Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Culture and Treatment of Lactobacillus Y-35
2.3. Preparation of Water-in-Water Pickering Emulsion
2.4. Survival Rate of Lactobacillus Y-35
2.5. W/W Pickering Emulsion Characterization
2.5.1. Storage Stability of Pickering Emulsion
2.5.2. The Particle Size and Zeta Potential of Solid Particles and Pickering Emulsion Particles
2.6. Biocomposite Films Characterization
2.6.1. Scanning Electron Microscopy (SEM)
2.6.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.6.3. X-Ray Diffraction (XRD)
2.6.4. Differential Scanning Calorimetry (DSC)
2.6.5. Thermogravimetric Analysis (TGA)
2.6.6. Water Vapor Permeability (WVP)
2.6.7. Antioxidant Properties of the Membrane
2.6.8. Antibacterial Activity of the Material
2.6.9. Cell Membrane Integrity
2.7. Postharvest Indicators of Cherry Tomatoes
2.7.1. Cherry Tomato Coating Treatment and Visual Quality Assessment
2.7.2. Decay Rate
2.7.3. Hardness
2.7.4. Weight Loss Rate
2.7.5. Electrolyte Leakage
2.7.6. Soluble Solids Content
2.7.7. Titratable Acidity
2.7.8. Ascorbic Acid Content
2.7.9. Malondialdehyde Content
2.8. Statistical Analysis
3. Results and Discussion
3.1. Activity of Probiotics in Emulsion
3.2. Characterization of Pickering Emulsion
3.2.1. Microscopic Structure of the Emulsion
3.2.2. Particle Size and Zeta Potential of Solid Particles and Pickering Emulsions
3.3. Characterization of Coating Solution
3.3.1. Scanning Electron Microscopy (SEM) Analysis
3.3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.3.3. X-Ray Diffraction (XRD)
3.3.4. Differential Scanning Calorimetry (DSC)
3.3.5. Thermogravimetric Analysis (TGA)
3.3.6. Water Vapor Transmission Rate (WVP)
3.3.7. Antioxidant Properties of the Material
3.3.8. Antibacterial Activity of the Materials
3.3.9. Cell Membrane Integrity
3.4. Effects of Coatings on the Physiology and Biochemistry of Cherry Tomatoes
3.4.1. Visual Evaluation of Cherry Tomato Quality and Decay Rate
3.4.2. Hardness and Weight Loss
3.4.3. Soluble Solids, Titratable Acidity, and Vitamin C Content
3.4.4. Electrolyte Leakage and Malondialdehyde (MDA) Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, M.; Meng, F.; Lv, R.; Wang, P.; Wang, Y.; Chen, X.; Wang, A. Postharvest preservation effect of composite biocontrol agent on tomatoes. Sci. Hortic. 2023, 321, 112344. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Pan, X.; Gao, T.; He, T.; Chen, C.; Zhang, B.; Fu, X.; Huang, Q. Controlled Release of Thymol by Cyclodextrin Metal-Organic Frameworks for Preservation of Cherry Tomatoes. Foods 2022, 11, 3818. [Google Scholar] [CrossRef]
- Schmey, T.; Tominello-Ramirez, C.S.; Brune, C.; Stam, R. Alternaria diseases on potato and tomato. Mol. Plant Pathol. 2024, 25, e13435. [Google Scholar] [CrossRef]
- Boe, A.A. Ethyl Hydrogen 1-Propylphosphate as a Ripening Inductant of Green Tomato Fruit. HortScience 1971, 6, 399–400. [Google Scholar] [CrossRef]
- Shaikh, S.; Yaqoob, M.; Aggarwal, P. An overview of biodegradable packaging in food industry. Curr. Res. Food Sci. 2021, 4, 503–520. [Google Scholar] [CrossRef]
- Möller, H.; Grelier, S.; Pardon, P.; Coma, V. Antimicrobial and Physicochemical Properties of Chitosan−HPMC-Based Films. J. Agric. Food Chem. 2004, 52, 6585–6591. [Google Scholar] [CrossRef]
- Bigi, F.; Haghighi, H.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocoll. 2021, 120, 106979. [Google Scholar] [CrossRef]
- Yao, L.; Man, T.; Xiong, X.; Wang, Y.; Duan, X.; Xiong, X. HPMC films functionalized by zein/carboxymethyl tamarind gum stabilized Pickering emulsions: Influence of carboxymethylation degree. Int. J. Biol. Macromol. 2023, 238, 124053. [Google Scholar] [CrossRef]
- Saloko, S.; Darmadji, P.; Setiaji, B.; Pranoto, Y. Antioxidative and antimicrobial activities of liquid smoke nanocapsules using chitosan and maltodextrin and its application on tuna fish preservation. Food Biosci. 2014, 7, 71–79. [Google Scholar] [CrossRef]
- Luo, M.; Purdy, H.; Avis, T.J. Compost bacteria provide antifungal activity against grey mold andAlternariarot on bell pepper fruit. Botany 2019, 97, 221–230. [Google Scholar] [CrossRef]
- Huang, J.; Sun, R.; Cao, X.; Hu, N.; Xia, B.; Yi, Y.; Zhou, S.; Zhou, H. Preservation effect of Lactobacillus plantarum O2 fermentation supernatant on postharvest pepper and its induced resistance to Phytophthora capsici. Plant Physiol. Biochem. 2023, 204, 108098. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef]
- Álvarez, A.; Manjarres, J.J.; Ramírez, C.; Bolívar, G. Use of an exopolysaccharide-based edible coating and lactic acid bacteria with antifungal activity to preserve the postharvest quality of cherry tomato. LWT 2021, 151, 112225. [Google Scholar] [CrossRef]
- Nguyen, D.N.T.; Waldmann, L.; Lapeyre, V.; Arbault, S.; Ravaine, V.; Nicolai, T.; Benyahia, L. Effect of charge on the stabilization of water-in-water emulsions by thermosensitive bis-hydrophilic microgels. J. Colloid Interface Sci. 2023, 646, 484–492. [Google Scholar] [CrossRef]
- Qin, X.-S.; Gao, Q.-Y.; Luo, Z.-G. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocoll. 2021, 116, 106658. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Y.; Liu, C.; Cao, H.; Li, Y.; Li, B.; Zhang, Y.; Liu, S. Water-in-water Pickering emulsion: A fascinating microculture apparatus for embedding and cultivation of Lactobacillus helveticus. Food Hydrocoll. 2024, 147, 109398. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Quintero Saavedra, J.I.; Chiralt, A. Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocoll. 2013, 33, 92–98. [Google Scholar] [CrossRef]
- Dai, H.; Chen, Y.; Chen, H.; Fu, Y.; Ma, L.; Wang, H.; Yu, Y.; Zhu, H.; Zhang, Y. Gelatin films functionalized by lignocellulose nanocrystals-tannic acid stabilized Pickering emulsions: Influence of cinnamon essential oil. Food Chem. 2023, 401, 134154. [Google Scholar] [CrossRef]
- Liang, L.; Zhu, J.; Zhang, Z.; Liu, Y.; Wen, C.; Liu, X.; Zhang, J.; Li, Y.; Liu, R.; Ren, J.; et al. Pickering Emulsion Stabilized by Tea Seed Cake Protein Nanoparticles as Lutein Carrier. Foods 2022, 11, 1712. [Google Scholar] [CrossRef]
- Li, X.; Ursino, C.; Carraro, M.; Bonchio, M.; Di Nicolò, E.; Figoli, A. Preparation of non-woven supported ECTFE membrane by cast-coating method for membrane distillation. Sep. Purif. Technol. 2024, 335, 126074. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Jia, S.; Feng, Q.; Guo, L.; Zhang, S.; Yu, Y. Characterization of hydrophobic modification of gelatin crosslinked vanillin edible coatings and its application in food preservation. Int. J. Biol. Macromol. 2025, 309, 142972. [Google Scholar] [CrossRef]
- Kim, S.J.; Hong, B.M.; Park, W.H. The effects of chitin/chitosan nanowhiskers on the thermal, mechanical and dye adsorption properties of electrospun PVA nanofibrous membranes. Cellulose 2020, 27, 5771–5783. [Google Scholar] [CrossRef]
- Ren, M.; Cai, Z.; Chen, L.; Wahia, H.; Zhang, L.; Wang, Y.; Yu, X.; Zhou, C. Preparation of zein/chitosan/eugenol/curcumin active films for blueberry preservation. Int. J. Biol. Macromol. 2022, 223, 1054–1066. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Arun S, M.; Zhou, C. Effect of freeze-thaw pretreatment combined with variable temperature on infrared and convection drying of lotus root. LWT 2022, 154, 112804. [Google Scholar] [CrossRef]
- Zong, X.; Zhang, X.; Bi, K.; Zhou, Y.; Zhang, M.; Qi, J.; Xu, X.; Mei, L.; Xiong, G.; Fu, M. Novel emulsion film based on gelatin/polydextrose/camellia oil incorporated with Lactobacillus pentosus: Physical, structural, and antibacterial properties. Food Hydrocoll. 2021, 121, 107063. [Google Scholar] [CrossRef]
- Li, S.; Yu, Y.; Xie, P.; Zhu, X.; Yang, C.; Wang, L.; Zhang, S. Antifungal Activities of L-Methionine and L-Arginine Treatment In Vitro and In Vivo against Botrytis cinerea. Microorganisms 2024, 12, 360. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, S.; Zou, L.; Ren, D.; Wu, X.; Xu, D. Application of hydroxypropyl methylcellulose to improve the wettability of chitosan coating and its preservation performance on tangerine fruits. Int. J. Biol. Macromol. 2024, 263, 130539. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, L.; Wang, L.; Li, Z.; Huai, Y.; Zhang, S.; Yu, Y. Development and Characterization of Modified Gelatin-Based Cling Films with Antimicrobial and Antioxidant Activities and Their Application in the Preservation of Cherry Tomatoes. Antioxidants 2024, 13, 431. [Google Scholar] [CrossRef]
- Chen, P.; Lin, L.; Zhang, B.; Yang, Q.; Niu, J.; Zhang, S.; Miao, J. Preparation and characterization of ginger essential oil nanoemulsion composite films and its effect on preservation of cherry tomatoes. Food Control 2025, 177, 111455. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, P.; Zhu, L. Preparation of modified atmosphere packaging based on the respiratory characteristics of cherry tomato and its freshness preservation application. Sci. Hortic. 2024, 333, 113286. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, H.; Guo, X.; Qin, Y.; Shen, P.; Peng, Q. A Novel Sodium Alginate-Carnauba Wax Film Containing Calcium Ascorbate: Structural Properties and Preservative Effect on Fresh-Cut Apples. Molecules 2023, 28, 367. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Song, Y.; Mao, B.; Huang, S.; Shao, Z.; Wang, D.; Yan, K.; Zhang, S. Preparation of Fresh-Keeping Paper Using Clove Essential Oil through Pickering Emulsion and Maintaining the Quality of Postharvest Cherry Tomatoes. Foods 2024, 13, 1331. [Google Scholar] [CrossRef]
- Shang, F.; Liu, R.; Wu, W.; Han, Y.; Fang, X.; Chen, H.; Gao, H. Effects of melatonin on the components, quality and antioxidant activities of blueberry fruits. LWT 2021, 147, 111582. [Google Scholar] [CrossRef]
- Kanmani, P.; Kumar, R.S.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Arul, V. Cryopreservation and microencapsulation of a probiotic in alginate-chitosan capsules improves survival in simulated gastrointestinal conditions. Biotechnol. Bioprocess Eng. 2011, 16, 1106–1114. [Google Scholar] [CrossRef]
- Pérez-Córdoba, L.J.; Norton, I.T.; Batchelor, H.K.; Gkatzionis, K.; Spyropoulos, F.; Sobral, P.J.A. Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocoll. 2018, 79, 544–559. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, H.; Tang, J.; He, B.; Yu, H.; Xu, X.; Li, C.; Wang, C.; Liu, Y.; Su, Y.; et al. Pork preservation by antimicrobial films based on potato starch (PS) and polyvinyl alcohol (PVA) and incorporated with clove essential oil (CLO) Pickering emulsion. Food Control 2023, 154, 109988. [Google Scholar] [CrossRef]
- Shao, X.; Sun, H.; Zhou, R.; Zhao, B.; Shi, J.; Jiang, R.; Dong, Y. Effect of bovine bone collagen and nano-TiO2 on the properties of hydroxypropyl methylcellulose films. Int. J. Biol. Macromol. 2020, 158, 937–944. [Google Scholar] [CrossRef]
- Tang, P.; Li, X.; Li, H.; Li, J.; Tang, B.; Zheng, T. Development of active film based on collagen and hydroxypropyl methylcellulose incorporating apple polyphenol for food packaging. Int. J. Biol. Macromol. 2024, 273, 132960. [Google Scholar] [CrossRef]
- Pereira, J.O.; Soares, J.; Sousa, S.; Madureira, A.R.; Gomes, A.; Pintado, M. Edible films as carrier for lactic acid bacteria. LWT 2016, 73, 543–550. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Y.-Q.; Peng, Y.-L.; Yu, Y.-X.; Zhao, Y.; Ma, Y.; Qian, J.-Y. Microstructures and properties of photophobic films composed of hydroxypropyl methylcellulose and different salts. Int. J. Biol. Macromol. 2018, 120, 945–951. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, K.; Zhang, S.; Zhang, L.; Chang, J.; Jing, Z. Characterizations of Water-Soluble Chitosan/Curdlan Edible Coatings and the Inhibitory Effect on Postharvest Pathogenic Fungi. Foods 2024, 13, 441. [Google Scholar] [CrossRef]
- Mruthyunjaya Swamy, T.M.; Ramaraj, B.; Siddaramaiah. Thermal and morphological properties of SA/HPMC blends. J. Appl. Polym. Sci. 2009, 112, 2235–2240. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Ji, T.; Sameen, D.E.; Ahmed, S.; Qin, W.; Dai, J.; Li, S.; Liu, Y. Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr. Polym. 2020, 248, 116805. [Google Scholar] [CrossRef]
- Yan, H.; Meng, X.; Lin, X.; Duan, N.; Wang, Z.; Wu, S. Antifungal activity and inhibitory mechanisms of ferulic acid against the growth of Fusarium graminearum. Food Biosci. 2023, 52, 102414. [Google Scholar] [CrossRef]
- Wan, C.; Kahramanoğlu, İ.; Chen, J.; Gan, Z.; Chen, C. Effects of Hot Air Treatments on Postharvest Storage of Newhall Navel Orange. Plants 2020, 9, 170. [Google Scholar] [CrossRef]
- Cofelice, M.; Lopez, F.; Cuomo, F. Quality Control of Fresh-Cut Apples after Coating Application. Foods 2019, 8, 189. [Google Scholar] [CrossRef]
- Chen, K.; Brennan, C.; Cao, J.; Cheng, G.; Li, L.; Qin, Y.; Chen, H. Characterization of chitosan/eugenol-loaded IRMOF-3 nanoparticles composite films with sustained antibacterial activity and their application in postharvest preservation of strawberries. LWT 2023, 186, 115270. [Google Scholar] [CrossRef]
- Aragüez, L.; Colombo, A.; Borneo, R.; Aguirre, A. Active packaging from triticale flour films for prolonging storage life of cherry tomato. Food Packag. Shelf Life 2020, 25, 100520. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, W.; Fang, X.; Li, W.; Sun, Y. Carbon dots-based reinforced hydrogen-rich water nanocomposite coating for storage quality of fresh-cut pear. Food Biosci. 2023, 53, 102837. [Google Scholar] [CrossRef]
Pickering Emulsions | Size (nm) | Zeta-Potential (mV) |
---|---|---|
W/W-PE | 228.70 ± 63.66 b | −16.4 ± 2.82 b |
W/W-PL^10 | 354.97 ± 88.24 ab | −17.1 ± 2.45 b |
W/W-PL^8 | 393.03 ± 42.23 a | −27.6 ± 3.27 c |
W/W-PL^6 | 290.70 ± 62.75 ab | −13.9 ± 1.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Li, T.; Li, S.; Jia, S.; Yang, X.; Cui, Y.; Ma, H.; Yan, S.; Zhang, S. Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life. Foods 2025, 14, 2729. https://doi.org/10.3390/foods14152729
Yu Y, Li T, Li S, Jia S, Yang X, Cui Y, Ma H, Yan S, Zhang S. Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life. Foods. 2025; 14(15):2729. https://doi.org/10.3390/foods14152729
Chicago/Turabian StyleYu, Youwei, Tian Li, Shengwang Li, Silong Jia, Xinyu Yang, Yaxuan Cui, Hui Ma, Shuaishuai Yan, and Shaoying Zhang. 2025. "Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life" Foods 14, no. 15: 2729. https://doi.org/10.3390/foods14152729
APA StyleYu, Y., Li, T., Li, S., Jia, S., Yang, X., Cui, Y., Ma, H., Yan, S., & Zhang, S. (2025). Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life. Foods, 14(15), 2729. https://doi.org/10.3390/foods14152729