The Contribution of Melanoidins to Soy Sauce Antioxidant Activities and Their Structure Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Soy Sauce Melanoidins from Soy Sauce
2.2.1. Extraction of Melanoidins by Macroporous Resin Adsorption
2.2.2. Ultrafiltration Separation of the Extracted Melanoidins
2.3. Determination of the Melanoidins Content
2.4. Determination of Chemical Composition of Melanoidins
2.4.1. Total Sugar, Protein, and Total Phenol Content
2.4.2. Free Amino Acids Composition
2.5. Determination of Antioxidant Activities of Melanoidins
2.5.1. DPPH Free Radical Scavenging Activity
2.5.2. ABTS Free Radical Scavenging Activity
2.5.3. Oxygen Radical Absorbing Capacity (ORAC)
2.5.4. Metal Chelating Ability (MCA)
2.5.5. Ferric Reducing Antioxidant Power (FRAP)
2.6. Contributions of the Antioxidant Activities of Soy Sauce Melanoidins
2.7. Structural Characteristics of Melanoidins
2.7.1. UV-Vis Spectra
2.7.2. Fluorescence Spectra
2.7.3. Fourier Transform Infrared Spectroscopy (FT-IR)
2.7.4. 1H Nuclear Magnetic Resonance Spectroscopy (1H NMR)
2.8. Data Analyses
3. Results
3.1. Melanoidins Prepared from Soy Sauce and Their Content
3.2. Chemical Composition of Melanoidins
3.2.1. The Main Composition of Melanoidins
3.2.2. Free Amino Acids of Melanoidins
3.3. Antioxidant Activities of Melanoidins
3.4. Contributions of Melanoidins to the Antioxidant Activities of Soy Sauce
3.5. Structural Characterization of Melanoidins
3.5.1. Ultraviolet–Visible Spectral Analysis
3.5.2. Fluorescence Spectral Analysis
3.5.3. FTIR Spectral Analysis
3.5.4. 1H NMR Spectral Analysis
3.6. Relationship Between the Structures and Antioxidant Activities of Melanoidins
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.Q.; Meng, F.B.; Peng, Q.Y.; Lin, Y.X.; Chen, S.; Li, Y.C. Elucidating metabolic and flavor evolution in traditional Chinese soy sauce during industrial-scale fermentation: A multi-omics approach. Food Chem. X 2025, 29, 102638. [Google Scholar] [CrossRef]
- Gao, X.L.; Liu, E.M.; Zhang, J.K.; Yang, L.X.; Huang, Q.R.; Chen, S.; Liao, L. Accelerating aroma formation of raw soy sauce using low intensity sonication. Food Chem. 2020, 329, 127118. [Google Scholar] [CrossRef]
- Gao, X.L.; Cui, C.; Ren, J.Y.; Zhao, H.F.; Zhao, Q.Z.; Zhao, M. Changes in the chemical composition of traditional Chinese-type soy sauce at different stages of manufacture and its relation to taste. Int. J. Food Sci. Technol. 2011, 46, 243–249. [Google Scholar] [CrossRef]
- Gao, X.L.; Zhao, X.; Hu, F.; Fu, J.Y.; Zhang, Z.K.; Liu, Z.; Bo, W.; He, R.H.; Ma, H.L.; Ho, C.T. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China. Food Res. Int. 2023, 173, 113407. [Google Scholar] [CrossRef]
- Liu, D.; He, Y.; Xiao, J.; Zhou, Q.; Wang, M. The occurrence and stability of Maillard reaction products in various traditional Chinese sauces. Food Chem. 2021, 342, 128319. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.W.; Zhou, W.T.; Guo, L.D.; Jia, S.; Zhang, X.Y.; Wang, L. Effects of characteristics of douchi during rapid fermentation and antioxidant activity using different starter cultures. J. Sci. Food Agric. 2023, 103, 2459–2472. [Google Scholar] [CrossRef] [PubMed]
- Shan, P.; Ho, C.T.; Zhang, L.; Gao, X.L.; Lin, H.; Xu, T.; Wang, B.; Fu, J.Y.; He, R.H.; Zhang, Y.Q. Degradation mechanism of soybean protein B3 subunit catalyzed by prolyl endopeptidase from Aspergillus niger during soy sauce fermentation. J. Agric. Food Chem. 2022, 70, 5869–5878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.K.; Ding, Y.H.; Hu, F.; Liu, Z.; Lin, X.D.; Fu, J.Y.; Zhang, Q.Y.; Zhang, Z.H.; Ma, H.L.; Gao, X. Constructing in-situ and real-time monitoring methods during soy sauce production by miniature fiber NIR spectrometers. Food Chem. 2024, 460, 140788. [Google Scholar] [CrossRef]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef]
- Shaheen, S.; Shorbagi, M.; Lorenzo, J.M.; Farag, M.A. Dissecting dietary melanoidins: Formation mechanisms, gut interactions and functional properties. Crit. Rev. Food Sci. Nutr. 2022, 62, 8954–8971. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, N.N.; Xia, T.; Nie, Y.N.; Zhang, X.D.; Lang, F.; Liang, K.; Li, T.M.; Wang, M. Melanoidins from Shanxi aged vinegar: Characterization and behavior after in vitro simulated digestion and colonic fermentation. Food Chem. 2024, 464, 141769. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Bian, X.; Wang, C.; Geng, D.; Yu, L.; Cheng, Y.Q.; Chen, H.B.; Tang, N. In vitro Sharma simulated digestive properties of Monascus vinegar melanoidins, and cytoprotective functions on Caco-2 cells. Food Res. Int. 2025, 202, 115720. [Google Scholar] [CrossRef]
- Yang, S.Q.; Fan, W.L.; Xu, Y. Melanoidins present in traditional fermented foods and beverages. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4164–4188. [Google Scholar] [CrossRef]
- Mesías, M.; Delgado-Andrade, C. Melanoidins as a potential functional food ingredient. Curr. Opin. Food. Sci. 2017, 14, 37–42. [Google Scholar] [CrossRef]
- Liu, J.Y.; Gan, J.; Yu, Y.J.; Zhu, S.H.; Yin, L.J.; Cheng, Y. Effect of laboratory-scale decoction on the antioxidative activity of Zhenjiang Aromatic Vinegar: The contribution of melanoidins. J. Funct. Foods 2016, 21, 75–86. [Google Scholar] [CrossRef]
- Martinez-Gomez, A.; Caballero, I.; Blanco, C.A. Phenols and melanoidins as natural antioxidants in beer. Structure, reactivity and antioxidant activity. Biomolecules 2020, 10, 400. [Google Scholar] [CrossRef]
- Liu, J.Y.; Gan, J.; Nirasawa, S.; Zhou, Y.; Xu, J.; Zhu, S.; Cheng, Y. Cellular uptake and trans-enterocyte transport of phenolics bound to vinegar melanoidins. J. Funct. Foods 2017, 37, 632–640. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Tian, S.T.; Zhang, S.J.; Yu, Y.G.; Wu, Q.W. Antioxidant peptides from the mixed-distillate of Baijiu fermented grains and soy sauce residue interact with flavor substances in sauce-aroma Baijiu. LWT 2025, 228, 117955. [Google Scholar] [CrossRef]
- Long, L.H.; Kwee, D.C.; Halliwell, B. The antioxidant activities of seasonings used in Asian cooking. Powerful antioxidant activity of dark soy sauce revealed using the ABTS assay. Free Radic. Res. 2000, 32, 181–186. [Google Scholar] [CrossRef]
- Miwa, M.; Watanabe, T.; Kawasumi, T.; Hayase, F. Protective effects of melanoidins derived from soy sauce and soy paste on NO-induced DNA damage. Food Sci. Technol. Res. 2002, 8, 231–234. [Google Scholar] [CrossRef]
- Guo, C.H.; Lin, L.; Chen, Z.H.; Lu, Z.H.; Sun, L.P.; Yu, J. Extraction, spectral properties and bioactive functions of melanoidin from black soy sauce. Food Sci. 2012, 33, 89–93. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Hao, J.; Li, Y.; Yu, X.; Zhang, B. Sustainable recovery of melanoidins from thermal hydrolyzed sludge by macroporous resin and properties characterization. J. Environ. Manag. 2023, 331, 117277. [Google Scholar] [CrossRef]
- Mossine, V.V.; Glinsky, G.V.; Feather, M.S. Preparation and characterization of some Amadori compounds (1-amino-1-deoxy-d-fructose derivatives) derived from a series of aliphatic ω-amino acids. Carbohydr. Res. 1994, 262, 257–270. [Google Scholar] [CrossRef]
- Li, Y.Y.; Xiao, S.W.; Zhang, Q.; Wang, N.; Yang, Q.; Hao, J.X. Development and standardization of spectrophotometric assay for quantification of thermal hydrolysis-origin melanoidins and its implication in antioxidant activity evaluation. J. Hazard. Mater. 2024, 476, 135021. [Google Scholar] [CrossRef]
- Ding, X.F.; Zhang, Y.B.; Li, J.; Yan, S. Structure, spectral properties and antioxidant activity of melanoidins extracted from high temperature sterilized lotus rhizome juice. Int. J. Biol. Macromol. 2024, 270, 132171. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Fan, W.; Nie, Y.; Xu, Y. The formation and structural characteristics of melanoidins from fermenting and distilled grains of Chinese liquor (baijiu). Food Chem. 2023, 410, 135372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.Z.; Ding, L.L.; Yao, Y.P.; Cao, Y.P.; Pan, Z.H.; Kong, D.H. Extracellular proteome analysis and flavor formation during soy sauce fermentation. Front. Microbiol. 2018, 9, 1872. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Hwang, C.E.; Son, K.S.; Cho, K.M. Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties. Food Chem. 2019, 272, 362–371. [Google Scholar] [CrossRef]
- Wu, J.F.; Jin, Y.; Zhang, M. Evaluation on the physicochemical and digestive properties of melanoidin from black garlic and their antioxidant activities in vitro. Food Chem. 2021, 340, 127934. [Google Scholar] [CrossRef]
- Wang, K.T.; Tang, N.; Bian, X.J.; Geng, D.H.; Chen, H.B.; Cheng, Y. Structural characteristics, chemical compositions and antioxidant activity of melanoidins during the traditional brewing of Monascus vinegar. LWT 2024, 209, 116760. [Google Scholar] [CrossRef]
- Bork, L.V.; Haase, P.T.; Rohn, S.; Kanzler, C. Formation of melanoidins—Aldol reactions of heterocyclic and short-chain Maillard intermediates. Food Chem. 2022, 380, 131852. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Sun, G.R.; Li, J.Y.; Cheng, P.; Song, Q.; Lv, W.; Wang, C. Starter molds and multi-enzyme catalysis in koji fermentation of soy sauce brewing: A review. Food Res. Int. 2024, 184, 114273. [Google Scholar] [CrossRef] [PubMed]
- Pastoriza, S.; Rufián-Henares, J.A. Contribution of melanoidins to the antioxidant capacity of the Spanish diet. Food Chem. 2014, 164, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.S.; Zhao, Y.X.; Wang, D.; Zhang, X.L.; Xia, M.L.; Xia, T.; Zheng, Y.; Wang, M. Exploring polymerisation of methylglyoxal with NH3 or alanine to analyse the formation of typical polymers in melanoidins. Food Chem. 2022, 394, 133472. [Google Scholar] [CrossRef] [PubMed]
- Monente, C.; Ludwig, I.A.; Irigoyen, A.; De Peña, M.P.; Cid, C. Assessment of total (free and bound) phenolic compounds in spent coffee extracts. J. Agric. Food Chem. 2015, 63, 4327–4334. [Google Scholar] [CrossRef]
- Shakoor, A.; Zhang, C.; Xie, J.; Yang, X. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem. 2022, 393, 133416. [Google Scholar] [CrossRef]
- Kuang, X.X.; Su, H.T.; Li, W.X.; Lin, L.Z.; Lin, W.F.; Luo, L. Effects of microbial community structure and its co-occurrence on the dynamic changes of physicochemical properties and free amino acids in the Cantonese soy sauce fermentation process. Food Res. Int. 2022, 156, 111347. [Google Scholar] [CrossRef]
- Yang, H.R.; Zhang, Q.H.; Zeng, Y.J.; Cheng, C.; Coldea, T.E.; Zhao, H.F. Differences in structure, stability and antioxidant activity of melanoidins from lager and ale beers. LWT 2024, 205, 116517. [Google Scholar] [CrossRef]
- Hellwig, M.; Henle, T. Maillard reaction products in different types of brewing malt. J. Agric. Food Chem. 2020, 68, 14274–14285. [Google Scholar] [CrossRef]
- Wang, Z.S.; Zhang, Z.J.; Li, S.P.; Zhang, X.L.; Xia, M.L.; Xia, T.; Wang, M. Formation mechanisms and characterisation of the typical polymers in melanoidins from vinegar, coffee and model experiments. Food Chem. 2021, 355, 129444. [Google Scholar] [CrossRef]
- Wang, B.B.; Zhong, Y.; Wang, D.F.; Meng, F.B.; Li, Y.C.; Deng, Y. Formation, evolution, and antioxidant activity of melanoidins in black garlic under different storage conditions. Foods 2023, 12, 3727. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Qian, H.; Yao, W.R. Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chem. 2011, 128, 573–584. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Chen, M.T.; Coldea, T.E.; Yang, H.R.; Zhao, H.F. Structure, chemical stability and antioxidant activity of melanoidins extracted from dark beer by acetone precipitation and macroporous resin adsorption. Food Res. Int. 2023, 164, 112045. [Google Scholar] [CrossRef] [PubMed]
- Pirestani, S.; Nasirpour, A.; Keramat, J.; Desobry, S.; Jasniewski, J. Structural properties of canola protein isolate-gum Arabic Maillard conjugate in an aqueous model system. Food Hydrocoll. 2018, 79, 228–234. [Google Scholar] [CrossRef]
- Oracz, J.; Lewandowska, U.; Owczarek, K.; Caban, M.; Rosicka-Kaczmarek, J.; Żyżelewicz, D. Isolation, structural characterization and biological activity evaluation of melanoidins from thermally processed cocoa beans, carob kibbles and acorns as potential cytotoxic agents. Food Chem. 2024, 442, 138423. [Google Scholar] [CrossRef]
- Bosco, M.; Toffanin, R.; Palo, D.D.; Zatti, L.; Segre, A. High-resolution 1H NMR investigation of coffee. J. Sci. Food Agric. 1999, 79, 869–878. [Google Scholar] [CrossRef]
- Pimenta Inada, K.O.; Ripper, B.; Scherner, D.; Monteiro, M.; Perrone, D. Maté (Ilex paraguariensis) toasting causes chlorogenic acids to degrade and incorporate into the backbone of melanoidins, contributing to their antioxidant activity. ACS Food Sci. Technol. 2022, 2, 888–894. [Google Scholar] [CrossRef]
- Hofmann, T. 4-alkylidene-2-imino-5-[4-alkylidene-5-oxo-1, 3-imidazol-2-inyl] aza-methylidene-1, 3- imidazolidinea novel coloured substructure in melanoidins formed by Maillard reactions of bound arginine with glyoxal and furan-2-carboxaldehyde. J. Agric. Food Chem. 1998, 46, 3896–3901. [Google Scholar] [CrossRef]
- Cämmerer, B.; Jalyschkov, V.; Kroh, W.L. Carbohydrate structures as part of the melanoidin skeleton. Int. Congr. Ser. 2002, 1245, 269–273. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Wang, X.; Zhang, Y.; Lai, C.-J.-S.; Xie, J. Melanoidins from stir-frying Atractylodes Macrocephala: Structural characterization, molecular weight distribution, and polyphenol delivery mechanism. Food Chem. 2025, 483, 144238. [Google Scholar] [CrossRef]
Melanoidins | Molecular Weight Fraction | ||||
---|---|---|---|---|---|
1–3 kDa | 3–10 kDa | 10–30 kDa | 30–50 kDa | >50 kDa | |
Content (g/100 mL soy sauce) | 0.31 ± 0.07 c,d | 0.42 ± 0.09 b,c | 0.20 ± 0.05 d | 0.61 ± 0.10 b | 0.90 ± 0.13 a |
Main Components | Molecular Weight Fraction | ||||
---|---|---|---|---|---|
1–3 kDa | 3–10 kDa | 10–30 kDa | 30–50 kDa | >50 kDa | |
Total sugar (mg/g) | 16.03 ± 0.61 c | 17.06 ± 1.03 c | 17.34 ± 1.11 c | 22.18 ± 1.63 b | 28.34 ± 1.90 a |
Protein (mg/g) | 50.18 ± 3.12 d | 50.81 ± 2.07 d | 71.83 ± 4.03 c | 83.37 ± 4.15 b | 109.20 ± 7.22 a |
Total phenol (mg/g) | 0.20 ± 0.05 c | 0.56 ± 0.01 b | 0.88 ± 0.12 a | 0.55 ± 0.08 b | 0.43 ± 0.06 b |
Free Amino Acids (g/100 g) | Molecular Weight Fraction | ||||
---|---|---|---|---|---|
1–3 kDa | 3–10 kDa | 10–30 kDa | 30–50 kDa | >50 kDa | |
Aspartic acid | 0.44 ± 0.03 a | 0.45 ± 0.04 a | 0.46 ± 0.02 a | 0.46 ± 0.05 a | 0.37 ± 0.02 b |
Glutamic acid | 1.82 ± 0.17 a | 1.47 ± 0.07 b | 1.09 ± 0.18 c | 0.96 ± 0.06 c | 0.56 ± 0.04 d |
Serine | 0.09 ± 0.01 b | 0.09 ± 0.01 b,c | 0.06 ± 0.01 d | 0.07 ± 0.01 c,d | 0.17 ± 0.01 a |
Glycine | 0.12 ± 0.01 a | 0.08 ± 0.01 b | 0.07 ± 0.01 b | 0.07 ± 0.01 b | 0.07 ± 0.01 b |
Threonine | 0.08 ± 0.01 a | 0.06 ± 0.01 b | 0.06 ± 0.01 b | 0.05 ± 0.01 b | 0.06 ± 0.01 b |
Arginine | 0.44 ± 0.03 a | 0.37 ± 0.02 b | 0.28 ± 0.02 c | 0.31 ± 0.02 c | 0.20 ± 0.40 d |
Alanine | 0.07 ± 0.01 a | 0.04 ± 0.01 b | 0.05 ± 0.01 a,b | 0.03 ± 0.01 b,c | 0.02 ± 0.01 c |
Tyrosine | 0.30 ± 0.02 a | 0.17 ± 0.01 b | 0.11 ± 0.01 c | 0.13 ± 0.01 c | 0.06 ± 0.02 d |
Cysteine | 0.02 ± 0.01 a | 0.01 ± 0.01 a | 0.01 ± 0.01 a | 0.01 ± 0.01 a | 0.01 ± 0.01 a |
Valine | 0.37 ± 0.02 a | 0.23 ± 0.02 b | 0.15 ± 0.01 c | 0.17 ± 0.01 c | 0.06 ± 0.02 d |
Isoleucine | 1.07 ± 0.08 a | 0.76 ± 0.05 b | 0.55 ± 0.03 c | 0.47 ± 0.03 c | 0.21 ± 0.08 d |
Leucine | 1.62 ± 0.15 a | 1.27 ± 0.09 b | 0.93 ± 0.07 c | 0.78 ± 0.06 c | 0.35 ± 0.15 d |
Methionine | 0.17 ± 0.01 a | 0.11 ± 0.01 b | 0.07 ± 0.01 c | 0.08 ± 0.01 c | 0.03 ± 0.01 d |
Lysine | 0.20 ± 0.01 a | 0.17 ± 0.01 b | 0.21 ± 0.01 a | 0.15 ± 0.01 c | 0.09 ± 0.01 d |
Proline | 0.11 ± 0.01 a | 0.07 ± 0.01 b | 0.07 ± 0.01 b | 0.07 ± 0.01 b | 0.04 ± 0.01 c |
Tryptophan | 0.25 ± 0.02 a | 0.13 ± 0.01 b | 0.08 ± 0.01 c | 0.07 ± 0.01 c,d | 0.05 ± 0.01 d |
Total | 8.92 | 6.82 | 5.27 | 4.75 | 2.93 |
Antioxidant Assays | Melanoidins Molecular Weight Fraction Solution | Soy Sauce | ||||
---|---|---|---|---|---|---|
1–3 kDa | 3–10 kDa | 10–30 kDa | 30–50 kDa | >50 kDa | ||
DPPH (μg AAE/mL) | 0.81 ± 0.04 e | 1.47 ± 0.05 c | 0.91 ± 0.06 e | 1.17 ± 0.03 d | 1.80 ± 0.05 b | 9.25 ± 0.26 a |
ABTS (μmol TE/mL) | 0.04 ± 0.01 c | 0.05 ± 0.01 b,c | 0.03 ± 0.01 c | 0.05 ± 0.01 b,c | 0.07 ± 0.01 b | 0.52 ± 0.03 a |
OARC (μmol TE/mL) | 0.71 ± 0.06 d | 0.89 ± 0.08 c,d | 0.77 ± 0.09 d | 1.13 ± 0.08 b,c | 1.38 ± 0.09 b | 8.34 ± 0.28 a |
MCA (μg EE/mL) | 0.78 ± 0.09 d | 2.08 ± 0.14 c | 0.96 ± 0.10 d | 2.30 ± 0.17 c | 3.17 ± 0.21 b | 12.38 ± 0.35 a |
FRAP (μg AAE/mL) | 0.92 ± 0.04 e | 2.94 ± 0.16 c | 1.51 ± 0.05 d | 3.37 ± 0.17 c | 4.42 ± 0.21 b | 38.46 ± 1.15 a |
Contribution to DPPH in soy sauce (%) | 8.56 ± 0.46 e | 15.89 ± 0.11 b | 9.84 ± 0.06 d | 12.64 ± 0.13 c | 19.46 ± 0.28 a | — |
Contribution to ABTS in soy sauce (%) | 7.69 ± 0.37 c | 9.62 ± 0.41 b | 5.77 ± 0.26 d | 9.62 ± 0.35 b | 13.46 ± 0.30 a | — |
Contribution to ORAC in soy sauce (%) | 8.51 ± 0.53 d | 10.67 ± 0.50 c | 9.23 ± 0.49 d | 13.55 ± 0.62 b | 16.55 ± 0.68 a | — |
Contribution to MCA in soy sauce (%) | 6.30 ± 0.26 e | 16.80 ± 0.49 c | 7.74 ± 0.42 d | 18.58 ± 0.51 b | 25.61 ± 0.45 a | — |
Contribution to FRAP in soy sauce (%) | 2.39 ± 0.11 e | 7.64 ± 0.14 c | 3.93 ± 0.09 d | 8.76 ± 0.08 b | 11.49 ± 0.12 a | — |
Melanoidins Molecular Weight Fraction | Main Functional Groups |
---|---|
1–3 kDa | Amino acids, small peptides, N-H, no clear C=C or C=O peaks |
3–10 kDa | Amino acids, small peptides, N-H, some C=C, C=O groups |
10–30 kDa | C=C, C=O, O-H, N-H, polyphenols, aromatic rings |
30–50 kDa | C=C, C=O, O-H, N-H, polyphenols, aromatic rings, amides, polysaccharides |
>50 kDa | C=C, C=O, O-H, N-H, polysaccharides, polyphenols, amides, aromatic rings, esters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, Y.; Zhang, Z.-H.; Wang, F.; Xu, B.; Zhang, Z.; Ma, H.; Gao, X. The Contribution of Melanoidins to Soy Sauce Antioxidant Activities and Their Structure Characteristics. Foods 2025, 14, 2787. https://doi.org/10.3390/foods14162787
Li H, Zhang Y, Zhang Z-H, Wang F, Xu B, Zhang Z, Ma H, Gao X. The Contribution of Melanoidins to Soy Sauce Antioxidant Activities and Their Structure Characteristics. Foods. 2025; 14(16):2787. https://doi.org/10.3390/foods14162787
Chicago/Turabian StyleLi, Hanhan, Yaqiong Zhang, Zhi-Hong Zhang, Feng Wang, Baoguo Xu, Zhankai Zhang, Haile Ma, and Xianli Gao. 2025. "The Contribution of Melanoidins to Soy Sauce Antioxidant Activities and Their Structure Characteristics" Foods 14, no. 16: 2787. https://doi.org/10.3390/foods14162787
APA StyleLi, H., Zhang, Y., Zhang, Z.-H., Wang, F., Xu, B., Zhang, Z., Ma, H., & Gao, X. (2025). The Contribution of Melanoidins to Soy Sauce Antioxidant Activities and Their Structure Characteristics. Foods, 14(16), 2787. https://doi.org/10.3390/foods14162787