; Zhong, Y.; Fan, K. Recent advances in pH-sensitive indicator films based on natural colorants for smart monitoring of food freshness: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 12800–12819. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.B.; Martin, N.; Wiedmann, M. Microbial food spoilage: Impact, causative agents and control strategies. Nat. Rev. Microbiol. 2024, 22, 528–542. [Google Scholar] [CrossRef]
- Pellissery, A.J.; Vinayamohan, P.G.; Amalaradjou, M.A.R.; Venkitanarayanan, K. Chapter 17—Spoilage bacteria and meat quality. In Meat Quality Analysis; Biswas, A.K., Mandal, P.K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 307–334. [Google Scholar]
- Conz, A.; Davoli, E.; Franchi, C.; Diomede, L. Seafood loss prevention and waste reduction. Food Qual. Saf. 2024, 8, fyae017. [Google Scholar] [CrossRef]
- Kuswandi, B.; Nurfawaidi, A. On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 2017, 82, 91–100. [Google Scholar] [CrossRef]
- Rukchon, C.; Nopwinyuwong, A.; Trevanich, S.; Jinkarn, T.; Suppakul, P. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta 2014, 130, 547–554. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, A.; Xie, K.; Gao, A. Smart color-changing paper packaging sensors with pH sensitive chromophores based on azo-anthraquinone reactive dyes. Sens. Actuators B Chem. 2019, 286, 362–369. [Google Scholar] [CrossRef]
- Song, W.; Zhai, X.; Shi, J.; Zou, X.; Xue, Y.; Sun, Y.; Sun, W.; Zhang, J.; Huang, X.; Li, Z.; et al. A ratiometric fluorescence amine sensor based on carbon quantum dot-loaded electrospun polyvinylidene fluoride film for visual monitoring of food freshness. Food Chem. 2024, 434, 137423. [Google Scholar] [CrossRef]
- Sun, Y.; Zhai, X.; Zou, X.; Shi, J.; Huang, X.; Li, Z. A Ratiometric Fluorescent Sensor Based on Silicon Quantum Dots and Silver Nanoclusters for Beef Freshness Monitoring. Foods 2023, 12, 1464. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Li, Z.; Shi, J.; Huang, X.; Sun, Z.; Zhang, D.; Zou, X.; Sun, Y.; Zhang, J.; Holmes, M.; et al. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chem. 2019, 290, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, X.; Zou, X.; Shi, J.; Zhai, X.; Liu, L.; Li, Z.; Holmes, M.; Gong, Y.; Povey, M.; et al. A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. J. Food Eng. 2021, 292, 110290. [Google Scholar] [CrossRef]
- Zhai, X.; Wang, X.; Zhang, J.; Yang, Z.; Sun, Y.; Li, Z.; Huang, X.; Holmes, M.; Gong, Y.; Povey, M.; et al. Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packag. Shelf Life 2020, 26, 100595. [Google Scholar] [CrossRef]
- Ezati, P.; Tajik, H.; Moradi, M.; Molaei, R. Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. Int. J. Biol. Macromol. 2019, 132, 157–165. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, X.; Huang, X.; Shi, J.; Sobhy, R.; Khalifa, I.; Zou, X. Ammonia-Responsive Colorimetric Film of Phytochemical Formulation (Alizarin) Grafted onto ZIF-8 Carrier with Poly(vinyl alcohol) and Sodium Alginate for Beef Freshness Monitoring. J. Agric. Food Chem. 2024, 72, 11706–11715. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Guan, Y.; Huang, X.; Arslan, M.; Shi, J.; Li, Z.; Gong, Y.; Holmes, M.; Zou, X. High- sensitivity bilayer nanofiber film based on polyvinyl alcohol/sodium alginate/polyvinylidene fluoride for pork spoilage visual monitoring and preservation. Food Chem. 2022, 394, 133439. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Z.; Zhang, J.; Shi, J.; Zou, X.; Huang, X.; Zhang, D.; Sun, Y.; Yang, Z.; Holmes, M.; et al. Natural Biomaterial-Based Edible and pH-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging. J. Agric. Food Chem. 2018, 66, 12836–12846. [Google Scholar] [CrossRef]
- Zhai, X.; Sun, Y.; Cen, S.; Wang, X.; Zhang, J.; Yang, Z.; Li, Y.; Wang, X.; Zhou, C.; Arslan, M.; et al. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocoll. 2022, 133, 107989. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, X.; Zou, X.; Shi, J.; Huang, X.; Li, Z.; Gong, Y.; Holmes, M.; Povey, M.; Xiao, J. Bilayer pH-sensitive colorimetric films with light-blocking ability and electrochemical writing property: Application in monitoring crucian spoilage in smart packaging. Food Chem. 2021, 336, 127634. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.K.; Zór, K.; Kostesha, N.; Alstrøm, T.S.; Heiskanen, A.; El-Tanahi, H.; Sharoba, A.; Papkovsky, D.; Larsen, J.; Khalaf, H.; et al. Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control 2016, 60, 346–352. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, G.; Zilberman, Y.; Ruan, W.; Ameri, S.K.; Zhang, Y.S.; Miller, E.; Sonkusale, S.R. Low cost smart phone diagnostics for food using paper-based colorimetric sensor arrays. Food Control 2017, 82, 227–232. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, W.; Su, J.; Li, H.; Ouyang, Q.; Zhao, J. Nondestructively sensing of total viable count (TVC) in chicken using an artificial olfaction system based colorimetric sensor array. J. Food Eng. 2016, 168, 259–266. [Google Scholar] [CrossRef]
- Lv, R.; Huang, X.; Aheto, J.H.; Mu, L.; Tian, X. Analysis of fish spoilage by gas chromatography-mass spectrometry and electronic olfaction bionic system. J. Food Saf. 2018, 38, e12557. [Google Scholar] [CrossRef]
- Wei, W.; Li, H.; Haruna, S.A.; Wu, J.; Chen, Q. Monitoring the freshness of pork during storage via near-infrared spectroscopy based on colorimetric sensor array coupled with efficient multivariable calibration. J. Food Compos. Anal. 2022, 113, 104726. [Google Scholar] [CrossRef]
- Zhang, Y.; Zareef, M.; Rong, Y.; Lin, H.; Chen, Q.; Ouyang, Q. Application of colorimetric sensor array coupled with chemometric methods for monitoring the freshness of snakehead fillets. Food Chem. 2024, 439, 138172. [Google Scholar] [CrossRef]
- Geng, W.; Haruna, S.A.; Li, H.; Kademi, H.I.; Chen, Q. A Novel Colorimetric Sensor Array Coupled Multivariate Calibration Analysis for Predicting Freshness in Chicken Meat: A Comparison of Linear and Nonlinear Regression Algorithms. Foods 2023, 12, 720. [Google Scholar] [CrossRef]
- Han, F.; Huang, X.; Teye, E. Novel prediction of heavy metal residues in fish using a low-cost optical electronic tongue system based on colorimetric sensors array. J. Food Process Eng. 2019, 42, e12983. [Google Scholar] [CrossRef]
- Lv, R.; Huang, X.; Ye, W.; Aheto, J.H.; Xu, H.; Dai, C.; Tian, X. Research on the reaction mechanism of colorimetric sensor array with characteristic volatile gases-TMA during fish storage. J. Food Process Eng. 2019, 42, e12952. [Google Scholar] [CrossRef]
- Lv, R.; Huang, X.; Aheto, J.H.; Dai, C.; Tian, X. Research on reaction mechanism of colorimetric sensor array with lead and its application for determination of lead content of fish. J. Food Process Eng. 2019, 42, e13075. [Google Scholar] [CrossRef]
- Poyatos-Racionero, E.; Ros-Lis, J.V.; Vivancos, J.-L.; Martínez-Máñez, R. Recent advances on intelligent packaging as tools to reduce food waste. J. Clean. Prod. 2018, 172, 3398–3409. [Google Scholar] [CrossRef]
- Chen, H.-z.; Zhang, M.; Bhandari, B.; Guo, Z. Applicability of a colorimetric indicator label for monitoring freshness of fresh-cut green bell pepper. Postharvest Biol. Technol. 2018, 140, 85–92. [Google Scholar] [CrossRef]
- Feng, T.; Chen, H.; Zhang, M. Applicability and Freshness Control of pH-Sensitive Intelligent Label in Cool Chain Transportation of Vegetables. Foods 2023, 12, 3489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Wang, C.; Liu, X.; El-Seedi, H.R.; Gómez, P.L.; Alzamora, S.M.; Zou, X.; Guo, Z. Enhanced composite Co-MOF-derived sodium carboxymethyl cellulose visual films for real-time and in situ monitoring fresh-cut apple freshness. Food Hydrocoll. 2024, 157, 110475. [Google Scholar] [CrossRef]
- Iskandar, A.; Yuliasih, I.; Warsiki, E. Performance Improvement of Fruit Ripeness Smart Label Based On Ammonium Molibdat Color Indicators. Indones. Food Sci. Technol. J. 2020, 3, 48–57. [Google Scholar] [CrossRef]
- Lang, C.; Hübert, T. A Colour Ripeness Indicator for Apples. Food Bioprocess Technol. 2012, 5, 3244–3249. [Google Scholar] [CrossRef]
- Hu, X.G.; Li, X.; Park, S.H.; Kim, Y.-H.; Yang, S.I. Nondestructive Monitoring of Kiwi Ripening Process Using Colorimetric Ethylene Sensor. Bull. Korean Chem. Soc. 2016, 37, 759–762. [Google Scholar] [CrossRef]
- Kaewnu, K.; Samoson, K.; Thiangchanya, A.; Phonchai, A.; Limbut, W. A novel colorimetric indicator for ethanol detection in preserved baby mangoes. Food Chem. 2022, 369, 130769. [Google Scholar] [CrossRef]
- Shao, P.; Liu, L.; Yu, J.; Zheng, L.; Sun, P. Novel aldehyde sensitive bio-based colorimetric film for kiwi fruit freshness monitoring. LWT 2022, 159, 113177. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yang, Y.J.; Kim, J.S.; Choi, D.S.; Park, S.H.; Jin, S.Y.; Park, J.S. Non-destructive monitoring of apple ripeness using an aldehyde sensitive colorimetric sensor. Food Chem. 2018, 267, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Kuswandi, B.; Maryska, C.; Jayus; Abdullah, A.; Heng, L.Y. Real time on-package freshness indicator for guavas packaging. J. Food Meas. Charact. 2013, 7, 29–39. [Google Scholar] [CrossRef]
- Ardiyansyah; Kurnianto, M.F.; Poerwanto, B.; Wahyono, A.; Apriliyanti, M.W.; Lestari, I.P. Monitoring of banana deteriorations using intelligent-packaging containing brazilien extract (Caesalpina sappan L.). IOP Conf. Ser. Earth Environ. Sci. 2020, 411, 012043. [Google Scholar] [CrossRef]
- Niponsak, A.; Laohakunjit, N.; Kerdchoechuen, O.; Wongsawadee, P.; Uthairatanakij, A. Novel ripeness label based on starch/chitosan incorporated with pH dye for indicating eating quality of fresh-cut durian. Food Control 2020, 107, 106785. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhang, F.; Mi, S.; Yu, W.; Sang, Y.; Wang, X. Preparation of chitosan/polyvinyl alcohol antibacterial indicator composite film loaded with AgNPs and purple sweet potato anthocyanins and its application in strawberry preservation. Food Chem. 2025, 463, 141442. [Google Scholar] [CrossRef]
- Zhan, S.; Yi, F.; Hou, F.; Song, L.; Chen, X.; Jiang, H.; Han, X.; Sun, X.; Liu, Z. Development of pH-freshness smart label based on gellan gum film incorporated with red cabbage anthocyanins extract and its application in postharvest mushroom. Colloids Surf. B Biointerfaces 2024, 236, 113830. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, J.; Zhang, L.; Xu, S.; Jiang, L.; Tian, W.; Wu, T.; Yu, M.; Yuan, L.; Li, Z. A bifunctional film based on carboxymethyl cellulose/polyvinyl alcohol integrated with anthocyanins doped zeolitic imidazolate framework-8 for monitoring and maintaining fruit freshness. Int. J. Biol. Macromol. 2025, 314, 144368. [Google Scholar] [CrossRef]
- Meng, F.; Yan, X.; Nkede, F.N.; Wardak, M.H.; Van, T.T.; Tanaka, F.; Tanaka, F. An intelligent chitosan/polyvinyl alcohol film with two types of anthocyanins for improved color recognition accuracy and monitoring fresh-cut pineapple freshness. Food Packag. Shelf Life 2024, 46, 101402. [Google Scholar] [CrossRef]
- Zong, Z.; Liu, M.; Chen, H.; Farag, M.A.; Wu, W.; Fang, X.; Niu, B.; Gao, H. Preparation and characterization of a novel intelligent starch/gelatin binary film containing purple sweet potato anthocyanins for Flammulina velutipes mushroom freshness monitoring. Food Chem. 2023, 405, 134839. [Google Scholar] [CrossRef]
- Kuswandi, B.; Seftyani, M.; Pratoko, D.K. Edible colorimetric label based on immobilized purple sweet potato anthocyanins onto edible film for packaged mushrooms freshness monitoring. J. Food Sci. Technol. 2024, 61, 1811–1822. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Hu, X.; Huang, X.; Zhang, X.; Zou, X.; Shi, J. A visible colorimetric sensor array based on chemo-responsive dyes and chemometric algorithms for real-time potato quality monitoring systems. Food Chem. 2023, 405, 134717. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Kang, W.; Shao, X.; Cai, J.; Li, H.; Chen, Q. Application of colorimetric sensor array coupled with machine-learning approaches for the discrimination of grains based on freshness. J. Sci. Food Agric. 2023, 103, 6790–6799. [Google Scholar] [CrossRef]
- Huang, X.; Lv, R.; Wang, S.; Aheto, J.H.; Dai, C. Integration of computer vision and colorimetric sensor array for nondestructive detection of mango quality. J. Food Process Eng. 2018, 41, e12873. [Google Scholar] [CrossRef]
- Kim, C.; Kim, S.-J.; Lee, Y.; Nguyen, T.M.; Lee, J.-M.; Moon, J.-S.; Han, D.-W.; Oh, J.-W. A phage- and colorimetric sensor-based artificial nose model for banana ripening analysis. Sens. Actuators B Chem. 2022, 362, 131763. [Google Scholar] [CrossRef]
- Esmaeili, K.; Golshahi, H.; Dashtian, K.; Zare-Dorabei, R. An innovative hydrogel-based colorimetric freshness indicator array for smart packaging of bananas, apples, and pears. Sens. Actuators B Chem. 2025, 438, 137743. [Google Scholar] [CrossRef]
- You, Z.; Zhao, M.; Lu, H.; Chen, H.; Wang, Y. Eye-Readable and Wearable Colorimetric Sensor Arrays for In Situ Monitoring of Volatile Organic Compounds. ACS Appl. Mater. Interfaces 2024, 16, 19359–19368. [Google Scholar] [CrossRef] [PubMed]
- Hossain, O.; Wang, Y.; Li, M.; Mativenga, B.; Jamalzadegan, S.; Mohammad, N.; Velayati, A.; Poonam, A.D.; Wei, Q. A dual-functional needle-based VOC sensing platform for rapid vegetable phenotypic classification. Biosens. Bioelectron. 2025, 278, 117341. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, M.; Zhu, Q.; Adhikari, B. Intelligent vegetable freshness monitoring system developed by integrating eco-friendly fluorescent sensor arrays with deep convolutional neural networks. Chem. Eng. J. 2024, 488, 150739. [Google Scholar] [CrossRef]
- Domínguez-Aragón, A.; Olmedo-Martínez, J.A.; Zaragoza-Contreras, E.A. Colorimetric sensor based on a poly(ortho-phenylenediamine-co-aniline) copolymer for the monitoring of tilapia (Orechromis niloticus) freshness. Sens. Actuators B Chem. 2018, 259, 170–176. [Google Scholar] [CrossRef]
- Mohammadzadeh, F.; Golshan, M.; Haddadi-Asl, V.; Salami-Kalajahi, M. A fluorescent chemosensor for milk spoilage detection based on aniline-modified β-cyclodextrin. Microchem. J. 2024, 207, 112097. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Z.; Shi, J.; Zhang, F.; Zhou, X.; Li, Y.; Holmes, M.; Zhang, W.; Zou, X. Titanium dioxide-polyaniline/silk fibroin microfiber sensor for pork freshness evaluation. Sens. Actuators B Chem. 2018, 260, 465–474. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Shi, J.; Li, Z.; Wang, X.; Hu, X.; Gong, Y.; Zou, X. A Novel Gas Sensor for Detecting Pork Freshness Based on PANI/AgNWs/Silk. Foods 2022, 11, 2372. [Google Scholar] [CrossRef] [PubMed]
- Riahi, Z.; Khan, A.; Rhim, J.-W.; Shin, G.H.; Kim, J.T. Carbon dots-functionalized polyaniline incorporated into sodium alginate/cellulose nanofibrils film for sustainable intelligent and active packaging of shrimp. Sustain. Mater. Technol. 2025, 43, e01217. [Google Scholar] [CrossRef]
- Yumnam, M.; Hatiboruah, D.; Mishra, R.; Sathyaseelan, K.; Nath, P.; Mishra, P. A Smartphone-based optical sensor with polyaniline label for quantitative determination of freshness of freshwater fish fillets. Sens. Actuators A Phys. 2023, 361, 114557. [Google Scholar] [CrossRef]
- Thuraisingham, R.A.; Nilar, S.H.M. A theoretical study of the carcinogenic nature of some aromatic amines. J. Theor. Biol. 1980, 86, 577–580. [Google Scholar] [CrossRef]
- Marunganathan, V.; Guru, A. Uncovering the carcinogenicity of aromatic amines from food dyes and their link to oral cancer. Nat. Prod. Res. 2024, 1–3. [Google Scholar] [CrossRef]
- Ran, R.; Wang, L.; Su, Y.; He, S.; He, B.; Li, C.; Wang, C.; Liu, Y.; Chen, S. Preparation of pH-indicator films based on soy protein isolate/bromothymol blue and methyl red for monitoring fresh-cut apple freshness. J. Food Sci. 2021, 86, 4594–4610. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, Y.; Javeed, A.; Chen, F.; Li, J.; Guan, Y.; Chen, B.; Han, B. Preparation and properties of polyvinyl alcohol/chitosan-based hydrogel with dual pH/NH3 sensor for naked-eye monitoring of seafood freshness. Int. J. Biol. Macromol. 2024, 263, 130440. [Google Scholar] [CrossRef]
- Becerril, R.; Nerín, C.; Silva, F. Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends Food Sci. Technol. 2021, 111, 495–505. [Google Scholar] [CrossRef]
- Kalpana, S.; Priyadarshini, S.R.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Intelligent packaging: Trends and applications in food systems. Trends Food Sci. Technol. 2019, 93, 145–157. [Google Scholar] [CrossRef]
- Soltani Firouz, M.; Mohi-Alden, K.; Omid, M. A critical review on intelligent and active packaging in the food industry: Research and development. Food Res. Int. 2021, 141, 110113. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, K.; Zhang, M.; Xu, T.; Du, H.; Pang, B.; Si, C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr. Polym. 2023, 313, 120851. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Sayed, S.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr. Polym. 2018, 193, 19–27. [Google Scholar] [CrossRef]
- Neves, D.; Andrade, P.B.; Videira, R.A.; de Freitas, V.; Cruz, L. Berry anthocyanin-based films in smart food packaging: A mini-review. Food Hydrocoll. 2022, 133, 107885. [Google Scholar] [CrossRef]
- Echegaray, N.; Guzel, N.; Kumar, M.; Guzel, M.; Hassoun, A.; Lorenzo, J.M. Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging. Food Chem. 2023, 404, 134453. [Google Scholar] [CrossRef]
- Tang, R.; He, Y.; Fan, K. Recent advances in stability improvement of anthocyanins by efficient methods and its application in food intelligent packaging: A review. Food Biosci. 2023, 56, 103164. [Google Scholar] [CrossRef]
- Han, J.-W.; Ruiz-Garcia, L.; Qian, J.-P.; Yang, X.-T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef]
- Fei, P.; Zeng, F.; Zheng, S.; Chen, Q.; Hu, Y.; Cai, J. Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dye. Pigment. 2021, 184, 108852. [Google Scholar] [CrossRef]
- Huang, R.; Xia, S.; Gong, S.; Wang, J.; Zhang, W.; Zhong, F.; Lin, Q.; Deng, J.; Li, W. Enhancing sensitivity and stability of natural pigments in pH-responsive freshness indicators: A review. Food Chem. 2025, 463, 141357. [Google Scholar] [CrossRef]
- Wells, N.; Yusufu, D.; Mills, A. Colourimetric plastic film indicator for the detection of the volatile basic nitrogen compounds associated with fish spoilage. Talanta 2019, 194, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, C.; Gallegos, I.; Ihl, M.; Bifani, V. Study of contact angle, wettability and water vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves (Ugni molinae Turcz) extract. J. Food Eng. 2012, 109, 424–429. [Google Scholar] [CrossRef]
- Cazón, P.; Morales-Sanchez, E.; Velazquez, G.; Vázquez, M. Measurement of the Water Vapor Permeability of Chitosan Films: A Laboratory Experiment on Food Packaging Materials. J. Chem. Educ. 2022, 99, 2403–2408. [Google Scholar] [CrossRef]
- Wang, F.; Qiu, L.; Tian, Y. Super Anti-Wetting Colorimetric Starch-Based Film Modified with Poly(dimethylsiloxane) and Micro-/Nano-Starch for Aquatic-Product Freshness Monitoring. Biomacromolecules 2021, 22, 3769–3779. [Google Scholar] [CrossRef]
- Wen, P.; Wu, J.; Wu, J.; Wang, H.; Wu, H. A Colorimetric Nanofiber Film Based on Ethyl Cellulose/Gelatin/Purple Sweet Potato Anthocyanins for Monitoring Pork Freshness. Foods 2024, 13, 717. [Google Scholar] [CrossRef]
- Aguilar Meza, I.B.; Ortiz Ortega, E.; Hosseinian, H.; Rodríguez Vera, A.; Rosales López, M.J.; Hosseini, S. Characterization Techniques for Wettability Analysis. In Material Characterization Techniques and Applications; Ortiz Ortega, E., Hosseinian, H., Aguilar Meza, I.B., Rosales López, M.J., Rodríguez Vera, A., Hosseini, S., Eds.; Springer: Singapore, 2022; pp. 181–193. [Google Scholar]
- Rea, I.; Giardina, P.; Longobardi, S.; De Stefano, L. 6—Protein-modified porous silicon films for biomedical applications. In Porous Silicon for Biomedical Applications; Santos, H.A., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 104–128. [Google Scholar]
- Bertuzzi, M.A.; Castro Vidaurre, E.F.; Armada, M.; Gottifredi, J.C. Water vapor permeability of edible starch based films. J. Food Eng. 2007, 80, 972–978. [Google Scholar] [CrossRef]
- Avena-Bustillos, R.J.; Klausner, N.M.; McHugh, T.H. Water Vapor Permeability of Hydrophilic Films. In Food Packaging Materials: Current Protocols; Otoni, C., Ed.; Springer: New York, NY, USA, 2024; pp. 205–217. [Google Scholar]
- Gujral, H.; Sinhmar, A.; Nehra, M.; Nain, V.; Thory, R.; Pathera, A.K.; Chavan, P. Synthesis, characterization, and utilization of potato starch nanoparticles as a filler in nanocomposite films. Int. J. Biol. Macromol. 2021, 186, 155–162. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Matta, F.F.; de Oliveira, R.A. Effect of incorporation of blackberry particles on the physicochemical properties of edible films of arrowroot starch. Dry. Technol. 2019, 37, 448–457. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, B.; Wang, J.; Qin, Y. Structural changes and nano-TiO2 migration of poly(lactic acid)-based food packaging film contacting with ethanol as food simulant. Int. J. Biol. Macromol. 2019, 139, 85–93. [Google Scholar] [CrossRef]
- Szabó, B.S.; Horváth, A.; Petrovics, N.; Kirchkeszner, C.; Nyiri, Z.; Eke, Z. Comparative migration study of primary aromatic amines from raw polyamide granules and polyamide kitchen utensils into aqueous food simulants and food. Food Packag. Shelf Life 2024, 42, 101262. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, Y.; Bi, J.; Li, S.; Wu, H.; Zeng, M.; Pan, Y.; Lin, W.; Zhou, M.; Zhang, Z.; et al. An antioxidant composite film based on loquat seed starch incorporating resveratrol-loaded core-shell nanoparticles. Int. J. Biol. Macromol. 2025, 306, 141493. [Google Scholar] [CrossRef]
- Wang, R.; Cheng, C.; Wang, H.; Wang, D. Swollen hydrogel nanotechnology: Advanced applications of the rudimentary swelling properties of hydrogels. ChemPhysMater 2024, 3, 357–375. [Google Scholar] [CrossRef]
- Li, M.; Pu, J.; Cao, Q.; Zhao, W.; Gao, Y.; Meng, T.; Chen, J.; Guan, C. Recent advances in hydrogel-based flexible strain sensors for harsh environment applications. Chem. Sci. 2024, 15, 17799–17822. [Google Scholar] [CrossRef]
- Gao, Y.; Chai, N.K.K.; Garakani, N.; Datta, S.S.; Cho, H.J. Scaling laws to predict humidity-induced swelling and stiffness in hydrogels. Soft Matter 2021, 17, 9893–9900. [Google Scholar] [CrossRef] [PubMed]
- Mohammadalinejhad, S.; Kurek, M.; Jensen, I.-J.; Lerfall, J. The potential of anthocyanin-loaded alginate hydrogel beads for intelligent packaging applications: Stability and sensitivity to volatile amines. Curr. Res. Food Sci. 2023, 7, 100560. [Google Scholar] [CrossRef] [PubMed]
- Karaoglan, H.A.; Keklik, N.M.; Develi Isıklı, N. Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. J. Food Sci. Technol. 2019, 56, 30–39. [Google Scholar] [CrossRef]
- Modesto Junior, E.N.; Martins, M.G.; Pereira, G.A.; Chisté, R.C.; Pena, R.D. Stability Kinetics of Anthocyanins of Grumixama Berries (Eugenia brasiliensis Lam.) during Thermal and Light Treatments. Foods 2023, 12, 565. [Google Scholar] [CrossRef]
- Yuan, K.; Wu, G.; Li, X.; Zeng, Y.; Wen, X.; Liu, R.; Jiang, X.; Tian, L.; Sun, J.; Bai, W. Anthocyanins degradation mediated by β-glycosidase contributes to the color loss during alcoholic fermentation in a structure-dependent manner. Food Res. Int. 2024, 175, 113732. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Liu, Y.; Ahmed, S.; Sameen, D.E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci. Technol. 2021, 112, 532–546. [Google Scholar] [CrossRef]
- Mousavi Khaneghah, A.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Huang, X.; Zhai, X.; Li, Z.; Shi, J.; Sobhy, R.; Khalifa, I.; Zou, X. Lemon-derived carbon quantum dots incorporated guar gum/sodium alginate films with enhanced the preservability for blanched asparagus active packaging. Food Res. Int. 2025, 202, 115736. [Google Scholar] [CrossRef] [PubMed]
- Wiggers, H.J.; Zaioncz, S.; Cheleski, J.; Mainardes, R.M.; Khalil, N.M. Chapter 7—Curcumin, a Multitarget Phytochemical: Challenges and Perspectives. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 53, pp. 243–276. [Google Scholar]
- Cui, Z.; Yao, L.; Ye, J.; Wang, Z.; Hu, Y. Solubility measurement and thermodynamic modelling of curcumin in twelve pure solvents and three binary solvents at different temperature (T = 78.15–323.15 K). J. Mol. Liq. 2021, 338, 116795. [Google Scholar] [CrossRef]
- Zia, J.; Paul, U.C.; Heredia-Guerrero, J.A.; Athanassiou, A.; Fragouli, D. Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. Polymer 2019, 175, 137–145. [Google Scholar] [CrossRef]
- Yang, M.; Lin, J.; Zhang, M.; Zhuang, Y.; Li, Y.; Wang, B.; Zhang, Z.; Liu, J.; Fei, P. Recent advances in the development and application of anthocyanin-based intelligent active food packaging: A review. Food Chem. 2025, 492, 145309. [Google Scholar] [CrossRef]
- Wang, X.; Yong, H.; Gao, L.; Li, L.; Jin, M.; Liu, J. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll. 2019, 89, 56–66. [Google Scholar] [CrossRef]
- Li, B.; Bao, Y.; Li, J.; Bi, J.; Chen, Q.; Cui, H.; Wang, Y.; Tian, J.; Shu, C.; Wang, Y.; et al. A sub-freshness monitoring chitosan/starch-based colorimetric film for improving color recognition accuracy via controlling the pH value of the film-forming solution. Food Chem. 2022, 388, 132975. [Google Scholar] [CrossRef]
- Tang, C.; Zhao, Z.; Yang, M.; Lu, X.; Fu, L.; Jiang, G. Preparation and characterization of sodium cellulose sulfate/chitosan composite films loaded with curcumin for monitoring pork freshness. Curr. Res. Food Sci. 2022, 5, 1475–1483. [Google Scholar] [CrossRef]
- Wang, H.; Ding, F.; Ma, L.; Zhang, Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. Food Biosci. 2021, 40, 100871. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z.; Zhao, W.; Guo, J.; Hashim, S.B.H.; Khan, S.; Shi, J.; Huang, X.; Zou, X. Aerogel colorimetric label sensors based on carboxymethyl cellulose/sodium alginate with black goji anthocyanin for monitoring fish freshness. Int. J. Biol. Macromol. 2024, 265, 130466. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z.; Khan, S.; Shishir, M.R.I.; Zheng, H.; Gao, L.; Shi, J.; Huang, X.; Zou, X. An intelligent aerogel composed of anthocyanins, natural fiber, carboxymethyl cellulose, and sodium alginate for monitoring fish freshness. Int. J. Biol. Macromol. 2025, 297, 138198. [Google Scholar] [CrossRef]
- An, N.; Zhou, W. Sodium alginate/ager colourimetric film on porous substrate layer: Potential in intelligent food packaging. Food Chem. 2024, 445, 138790. [Google Scholar] [CrossRef]
- Saenjaiban, A.; Thanakkasaranee, S.; Jantanasakulwong, K.; Punyodom, W.; Lee, Y.S.; Singjai, P.; Panyathip, R.; Rachtanapun, P. Effect of different metal oxide nanoparticle types on thermochromism of polydiacetylene as time-temperature indicators: Structural form, size, colorimetric sensing. Sens. Actuators A Phys. 2025, 386, 116352. [Google Scholar] [CrossRef]
- Bian, Z.; Li, X.; Zhang, J.; Shi, M.; Xin, Z.; Wang, H.; Komarneni, S.; Zhang, K.; Ni, Z.; Hu, G. Intelligent double-layer films based on gellan gum/mica nanosheets/anthocyanin/konjac glucomannan/carrageenan for food real-time freshness monitoring. Food Hydrocoll. 2024, 151, 109767. [Google Scholar] [CrossRef]
- Grzebieniarz, W.; Biswas, D.; Roy, S.; Jamróz, E. Advances in biopolymer-based multi-layer film preparations and food packaging applications. Food Packag. Shelf Life 2023, 35, 101033. [Google Scholar] [CrossRef]
- Wu, G.; Su, W.; Huo, L.; Guo, Q.; Wei, J.; Zhong, H.; Li, P. Sodium alginate/chitosan-based intelligent multifunctional bilayer film for shrimp freshness retention and monitoring. Int. J. Biol. Macromol. 2024, 277, 133908. [Google Scholar] [CrossRef] [PubMed]
- Zam, M.; Niyumsut, I.; Osako, K.; Rawdkuen, S. Fabrication and Characterization of Intelligent Multi-Layered Biopolymer Film Incorporated with pH-Sensitive Red Cabbage Extract to Indicate Fish Freshness. Polymers 2022, 14, 4914. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ezati, P.; Rhim, J.-W. Alizarin: Prospects and sustainability for food safety and quality monitoring applications. Colloids Surf. B Biointerfaces 2023, 223, 113169. [Google Scholar] [CrossRef]
- Khan, M.I.; Liu, J.; Saini, R.K.; Khurshida, S. Plant betalains-mixed active/intelligent films for meat freshness monitoring: A review of the fabrication parameters. J. Food Sci. Technol. 2024, 61, 1238–1251. [Google Scholar] [CrossRef]
- Yousuf, B.; Khalid, G.; Abas, W.A.; Singh, P. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2223–2230. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Braga, A.R.C.; de Oliveira, B.R.; Gomes, F.P.; Moreira, V.L.; Pereira, V.A.C.; Egea, M.B. The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Res. Int. 2021, 142, 110202. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, X.; Lin, X.; Mostafa, S.; Zou, H.; Wang, L.; Jin, B. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. Plant Physiol. Biochem. 2024, 217, 109268. [Google Scholar] [CrossRef]
- Wu, Y.; Han, T.; Yang, H.; Lyu, L.; Li, W.; Wu, W. Known and potential health benefits and mechanisms of blueberry anthocyanins: A review. Food Biosci. 2023, 55, 103050. [Google Scholar] [CrossRef]
- Almasi, H.; Forghani, S.; Moradi, M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag. Shelf Life 2022, 32, 100839. [Google Scholar] [CrossRef]
- Clifford, M.N. Anthocyanins—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1063–1072. [Google Scholar] [CrossRef]
- Abedi-Firoozjah, R.; Parandi, E.; Heydari, M.; Kolahdouz-Nasiri, A.; Bahraminejad, M.; Mohammadi, R.; Rouhi, M.; Garavand, F. Betalains as promising natural colorants in smart/active food packaging. Food Chem. 2023, 424, 136408. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Liu, J. Plant betalains: Recent applications in food freshness monitoring films. Food Packag. Shelf Life 2022, 34, 100921. [Google Scholar] [CrossRef]
- de Farias, N.O.; de Albuquerque, A.F.; dos Santos, A.; Almeida, G.C.F.; Freeman, H.S.; Räisänen, R.; de Aragão Umbuzeiro, G. Is natural better? An ecotoxicity study of anthraquinone dyes. Chemosphere 2023, 343, 140174. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Asthana, S.; Gupta, P.; Dwivedi, P.D.; Tripathi, A.; Das, M. Chapter One—Toxicity of Naturally Occurring Anthraquinones. In Advances in Molecular Toxicology; Fishbein, J.C., Heilman, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 11, pp. 1–50. [Google Scholar]
- Fotia, C.; Avnet, S.; Granchi, D.; Baldini, N. The natural compound Alizarin as an osteotropic drug for the treatment of bone tumors. J. Orthop. Res. 2012, 30, 1486–1492. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; He, W.; Du, T.; Wang, S.; Hu, P.; Pan, B.; Jin, J.; Liu, L.; Wang, J. A tailored slow-release film with synergistic antibacterial and antioxidant activities for ultra-persistent preservation of perishable products. Food Chem. 2024, 430, 136993. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, Y.; Wang, T.; Ji, S.; Zhang, X.; Shen, T.; Huang, X.; Xiao, J.; Farag, M.A.; Shi, J.; et al. Quantum dots as advanced nanomaterials for food quality and safety applications: A comprehensive review and future perspectives. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13339. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Shahzad, A.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Biobased materials for active food packaging: A review. Food Hydrocoll. 2022, 125, 107419. [Google Scholar] [CrossRef]
- Zhao, C.-L.; Yu, Y.-Q.; Chen, Z.-J.; Wen, G.-S.; Wei, F.-G.; Zheng, Q.; Wang, C.-D.; Xiao, X.-L. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem. 2017, 214, 119–128. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, Y.; Li, C. Preparation and characterization of smart indicator films based on gellan gum/modified black rice anthocyanin/curcumin for improving the stability of natural anthocyanins. Int. J. Biol. Macromol. 2023, 253, 127436. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, H.M.C.; Waldron, K.W. Crosslinking in polysaccharide and protein films and coatings for food contact—A review. Trends Food Sci. Technol. 2016, 52, 109–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Y.; Zhou, Z. A novel multifunctional composite film of oxidized dextran crosslinked chitosan and ε-polylysine incorporating protocatechuic acid and its application in meat packaging. Food Hydrocoll. 2024, 146, 109186. [Google Scholar] [CrossRef]
- Mousavi, Z.; Naseri, M.; Babaei, S.; Hosseini, S.M.H.; Shekarforoush, S.S. The effect of cross-linker type on structural, antimicrobial and controlled release properties of fish gelatin-chitosan composite films incorporated with ε-poly-l-lysine. Int. J. Biol. Macromol. 2021, 183, 1743–1752. [Google Scholar] [CrossRef]
- Zhang, A.; Han, Y.; Zhou, Z. Characterization of citric acid crosslinked chitosan/gelatin composite film with enterocin CHQS and red cabbage pigment. Food Hydrocoll. 2023, 135, 108144. [Google Scholar] [CrossRef]
- Ji, R.; Zhang, X.; Chen, Z.; Song, S.; Li, Y.; Zhang, X.; Zhang, W. Effect of metal cation crosslinking on the mechanical properties and shrimp freshness monitoring sensitivity of pectin/carboxymethyl cellulose sodium/anthocyanin intelligent films. Carbohydr. Polym. 2024, 340, 122285. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, W.; Min, C.; Qi, Y.; Chen, X.; Zhang, H. pH-responsive color indicator film based on gelatin/chitosan cross-linking with anthocyanin-Fe2+ chelate for pork freshness monitoring. Food Hydrocoll. 2025, 162, 110895. [Google Scholar] [CrossRef]
- Jia, R.; Tian, W.; Bai, H.; Zhang, J.; Wang, S.; Zhang, J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 2019, 10, 795. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, J.; Tang, Q.; He, D.; Li, H.; Peng, D.; Zou, Z. Construction of novel ammonia-sensitive polyvinyl alcohol-based films containing nano Co-ATMP for smart packaging application. LWT 2023, 186, 115222. [Google Scholar] [CrossRef]
- Wei, D.; Feng, S.; Tang, Q.; Li, H.; Peng, D.; Zou, Z. Novel ammonia-sensitive sodium alginate-based films containing Co-Imd microcrystals for smart packaging application. Int. J. Biol. Macromol. 2023, 253, 126607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, Q.; Huang, K.; Xu, Z.; Feng, S.; Li, H.; Zou, Z. Developing strong and tough cellulose acetate/ZIF67 intelligent active films for shrimp freshness monitoring. Carbohydr. Polym. 2023, 302, 120375. [Google Scholar] [CrossRef]
- Feng, S.; Tang, Q.; Xu, Z.; Huang, K.; Li, H.; Zou, Z. Development of novel Co-MOF loaded sodium alginate based packaging films with antimicrobial and ammonia-sensitive functions for shrimp freshness monitoring. Food Hydrocoll. 2023, 135, 108193. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, J.; Zhou, H.; Zhou, S.; Lv, Y.; Cheng, Y.; Tao, Y.; Lu, J.; Wang, H. Biodegradable intelligent film for food preservation and real-time visual detection of food freshness. Food Hydrocoll. 2022, 129, 107665. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, L.; Yu, J.; Farag, M.A.; Shao, P. Intelligent starch/chitosan-based film incorporated by anthocyanin-encapsulated amylopectin nanoparticles with high stability for food freshness monitoring. Food Control 2023, 151, 109798. [Google Scholar] [CrossRef]
- Oktay, C.; Kahyaoglu, L.N.; Moradi, M. Food freshness monitoring using poly(vinyl alcohol) and anthocyanins doped zeolitic imidazolate framework-8 multilayer films with bacterial nanocellulose beneath as support. Carbohydr. Polym. 2023, 319, 121184. [Google Scholar] [CrossRef]
- Hashim, S.B.H.; Tahir, H.E.; Mahdi, A.A.; Zhang, J.; Zhai, X.; Al-Maqtari, Q.A.; Zhou, C.; Mahunu, G.K.; Xiaobo, Z.; Jiyong, S. Enhancement of a hybrid colorimetric film incorporating Origanum compactum essential oil as antibacterial and monitor chicken breast and shrimp freshness. Food Chem. 2024, 432, 137203. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Zhang, H.; Dong, M.; Li, L.; Zhangsun, H.; Wang, L. Dual-functional intelligent gelatin based packaging film for maintaining and monitoring the shrimp freshness. Food Hydrocoll. 2022, 124, 107258. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, B.; Liang, N.; Huang, X.; Shi, J.; Li, Z.; Paximada, P.; Xiaobo, Z. 4D printing of Pickering emulsion: Temperature-driven color changes. J. Food Eng. 2025, 386, 112258. [Google Scholar] [CrossRef]
- Zhao, R.; Guo, H.; Yan, T.; Li, J.; Xu, W.; Deng, Y.; Zhou, J.; Ye, X.; Liu, D.; Wang, W. Fabrication of multifunctional materials based on chitosan/gelatin incorporating curcumin-clove oil emulsion for meat freshness monitoring and shelf-life extension. Int. J. Biol. Macromol. 2022, 223, 837–850. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhai, X.; Yin, L.; Shi, J.; Zou, X.; Li, Z.; Huang, X.; Ma, X.; Povey, M. A smart bilayer film containing zein/gelatin/carvacrol and polyvinyl alcohol/chitosan/anthocyanin for Lateolabrax japonicus preservation and freshness monitoring. J. Food Meas. Charact. 2023, 17, 6470–6483. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Aliakbarlu, J.; Cui, H.; Lin, L. Typical application of electrostatic layer-by-layer self-assembly technology in food safety assurance. Trends Food Sci. Technol. 2022, 129, 88–97. [Google Scholar] [CrossRef]
- Shi, S.; Wu, X.; Wang, Y.; Li, W.; Zhang, H.; Lou, X.; Xia, X.; Liang, W. Sodium-alginate-based indicator film containing a hydrophobic nanosilica layer for monitoring fish freshness. Int. J. Biol. Macromol. 2024, 265, 130714. [Google Scholar] [CrossRef]
- Yong, Y.; Wang, S.; Li, L.; Li, R.; Ahmad, H.N.; Munawar, N.; Zhu, J. A curcumin-crosslinked bilayer film of soy protein isolate and chitosan with enhanced antibacterial property for beef preservation and freshness monitoring. Int. J. Biol. Macromol. 2023, 247, 125778. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, H.; Xiang, H.; Yu, D.; Gao, M.; Yan, R.; Zhang, D. A nature pH indicator with high colorimetric response sensitivity for pork freshness monitoring. Food Biosci. 2024, 57, 103519. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, M.; Mujumdar, A.S.; Li, C. 3D printed curcumin-based composite film for monitoring fish freshness. Food Packag. Shelf Life 2024, 43, 101289. [Google Scholar] [CrossRef]
- Tracey, C.T.; Predeina, A.L.; Krivoshapkina, E.F.; Kumacheva, E. A 3D printing approach to intelligent food packaging. Trends Food Sci. Technol. 2022, 127, 87–98. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Zhang, Y.; Jayan, H.; Gao, S.P.; Zhou, R.Y.; Yosri, N.; Zou, X.B.; Guo, Z.M. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem. 2024, 448, 139057. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Zhou, R.Y.; Ke, L.J.; Li, J.B.; Jayan, H.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. Development of multifunctional metal-organic frameworks (MOFs)-based nanofiller materials in food packaging: A comprehensive review. Trends Food Sci. Technol. 2024, 154, 104771. [Google Scholar] [CrossRef]
- Sun, W.; Huo, Y.; Feng, X.; Wei, L.; Lu, X.; Liu, S.; Gao, Z. Recent advances in metal-organic frameworks (MOFs)-based colorimetric sensors for visual detection of food freshness. Coord. Chem. Rev. 2025, 535, 216638. [Google Scholar] [CrossRef]
- Huang, X.; Wang, F.; Hu, W.; Zou, Z.; Tang, Q.; Li, H.; Xu, L. Smart packaging films based on corn starch/polyvinyl alcohol containing nano SIM-1 for monitoring food freshness. Int. J. Biol. Macromol. 2024, 256, 128373. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liang, J.; Wu, Y.; Li, W.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. Fish freshness monitoring based on bilayer cellulose acetate/polyvinylidene fluoride membranes containing ZIF-8 loaded curcumin. Food Chem. 2025, 463, 141054. [Google Scholar] [CrossRef]
- Khan, A.; Riahi, Z.; Kim, J.T.; Rhim, J.-W. Gelatin/carrageenan-based smart packaging film integrated with Cu-metal organic framework for freshness monitoring and shelf-life extension of shrimp. Food Hydrocoll. 2023, 145, 109180. [Google Scholar] [CrossRef]
- Gomes, V.; Pires, A.S.; Mateus, N.; de Freitas, V.; Cruz, L. Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocoll. 2022, 127, 107501. [Google Scholar] [CrossRef]
- Guo, C.; Li, Y.; Zhang, H.; Zhang, Q.; Wu, X.; Wang, Y.; Sun, F.; Shi, S.; Xia, X. A review on improving the sensitivity and color stability of naturally sourced pH-sensitive indicator films. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13390. [Google Scholar] [CrossRef] [PubMed]
- Mazur, F.; Han, Z.; Tjandra, A.D.; Chandrawati, R. Digitalization of Colorimetric Sensor Technologies for Food Safety. Adv. Mater. 2024, 36, e2404274. [Google Scholar] [CrossRef]
- Çetinkaya, T.; Ceylan, Z.; Meral, R.; Kılıçer, A.; Altay, F. A novel strategy for Au in food science: Nanoformulation in dielectric, sensory properties, and microbiological quality of fish meat. Food Biosci. 2021, 41, 101024. [Google Scholar] [CrossRef]
- Li, H.; Liu, M.; Li, J.; Zhang, X.; Zhang, H.; Zheng, L.; Xia, N.; Wei, A.; Hua, S. 3D Printing of smart labels with curcumin-loaded soy protein isolate. Int. J. Biol. Macromol. 2024, 255, 128211. [Google Scholar] [CrossRef]
- Grira, S.; Mozumder, M.S.; Mourad, A.-H.I.; Ramadan, M.; Khalifeh, H.A.; Alkhedher, M. 3D bioprinting of natural materials and their AI-Enhanced printability: A review. Bioprinting 2025, 46, e00385. [Google Scholar] [CrossRef]
- Yu, Z.; Boyarkina, V.; Liao, Z.; Lin, M.; Zeng, W.; Lu, X. Boosting Food System Sustainability through Intelligent Packaging: Application of Biodegradable Freshness Indicators. ACS Food Sci. Technol. 2023, 3, 199–212. [Google Scholar] [CrossRef]
- Kan, J.; Liu, J.; Xu, F.; Yun, D.; Yong, H.; Liu, J. Development of pork and shrimp freshness monitoring labels based on starch/polyvinyl alcohol matrices and anthocyanins from 14 plants: A comparative study. Food Hydrocoll. 2022, 124, 107293. [Google Scholar] [CrossRef]
- Bao, Y.; Cui, H.; Tian, J.; Ding, Y.; Tian, Q.; Zhang, W.; Wang, M.; Zang, Z.; Sun, X.; Li, D.; et al. Novel pH sensitivity and colorimetry-enhanced anthocyanin indicator films by chondroitin sulfate co-pigmentation for shrimp freshness monitoring. Food Control 2022, 131, 108441. [Google Scholar] [CrossRef]
- Li, Z.; Tahir, H.E.; Huang, X.; Zhai, X. Chapter Fourteen—Challenges, commercialization, and future industrial application of colorimetric sensors/indicators. In Colorimetric Sensors; Tahir, H.E., Xiaobo, Z., Arslan, M., Jiyong, S., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 307–319. [Google Scholar]
- Nami, M.; Taheri, M.; Siddiqui, J.; Deen, I.A.; Packirisamy, M.; Deen, M.J. Recent Progress in Intelligent Packaging for Seafood and Meat Quality Monitoring. Adv. Mater. Technol. 2024, 9, 2301347. [Google Scholar] [CrossRef]
- Kilic, B.; Dogan, V.; Kilic, V.; Kahyaoglu, L.N. Colorimetric food spoilage monitoring with carbon dot and UV light reinforced fish gelatin films using a smartphone application. Int. J. Biol. Macromol. 2022, 209, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zheng, Y.; Kong, Q.; Sun, Z.; Liu, X. A Wechat miniprogram (‘Fresh color’) based on smart phone to indicate the freshness of Atlantic salmon (Salmo salar L.) and oysters on site by detection of the color changes of curcumin films. Food Control 2023, 145, 109520. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, X.; Xue, Y.; Sun, Y.; Ma, X.; Ban, W.; Marappan, G.; Tahir, H.E.; Huang, X.; Wu, K.; Chen, Z.; et al. Colorimetric Food Freshness Indicators for Intelligent Packaging: Progress, Shortcomings, and Promising Solutions. Foods 2025, 14, 2813. https://doi.org/10.3390/foods14162813
Zhai X, Xue Y, Sun Y, Ma X, Ban W, Marappan G, Tahir HE, Huang X, Wu K, Chen Z, et al. Colorimetric Food Freshness Indicators for Intelligent Packaging: Progress, Shortcomings, and Promising Solutions. Foods. 2025; 14(16):2813. https://doi.org/10.3390/foods14162813
Chicago/Turabian StyleZhai, Xiaodong, Yuhong Xue, Yue Sun, Xingdan Ma, Wanwan Ban, Gobinath Marappan, Haroon Elrasheid Tahir, Xiaowei Huang, Kunlong Wu, Zhilong Chen, and et al. 2025. "Colorimetric Food Freshness Indicators for Intelligent Packaging: Progress, Shortcomings, and Promising Solutions" Foods 14, no. 16: 2813. https://doi.org/10.3390/foods14162813
APA StyleZhai, X., Xue, Y., Sun, Y., Ma, X., Ban, W., Marappan, G., Tahir, H. E., Huang, X., Wu, K., Chen, Z., Zou, W., Liu, B., Zhang, L., Yang, Z., & Katona, J. (2025). Colorimetric Food Freshness Indicators for Intelligent Packaging: Progress, Shortcomings, and Promising Solutions. Foods, 14(16), 2813. https://doi.org/10.3390/foods14162813