Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives
Abstract
1. Introduction
2. Classification of Smart Food Packaging Systems
2.1. Active Packaging
2.2. Intelligent Packaging
2.3. Interactive Packaging
- •
- •
- Supply chain monitoring and transparency: Nano-enabled sensors and barriers help track storage and transport conditions, maintaining food quality across complex logistics networks [37].
- •
- Marketing and consumer engagement: Tools such as augmented reality (AR), QR codes, and connected storytelling platforms are used to create immersive brand interactions and highlight environmental or nutritional credentials [39].
2.4. Bio-Based Smart Packaging
3. Nano-Enabled Sensing Mechanisms and Functional Applications in Smart Food Packaging
3.1. Colorimetric Sensing Indicators
3.2. Fluorescent and Luminescent Sensors
3.3. Gas and Vapor Detectors
3.4. Time–Temperature Indicators (TTIs)
3.5. Spoilage and Pathogen Detectors
3.6. Functional Application: Antimicrobial Films
4. Advanced Food Packaging Materials with Nano-, Bioactive, and Biopolymer Compounds
4.1. Metal and Metal Oxide Nanoparticles
4.2. Carbon-Based Nanomaterials
4.3. Polymeric and Biopolymer Nanoparticles
4.4. Integration with Bioactive Compounds
5. Safety, Toxicity, and Regulatory Aspects
6. Challenges and Future Directions for Nano-Enabled Food Packaging
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, A.V.; Tsay, A.A.; Pullman, M.E.; Gray, J.V. Unraveling the Food Supply Chain: Strategic Insights from China and the 2007 Recalls. J. Supply Chain. Manag. 2008, 44, 22–39. [Google Scholar] [CrossRef]
- Verma, S.K.; Prasad, A.; Sonika; Katiyar, V. State of Art Review on Sustainable Biodegradable Polymers with a Market Overview for Sustainability Packaging. Mater. Today Sustain. 2024, 26, 100776. [Google Scholar] [CrossRef]
- Asha, A.B.; Narain, R. Chapter 15—Nanomaterials Properties. In Polymer Science and Nanotechnology; Narain, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 343–359. ISBN 978-0-12-816806-6. [Google Scholar]
- Rao, B.G.; Mukherjee, D.; Reddy, B.M. Chapter 1—Novel Approaches for Preparation of Nanoparticles. In Nanostructures for Novel Therapy; Ficai, D., Grumezescu, A.M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–36. ISBN 978-0-323-46142-9. [Google Scholar]
- Roduner, E. Size Matters: Why Nanomaterials Are Different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Bawendi, M.G.; Steigerwald, M.L.; Brus, L.E. The Quantum Mechanics of Larger Semiconductor Clusters (“Quantum Dots”). Annu. Rev. Phys. Chem. 1990, 41, 477–496. [Google Scholar] [CrossRef]
- Heikkilä, T.T. Quantum Dots. In The Physics of Nanoelectronics: Transport and Fluctuation Phenomena at Low Temperatures; Heikkilä, T.T., Ed.; Oxford University Press: Oxford, UK, 2013; p. 5. ISBN 978-0-19-959244-9. [Google Scholar]
- Youssef, A.M.; El-Sayed, S.M. Bionanocomposites Materials for Food Packaging Applications: Concepts and Future Outlook. Carbohydr. Polym. 2018, 193, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-hindi, R. Antimicrobial Food Packaging Based on Sustainable Bio-Based Materials for Reducing Foodborne Pathogens: A Review. Food Chem. 2020, 310, 125915. [Google Scholar] [CrossRef]
- Mustafa, F.; Andreescu, S. Nanotechnology-Based Approaches for Food Sensing and Packaging Applications. RSC Adv. 2020, 10, 19309–19336. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Pereira de Abreu, D.A.; Cruz, J.M.; Paseiro Losada, P. Active and Intelligent Packaging for the Food Industry. Food Rev. Int. 2012, 28, 146–187. [Google Scholar] [CrossRef]
- Qiu, X.; Hu, S. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. Materials 2013, 6, 738–781. [Google Scholar] [CrossRef]
- Sani, M.A.; Azizi-Lalabadi, M.; Tavassoli, M.; Mohammadi, K.; McClements, D.J. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. Nanomaterials 2021, 11, 1331. [Google Scholar] [CrossRef]
- Dodero, A.; Escher, A.; Bertucci, S.; Castellano, M.; Lova, P. Intelligent Packaging for Real-Time Monitoring of Food-Quality: Current and Future Developments. Appl. Sci. 2021, 11, 3532. [Google Scholar] [CrossRef]
- Biji, K.B.; Ravishankar, C.N.; Mohan, C.O.; Srinivasa Gopal, T.K. Smart Packaging Systems for Food Applications: A Review. J. Food Sci. Technol. 2015, 52, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Qian, S.; Lan, T.; Wu, Y.; Liu, J.; Zhang, H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022, 11, 2228. [Google Scholar] [CrossRef]
- Abdullahi, A.; Korumilli, T.; Rao, K.J. Revolutionizing Food Packaging with Biobased Polymers, Active and Intelligent Materials for Enhanced Food Safety and Sustainability: Review. Food Bioprocess Technol. 2025, 18, 1–33. [Google Scholar] [CrossRef]
- Mei, L.-P.; Song, P.; Zhu, Y.-C.; Ruan, Y.-F.; Shi, X.-M.; Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Recent Advances in Electrochemical Sensor and Biosensors for Environmental Contaminants. In Nanosensor Technologies for Environmental Monitoring; Inamuddin, Asiri, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–31. ISBN 978-3-030-45116-5. [Google Scholar]
- Bhatlawande, A.R.; Ghatge, P.U.; Shinde, G.U.; Anushree, R.K.; Patil, S.D. Unlocking the Future of Smart Food Packaging: Biosensors, IoT, and Nano Materials. Food Sci. Biotechnol. 2024, 33, 1075–1091. [Google Scholar] [CrossRef]
- Barage, S.; Lakkakula, J.; Sharma, A.; Roy, A.; Alghamdi, S.; Almehmadi, M.; Hossain, M.J.; Allahyani, M.; Abdulaziz, O. Nanomaterial in Food Packaging: A Comprehensive Review. J. Nanomater. 2022, 2022, 6053922. [Google Scholar] [CrossRef]
- Alp-Erbay, E. Nanomaterials Utilized in Food Packaging: State-of-the-Art. Food Eng. Rev. 2022, 14, 629–654. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Dendegh, T.A. Active, Smart, Intelligent, and Improved Packaging. In Application of Nanotechnology in Food Science, Processing and Packaging; Egbuna, C., Jeevanandam, J., Patrick-Iwuanyanwu, K.C., Onyeike, E.N., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 189–202. ISBN 978-3-030-98820-3. [Google Scholar]
- Deshwal, G.K.; Tiwari, S.; Panjagari, N.R.; Masud, S. Active Packaging of Fruits and Vegetables: Quality Preservation and Shelf-Life Enhancement. In Packaging and Storage of Fruits and Vegetables; Apple Academic Press: Palm Bay, FL, USA, 2021; ISBN 978-1-003-16116-5. [Google Scholar]
- Babu, P.J. Nanotechnology Mediated Intelligent and Improved Food Packaging. Int. Nano Lett. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- D’Almeida, A.P.; de Albuquerque, T.L. Innovations in Food Packaging: From Bio-Based Materials to Smart Packaging Systems. Processes 2024, 12, 2085. [Google Scholar] [CrossRef]
- Kadirvel, V.; Palanisamy, Y.; Ganesan, N.D. Active Packaging System—An Overview of Recent Advances for Enhanced Food Quality and Safety. Packag. Technol. Sci. 2025, 38, 145–162. [Google Scholar] [CrossRef]
- Siddiqui, J.; Taheri, M.; Alam, A.U.; Deen, M.J. Nanomaterials in Smart Packaging Applications: A Review. Small 2022, 18, 2101171. [Google Scholar] [CrossRef]
- Alam, A.U.; Rathi, P.; Beshai, H.; Sarabha, G.K.; Deen, M.J. Fruit Quality Monitoring with Smart Packaging. Sensors 2021, 21, 1509. [Google Scholar] [CrossRef] [PubMed]
- Kerry, J.; Butler, P. Smart Packaging Technologies for Fast Moving Consumer Goods; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 0-470-02802-5. [Google Scholar]
- Azeredo, H.M.C.; Correa, D.S. Smart Choices: Mechanisms of Intelligent Food Packaging. Curr. Res. Food Sci. 2021, 4, 932–936. [Google Scholar] [CrossRef]
- Khan, S.; Monteiro, J.K.; Prasad, A.; Filipe, C.D.M.; Li, Y.; Didar, T.F. Material Breakthroughs in Smart Food Monitoring: Intelligent Packaging and On-Site Testing Technologies for Spoilage and Contamination Detection. Adv. Mater. 2024, 36, 2300875. [Google Scholar] [CrossRef]
- Yam, K.L.; Takhistov, P.T.; Miltz, J. Intelligent Packaging: Concepts and Applications. J. Food Sci. 2005, 70, R1–R10. [Google Scholar] [CrossRef]
- Choi, I.; Lee, J.Y.; Lacroix, M.; Han, J. Intelligent pH Indicator Film Composed of Agar/Potato Starch and Anthocyanin Extracts from Purple Sweet Potato. Food Chem. 2017, 218, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Kuswandi, B.; Jayus; Restyana, A.; Abdullah, A.; Heng, L.Y.; Ahmad, M. A Novel Colorimetric Food Package Label for Fish Spoilage Based on Polyaniline Film. Food Control. 2012, 25, 184–189. [Google Scholar] [CrossRef]
- Mills, A. Oxygen Indicators and Intelligent Inks for Packaging Food. Chem. Soc. Rev. 2005, 34, 1003–1011. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L. The Role of RFID in Agriculture: Applications, Limitations and Challenges. Comput. Electron. Agric. 2011, 79, 42–50. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Mohammadi Nafchi, A.; Ghasemlou, M.; Ariffin, F.; Singh, Z.; Al-Hassan, A.A. Natural Anthocyanins: Sources, Extraction, Characterization, and Suitability for Smart Packaging. Food Packag. Shelf Life 2022, 33, 100872. [Google Scholar] [CrossRef]
- Upadhyay, S.; Kumar, A.; Srivastava, M.; Srivastava, A.; Dwivedi, A.; Singh, R.K.; Srivastava, S.K. Recent Advancements of Smartphone-Based Sensing Technology for Diagnosis, Food Safety Analysis, and Environmental Monitoring. Talanta 2024, 275, 126080. [Google Scholar] [CrossRef]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan Based Nanocomposite Films and Coatings: Emerging Antimicrobial Food Packaging Alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Saber, D.; Abd ElAziz, K.; Alghtani, A.H.; Felemban, B.F.; Ali, H.T.; Megahed, M. Chitosan-Based Nanocomposites: Preparation and Characterization for Food Packing Industry. Mater. Res. Express 2021, 8, 025017. [Google Scholar] [CrossRef]
- Ghosh, T.; Raj, G.V.S.B.; Dash, K.K. A Comprehensive Review on Nanotechnology Based Sensors for Monitoring Quality and Shelf Life of Food Products. Meas. Food 2022, 7, 100049. [Google Scholar] [CrossRef]
- Silvestre, C.; Duraccio, D.; Cimmino, S. Food Packaging Based on Polymer Nanomaterials. Prog. Polym. Sci. 2011, 36, 1766–1782. [Google Scholar] [CrossRef]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current Status of Biobased and Biodegradable Food Packaging Materials: Impact on Food Quality and Effect of Innovative Processing Technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef] [PubMed]
- Ahari, H.; Soufiani, S.P. Smart and Active Food Packaging: Insights in Novel Food Packaging. Front. Microbiol. 2021, 12, 657233. [Google Scholar] [CrossRef]
- Regattieri, A.; Gamberi, M.; Manzini, R. Traceability of Food Products: General Framework and Experimental Evidence. J. Food Eng. 2007, 81, 347–356. [Google Scholar] [CrossRef]
- Aung, M.M.; Chang, Y.S. Traceability in a Food Supply Chain: Safety and Quality Perspectives. Food Control 2014, 39, 172–184. [Google Scholar] [CrossRef]
- Sadeghi, K.; Kim, J.; Seo, J. Packaging 4.0: The Threshold of an Intelligent Approach. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2615–2638. [Google Scholar] [CrossRef]
- Karanth, S.; Feng, S.; Patra, D.; Pradhan, A.K. Linking Microbial Contamination to Food Spoilage and Food Waste: The Role of Smart Packaging, Spoilage Risk Assessments, and Date Labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef]
- Ru Choi, J. Smartphone-Based Sensing in Food Safety and Quality Analysis. In Sensing Techniques for Food Safety and Quality Control; Lu, X., Ed.; The Royal Society of Chemistry: London, UK, 2017; pp. 332–358. ISBN 978-1-78262-664-0. [Google Scholar]
- Onyeaka, H.; Passaretti, P.; Miri, T.; Al-Sharify, Z.T. The Safety of Nanomaterials in Food Production and Packaging. Curr. Res. Food Sci. 2022, 5, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Biswas, R.; Alam, M.; Sarkar, A.; Haque, M.I.; Hasan, M.M.; Hoque, M. Application of Nanotechnology in Food: Processing, Preservation, Packaging and Safety Assessment. Heliyon 2022, 8, e11795. [Google Scholar] [CrossRef] [PubMed]
- Mihindukulasuriya, S.D.F.; Lim, L.-T. Nanotechnology Development in Food Packaging: A Review. Trends Food Sci. Technol. 2014, 40, 149–167. [Google Scholar] [CrossRef]
- Brody, A.L.; Bugusu, B.; Han, J.H.; Sand, C.K.; McHugh, T.H. Scientific Status Summary: Innovative Food Packaging Solutions. J. Food Sci. 2008, 73, R107–R116. [Google Scholar] [CrossRef]
- Kuswandi, B.; Wicaksono, Y.; Jayus; Abdullah, A.; Heng, L.Y.; Ahmad, M. Smart Packaging: Sensors for Monitoring of Food Quality and Safety. Sens. Instrumen. Food Qual. 2011, 5, 137–146. [Google Scholar] [CrossRef]
- Matthews, C.; Moran, F.; Jaiswal, A.K. A Review on European Union’s Strategy for Plastics in a Circular Economy and Its Impact on Food Safety. J. Clean. Prod. 2021, 283, 125263. [Google Scholar] [CrossRef]
- Ellsworth-Krebs, K.; Rampen, C.; Rogers, E.; Dudley, L.; Wishart, L. Circular Economy Infrastructure: Why We Need Track and Trace for Reusable Packaging. Sustain. Prod. Consum. 2022, 29, 249–258. [Google Scholar] [CrossRef]
- Lacy, P.; Rutqvist, J. Waste to Wealth: The Circular Economy Advantage; Springer: Berlin/Heidelberg, Germany, 2015; Volume 91. [Google Scholar]
- Siracusa, V. Food Packaging Permeability Behaviour: A Report. Int. J. Polym. Sci. 2012, 2012, 302029. [Google Scholar] [CrossRef]
- Niaounakis, M. Biopolymers: Applications and Trends; William Andrew: Norwich, NY, USA, 2015; ISBN 0-323-35433-5. [Google Scholar]
- Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Bio-Nanocomposites for Food Packaging Applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Fortunati, E.; Armentano, I.; Zhou, Q.; Iannoni, A.; Saino, E.; Visai, L.; Berglund, L.A.; Kenny, J.M. Multifunctional Bionanocomposite Films of Poly(Lactic Acid), Cellulose Nanocrystals and Silver Nanoparticles. Carbohydr. Polym. 2012, 87, 1596–1605. [Google Scholar] [CrossRef]
- Sorrentino, A.; Gorrasi, G.; Vittoria, V. Potential Perspectives of Bio-Nanocomposites for Food Packaging Applications. Trends Food Sci. Technol. 2007, 18, 84–95. [Google Scholar] [CrossRef]
- Fortunati, E.; Peltzer, M.; Armentano, I.; Torre, L.; Jiménez, A.; Kenny, J.M. Effects of Modified Cellulose Nanocrystals on the Barrier and Migration Properties of PLA Nano-Biocomposites. Carbohydr. Polym. 2012, 90, 948–956. [Google Scholar] [CrossRef]
- Zubair, M.; and Ullah, A. Recent Advances in Protein Derived Bionanocomposites for Food Packaging Applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 406–434. [Google Scholar] [CrossRef]
- Taherimehr, M.; YousefniaPasha, H.; Tabatabaeekoloor, R.; Pesaranhajiabbas, E. Trends and Challenges of Biopolymer-Based Nanocomposites in Food Packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5321–5344. [Google Scholar] [CrossRef]
- Dăescu, D.I.; Dreavă, D.M.; Todea, A.; Peter, F.; Păușescu, I. Intelligent Biopolymer-Based Films: Promising New Solutions for Food Packaging Applications. Polymers 2024, 16, 2256. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.-W.; Jafari, S.M. pH-Sensitive (Halochromic) Smart Packaging Films Based on Natural Food Colorants for the Monitoring of Food Quality and Safety. Trends Food Sci. Technol. 2020, 105, 93–144. [Google Scholar] [CrossRef]
- Khezerlou, A.; Tavassoli, M.; Alizadeh Sani, M.; Mohammadi, K.; Ehsani, A.; McClements, D.J. Application of Nanotechnology to Improve the Performance of Biodegradable Biopolymer-Based Packaging Materials. Polymers 2021, 13, 4399. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Panda, J.; Mishra, A.K.; Nath, P.C.; Nayak, P.K.; Mahapatra, U.; Sharma, M.; Chopra, H.; Mohanta, Y.K.; Sridhar, K. Recent Advances in Sustainable Biopolymer-Based Nanocomposites for Smart Food Packaging: A Review. Int. J. Biol. Macromol. 2024, 279, 135583. [Google Scholar] [CrossRef]
- Li, S.; Wei, N.; Wei, J.; Fang, C.; Feng, T.; Liu, F.; Liu, X.; Wu, B. Curcumin and Silver Nanoparticles Loaded Antibacterial Multifunctional Pectin/Gelatin Films for Food Packaging Applications. Int. J. Biol. Macromol. 2024, 266, 131248. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.-H. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers 2021, 13, 4198. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Liu, L.; Yu, J.; Lin, Y.; Gao, H.; Chen, H.; Sun, P. An Overview of Intelligent Freshness Indicator Packaging for Food Quality and Safety Monitoring. Trends Food Sci. Technol. 2021, 118, 285–296. [Google Scholar] [CrossRef]
- Almasi, H.; Forghani, S.; Moradi, M. Recent Advances on Intelligent Food Freshness Indicators; an Update on Natural Colorants and Methods of Preparation. Food Packag. Shelf Life 2022, 32, 100839. [Google Scholar] [CrossRef]
- Sarapulova, O.; Sherstiuk, V.; Shvalagin, V.; Kukhta, A. Photonics and Nanophotonics and Information and Communication Technologies in Modern Food Packaging. Nanoscale Res. Lett. 2015, 10, 229. [Google Scholar] [CrossRef]
- Amal Nath, V.; Vijayakumar, R.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Co-Electrospun-Electrosprayed Ethyl Cellulose-Gelatin Nanocomposite pH-Sensitive Membrane for Food Quality Applications. Food Chem. 2022, 394, 133420. [Google Scholar] [CrossRef]
- Avella, M.; Errico, M.E.; Gentile, G.; Volpe, M.G. Nanocomposite Sensors for Food Packaging. In Proceedings of the Nanotechnological Basis for Advanced Sensors; Reithmaier, J.P., Paunovic, P., Kulisch, W., Popov, C., Petkov, P., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 501–510. [Google Scholar]
- Sobhan, A.; Hossain, A.; Wei, L.; Muthukumarappan, K.; Ahmed, M. IoT-Enabled Biosensors in Food Packaging: A Breakthrough in Food Safety for Monitoring Risks in Real Time. Foods 2025, 14, 1403. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.; Su, H.-M.; Imani, S.M.; Alkhaldi, K.; Filipe, C.D.M.; Didar, T.F. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens. 2019, 4, 808–821. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Fu, Q.; Zhang, S.; Liu, Y.; Shi, X.; Hou, J.; Duan, J.; Ai, S. A Sensitive Ratiometric Fluorescent Sensor Based on Carbon Dots and CdTe Quantum Dots for Visual Detection of Biogenic Amines in Food Samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121706. [Google Scholar] [CrossRef]
- Heo, W.; Lim, S. A Review on Gas Indicators and Sensors for Smart Food Packaging. Foods 2024, 13, 3047. [Google Scholar] [CrossRef] [PubMed]
- Wuloh, J.; Agorku, E.S.; Boadi, N.O. Modification of Metal Oxide Semiconductor Gas Sensors Using Conducting Polymer Materials. J. Sens. 2023, 2023, 7427986. [Google Scholar] [CrossRef]
- González Rivero, R.A.; Morera Hernández, L.E.; Schalm, O.; Hernández Rodríguez, E.; Alejo Sánchez, D.; Morales Pérez, M.C.; Nuñez Caraballo, V.; Jacobs, W.; Martinez Laguardia, A. A Low-Cost Calibration Method for Temperature, Relative Humidity, and Carbon Dioxide Sensors Used in Air Quality Monitoring Systems. Atmosphere 2023, 14, 191. [Google Scholar] [CrossRef]
- Nami, M.; Taheri, M.; Deen, I.A.; Packirisamy, M.; Deen, M.J. Nanomaterials in Chemiresistive and Potentiometric Gas Sensors for Intelligent Food Packaging. TrAC Trends Anal. Chem. 2024, 174, 117664. [Google Scholar] [CrossRef]
- Chavali, M.S.; Nikolova, M.P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Yang, M.; Zhang, Y.; Xiang, K.; Tang, R. Review of Time Temperature Indicators as Quality Monitors in Food Packaging. Packag. Technol. Sci. 2015, 28, 839–867. [Google Scholar] [CrossRef]
- Burikov, S.A.; Sarmanova, O.E.; Fedyanina, A.A.; Plastinin, I.V.; Dolenko, T.A. A Step towards Versatile Temperature Luminescent Nanosensor: Combination of Luminescent and Time-Resolved Spectroscopy of NaYF4:Yb3+/Tm3+ Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 334, 125902. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Ahmed, S. Nanotechnology in Intelligent Food Packaging; John Wiley & Sons: Hoboken, NJ, USA, 2022; ISBN 1-119-81895-8. [Google Scholar]
- Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A. Modulation of Population Density and Size of Silver Nanoparticles Embedded in Bacterial Cellulose via Ammonia Exposure: Visual Detection of Volatile Compounds in a Piece of Plasmonic Nanopaper. Nanoscale 2016, 8, 7984–7991. [Google Scholar] [CrossRef] [PubMed]
- Kaushani, K.G.; Rathnasinghe, N.L.; Katuwawila, N.; Jayasinghe, R.A.; Nilmini, A.H.L.R.; Priyadarshana, G. Trends in Smart Packaging Technologies for Sustainable Monitoring of Food Quality and Safety. Int. J. Res. Innov. Appl. Sci. 2022, 7, 7–30. [Google Scholar] [CrossRef]
- Huis in’t Veld, J.H.J. Microbial and Biochemical Spoilage of Foods: An Overview. Int. J. Food Microbiol. 1996, 33, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, V.; Nair, A.; Mallya, R.; Khan, T.; Omri, A. Antimicrobial Nanomaterials for Food Packaging. Antibiotics 2022, 11, 729. [Google Scholar] [CrossRef]
- Siqueira, J.R.; Caseli, L.; Crespilho, F.N.; Zucolotto, V.; Oliveira, O.N. Immobilization of Biomolecules on Nanostructured Films for Biosensing. Biosens. Bioelectron. 2010, 25, 1254–1263. [Google Scholar] [CrossRef]
- Reta, N.; Saint, C.P.; Michelmore, A.; Prieto-Simon, B.; Voelcker, N.H. Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Appl. Mater. Interfaces 2018, 10, 6055–6072. [Google Scholar] [CrossRef]
- Anvar, A.A.; Ahari, H.; Ataee, M. Antimicrobial Properties of Food Nanopackaging: A New Focus on Foodborne Pathogens. Front. Microbiol. 2021, 12, 690706. [Google Scholar] [CrossRef]
- Sun, Z.; Li, X.; Tang, Z.; Li, X.; Morrell, J.J.; Beaugrand, J.; Yao, Y.; Zheng, Q. Antibacterial Films Made of Bacterial Cellulose. Polymers 2022, 14, 3306. [Google Scholar] [CrossRef]
- Yin, B.; Liu, T.; Yin, Y. Prolonging the Duration of Preventing Bacterial Adhesion of Nanosilver-Containing Polymer Films through Hydrophobicity. Langmuir 2012, 28, 17019–17025. [Google Scholar] [CrossRef]
- Huang, Y.; Mei, L.; Chen, X.; Wang, Q. Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials 2018, 8, 830. [Google Scholar] [CrossRef] [PubMed]
- Chandrababu, V.; Parameswaranpillai, J.; Gopi, J.A.; Pathak, C.; Midhun Dominic, C.D.; Feng, N.L.; Krishnasamy, S.; Muthukumar, C.; Hameed, N.; Ganguly, S. Progress in Food Packaging Applications of Biopolymer-Nanometal Composites—A Comprehensive Review. Biomater. Adv. 2024, 162, 213921. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Lamsaf, H.; Sebastian, C.V.; Cerqueira, M.A.; Pastrana, L.; Teixeira, J.A. Active Packaging Systems Based on Metal and Metal Oxide Nanoparticles. In Nanotechnology-Enhanced Food Packaging; Parameswaranpillai, J., Krishnankutty, R.E., Jayakumar, A., Rangappa, S.M., Siengchin, S., Eds.; Wiley: Hoboken, NJ, USA, 2022; pp. 143–181. ISBN 978-3-527-34773-5. [Google Scholar]
- Dash, K.; Deka, P.; Bangar, S.; Chaudhary, V.; Trif, M.; Rusu, A. Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review. Polymers 2022, 14, 521. [Google Scholar] [CrossRef] [PubMed]
- Motelica, L.; Ficai, D.; Oprea, O.C.; Ficai, A.; Andronescu, E. Smart Food Packaging Designed by Nanotechnological and Drug Delivery Approaches. Coatings 2020, 10, 806. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, B.; Huang, N.; Sun, Y.; Huai, X.; Miao, J.; Wang, S.; Liu, W.; Liu, Y.; Chen, Z.; et al. Types of Nanomaterials Commonly Used in Food Packaging, Film Formation Techniques, and Recent Advances in Their Applications. Int. J. Food Sci. Technol. 2025, 60, vvae036. [Google Scholar] [CrossRef]
- Li, D.; Xue, R. Nanostructured Materials for Smart Food Packaging: Integrating Preservation and Antimicrobial Properties. Alex. Eng. J. 2025, 124, 446–461. [Google Scholar] [CrossRef]
- Huang, K.; Wang, Y.; Xu, Z.; Zou, Z.; Tang, Q.; Li, H.; Peng, D. Novel Intelligent Packaging Films Based on Starch/PVA with Cu-ICA Nanocrystal as Functional Compatibilizer for Monitoring Food Freshness. Int. J. Biol. Macromol. 2024, 271, 132373. [Google Scholar] [CrossRef]
- Perera, K.Y.; Pradhan, D.; Rafferty, A.; Jaiswal, A.K.; Jaiswal, S. A Comprehensive Review on Metal Oxide-Nanocellulose Composites in Sustainable Active and Intelligent Food Packaging. Food Chem. Adv. 2023, 3, 100436. [Google Scholar] [CrossRef]
- Ahari, H.; Fakhrabadipour, M.; Paidari, S.; Goksen, G.; Xu, B. Role of AuNPs in Active Food Packaging Improvement: A Review. Molecules 2022, 27, 8027. [Google Scholar] [CrossRef]
- Foltynowicz, Z. Nanoiron-Based Composite Oxygen Scavengers for Food Packaging. In Composites Materials for Food Packaging; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 209–234. ISBN 978-1-119-16024-3. [Google Scholar]
- Wang, X.; Li, Y.; Gao, M.; Pan, X.; Liu, G.; Chen, F.; Ma, X.; Chen, Y.; Zhang, Z. Iron Oxide Nanoparticle-Loaded Magnetic Cellulose Nanofiber Aerogel with Self-Controlled Release Property for Green Active Food Packaging. ACS Appl. Nano Mater. 2023, 6, 22373–22382. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Khan, M.R.; Hammouda, G.A.; Alam, P.; Meng, L.; Zhang, Z.; Zhang, W. New Opportunities and Advances in Magnesium Oxide (MgO) Nanoparticles in Biopolymeric Food Packaging Films. Sustain. Mater. Technol. 2024, 40, e00976. [Google Scholar] [CrossRef]
- Cai, L.; Chen, J.; Liu, Z.; Wang, H.; Yang, H.; Ding, W. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia Solanacearum. Front. Microbiol. 2018, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Elsabee, M.Z.; Abdou, E.S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef] [PubMed]
- Radusin, T.; Ristić, I.; Pilić, B.; Duraccio, D.; Novaković, A. Silicium-Based Nanocomposite Materials for Food Packaging Applications. In Composites Materials for Food Packaging; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 175–207. ISBN 978-1-119-16024-3. [Google Scholar]
- Kusano, Y.; Bardenstein, A.L.; Bischoff, C.; Landa, S.; Carton, A.A. Polyethylene Terephthalate-Based Heat Sealable Packaging Film Without Heat Sealing Layer. Packag. Technol. Sci. 2025, 38, 555–562. [Google Scholar] [CrossRef]
- Bayani Bandpey, N.; Aroujalian, A.; Raisi, A.; Fazel, S. Surface Coating of Silver Nanoparticles on Polyethylene for Fabrication of Antimicrobial Milk Packaging Films. Int. J. Dairy Technol. 2017, 70, 204–211. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Z.; Shi, J.; Huang, X.; Sun, Z.; Zhang, D.; Zou, X.; Sun, Y.; Zhang, J.; Holmes, M.; et al. A Colorimetric Hydrogen Sulfide Sensor Based on Gellan Gum-Silver Nanoparticles Bionanocomposite for Monitoring of Meat Spoilage in Intelligent Packaging. Food Chem. 2019, 290, 135–143. [Google Scholar] [CrossRef]
- Cetinkaya, T.; Bildik, F.; Altay, F.; Ceylan, Z. Gelatin Nanofibers with Black Elderberry, Au Nanoparticles and SnO2 as Intelligent Packaging Layer Used for Monitoring Freshness of Hake Fish. Food Chem. 2024, 437, 137843. [Google Scholar] [CrossRef]
- Yetgin, S.; Ağırsaygın, M.; Yazgan, İ. Smart Food Packaging Films Based on a Poly(Lactic Acid), Nanomaterials, and a pH Sensitive Dye. Processes 2025, 13, 1105. [Google Scholar] [CrossRef]
- Cao, C.; Wang, Y.; Zheng, S.; Zhang, J.; Li, W.; Li, B.; Guo, R.; Yu, J. Poly (Butylene Adipate-Co-Terephthalate)/Titanium Dioxide/Silver Composite Biofilms for Food Packaging Application. LWT 2020, 132, 109874. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Shang, Y.; Wen, Y. Electrospun Nanofibers Containing TiO2 for the Photocatalytic Degradation of Ethylene and Delaying Postharvest Ripening of Bananas. Food Bioprocess Technol. 2019, 12, 281–287. [Google Scholar] [CrossRef]
- Rizzotto, F.; Vasiljevic, Z.Z.; Stanojevic, G.; Dojcinovic, M.P.; Jankovic-Castvan, I.; Vujancevic, J.D.; Tadic, N.B.; Brankovic, G.O.; Magniez, A.; Vidic, J.; et al. Antioxidant and Cell-Friendly Fe2TiO5 Nanoparticles for Food Packaging Application. Food Chem. 2022, 390, 133198. [Google Scholar] [CrossRef]
- Khan, A.; Riahi, Z.; Kim, J.T.; Rhim, J.-W. Gelatin/Carrageenan-Based Smart Packaging Film Integrated with Cu-Metal Organic Framework for Freshness Monitoring and Shelf-Life Extension of Shrimp. Food Hydrocoll. 2023, 145, 109180. [Google Scholar] [CrossRef]
- Phothisarattana, D.; Wongphan, P.; Promhuad, K.; Promsorn, J.; Harnkarnsujarit, N. Blown Film Extrusion of PBAT/TPS/ZnO Nanocomposites for Shelf-Life Extension of Meat Packaging. Colloids Surf. B Biointerfaces 2022, 214, 112472. [Google Scholar] [CrossRef]
- Xie, Y.; Pan, Y.; Cai, P. Cellulose-Based Antimicrobial Films Incroporated with ZnO Nanopillars on Surface as Biodegradable and Antimicrobial Packaging. Food Chem. 2022, 368, 130784. [Google Scholar] [CrossRef] [PubMed]
- Sathianathan, R.V.; Joseph, J.; Ilanthendral, K.; Raveena, R. Analysis of Smart Packaging Film for Tomato Freshness: ZnO-Fe2O3/PVA with Musa Paradisiaca Bract Anthocyanin. Food Biophys. 2025, 20, 84. [Google Scholar] [CrossRef]
- Ahmad, H.N.; Yong, Y.; Tang, Z.; Li, R.; Munawar, N.; Zhu, J. Multifunctional Layer-by-Layer Smart Film with Betalains and Selenium Nanoparticles for Intelligent Meat Freshness Monitoring and Preservation. Food Chem. 2025, 471, 142737. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.R.; Hashemi, B.; Mirzaei, A.; Roshan, H.; Sheikhi, M.H. Effect of Ag on the ZnO Nanoparticles Properties as an Ethanol Vapor Sensor. Mater. Sci. Semicond. Process. 2020, 117, 105172. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.; Wang, Y.; Zhao, Y.; Su, H.; Tan, T. Preparation of Chitosan-TiO2 Composite Film with Efficient Antimicrobial Activities under Visible Light for Food Packaging Applications. Carbohydr. Polym. 2017, 169, 101–107. [Google Scholar] [CrossRef]
- Othman, S.H.; Abd Salam, N.R.; Zainal, N.; Kadir Basha, R.; Talib, R.A. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications. Int. J. Photoenergy 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Tseng, S.-Y.; Li, S.-Y.; Yi, S.-Y.; Sun, A.Y.; Gao, D.-Y.; Wan, D. Food Quality Monitor: Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants. ACS Appl. Mater. Interfaces 2017, 9, 17306–17316. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Dev, A.; Karmakar, S. Nanosensors for Food and Agriculture. In Nanoscience in Food and Agriculture 5; Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2017; Volume 26, pp. 41–79. ISBN 978-3-319-58495-9. [Google Scholar]
- Sharma, S.; Shekhar, S.; Gautam, S.; Sharma, B.; Kumar, A.; Jain, P. Carbon-Based Nanomaterials as Novel Nanosensors. In Nanofabrication for Smart Nanosensor Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 323–347. ISBN 978-0-12-820702-4. [Google Scholar]
- Pan, M.; Yin, Z.; Liu, K.; Du, X.; Liu, H.; Wang, S. Carbon-Based Nanomaterials in Sensors for Food Safety. Nanomaterials 2019, 9, 1330. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Jafari, S.M. Detection of Food Spoilage and Adulteration by Novel Nanomaterial-Based Sensors. Adv. Colloid Interface Sci. 2020, 286, 102297. [Google Scholar] [CrossRef]
- Hassanvand, Z.; Jalali, F.; Nazari, M.; Parnianchi, F.; Santoro, C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2021, 8, 15–35. [Google Scholar] [CrossRef]
- Nguyen, D.H.H.; Muthu, A.; Elsakhawy, T.; Sheta, M.H.; Abdalla, N.; El-Ramady, H.; Prokisch, J. Carbon Nanodots-Based Sensors: A Promising Tool for Detecting and Monitoring Toxic Compounds. Nanomaterials 2025, 15, 725. [Google Scholar] [CrossRef]
- Moradi, M.; Molaei, R.; Kousheh, S.A.; Guimarães, J.T.; McClements, D.J. Carbon Dots Synthesized from Microorganisms and Food By-Products: Active and Smart Food Packaging Applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 1943–1959. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Dheyab, M.A.; Nafchi, A.M.; Ghasemlou, M.; Ivanova, E.P.; Adhikari, B. Turning Food Waste into Value-Added Carbon Dots for Sustainable Food Packaging Application: A Review. Adv. Colloid Interface Sci. 2023, 321, 103020. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, M.; Mujumdar, A.S.; Wang, H. Application of Carbon Dots in Food Preservation: A Critical Review for Packaging Enhancers and Food Preservatives. Crit. Rev. Food Sci. Nutr. 2023, 63, 6738–6756. [Google Scholar] [CrossRef]
- Ezati, P.; Priyadarshi, R.; Rhim, J.-W. Prospects of Sustainable and Renewable Source-Based Carbon Quantum Dots for Food Packaging Applications. Sustain. Mater. Technol. 2022, 33, e00494. [Google Scholar] [CrossRef]
- Wu, L.-L.; Wang, J.; He, X.; Zhang, T.; Sun, H. Using Graphene Oxide to Enhance the Barrier Properties of Poly(Lactic Acid) Film: USING GO TO ENHANCE THE BARRIER PROPERTIES OF PLA. Packag. Technol. Sci. 2014, 27, 693–700. [Google Scholar] [CrossRef]
- Lunar, M.F.C.; Ortega-Toro, R.; Ordoñez, R.; Florido, H.F.; Hernández-Fernández, J. Graphene Oxide and Moringa Oleifera Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material. J. Renew. Mater. 2025, 13, 311–327. [Google Scholar] [CrossRef]
- Rossa, V.; Monteiro Ferreira, L.E.; Da Costa Vasconcelos, S.; Tai Shimabukuro, E.T.; Gomes Da Costa Madriaga, V.; Carvalho, A.P.; Castellã Pergher, S.B.; De Carvalho Da Silva, F.; Ferreira, V.F.; Conte Junior, C.A.; et al. Nanocomposites Based on the Graphene Family for Food Packaging: Historical Perspective, Preparation Methods, and Properties. RSC Adv. 2022, 12, 14084–14111. [Google Scholar] [CrossRef]
- Su, Y.; Kravets, V.G.; Wong, S.L.; Waters, J.; Geim, A.K.; Nair, R.R. Impermeable Barrier Films and Protective Coatings Based on Reduced Graphene Oxide. Nat. Commun. 2014, 5, 4843. [Google Scholar] [CrossRef]
- Ali, A.; Bairagi, S.; Ganie, S.A.; Ahmed, S. Polysaccharides and Proteins Based Bionanocomposites as Smart Packaging Materials: From Fabrication to Food Packaging Applications a Review. Int. J. Biol. Macromol. 2023, 252, 126534. [Google Scholar] [CrossRef] [PubMed]
- Mesgari, M.; Aalami, A.H.; Sahebkar, A. Antimicrobial Activities of Chitosan/Titanium Dioxide Composites as a Biological Nanolayer for Food Preservation: A Review. Int. J. Biol. Macromol. 2021, 176, 530–539. [Google Scholar] [CrossRef]
- Shahzad, A. Mechanical Properties of Eco-Friendly Polymer Nanocomposites. In Eco-friendly Polymer Nanocomposites; Thakur, V.K., Thakur, M.K., Eds.; Advanced Structured Materials; Springer: New Delhi, India, 2015; Volume 75, pp. 527–559. ISBN 978-81-322-2469-3. [Google Scholar]
- Rhim, J.-W.; Ng, P.K.W. Natural Biopolymer-Based Nanocomposite Films for Packaging Applications. Crit. Rev. Food Sci. Nutr. 2007, 47, 411–433. [Google Scholar] [CrossRef]
- Aigaje, E.; Riofrio, A.; Baykara, H. Processing, Properties, Modifications, and Environmental Impact of Nanocellulose/Biopolymer Composites: A Review. Polymers 2023, 15, 1219. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S. Can Nanotechnology Improve the Sustainability of Biobased Products?: The Case of Layered Silicate Biopolymer Nanocomposites. J. Ind. Ecol. 2008, 12, 474–489. [Google Scholar] [CrossRef]
- Gowthaman, N.S.K.; Lim, H.N.; Sreeraj, T.R.; Amalraj, A.; Gopi, S. Chapter 15—Advantages of Biopolymers over Synthetic Polymers: Social, Economic, and Environmental Aspects. In Biopolymers and their Industrial Applications; Thomas, S., Gopi, S., Amalraj, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 351–372. ISBN 978-0-12-819240-5. [Google Scholar]
- Othman, S.H. Bio-Nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-Sized Filler. Agric. Agric. Sci. Procedia 2014, 2, 296–303. [Google Scholar] [CrossRef]
- Hedar, M.; Intisar, A.; Hussain, T.; Hussain, N.; Bilal, M. Challenges and Issues in Biopolymer Applications. In Handbook of Biopolymers; Springer: Singapore, 2023; pp. 1497–1511. ISBN 978-981-19-0710-4. [Google Scholar]
- Rai, M.; Yadav, A.; Ingle, A.; dos Santos, C.A. Chapter 1—An Introduction to Biopolymer-Based Nanofilms, Their Applications, and Limitations. In Biopolymer-Based Nano Films; Rai, M., dos Santos, C.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–17. ISBN 978-0-12-823381-8. [Google Scholar]
- Ortiz-Duarte, G.; Martínez-Hernández, G.B.; Casillas-Peñuelas, R.; Pérez-Cabrera, L.E. Evaluation of Biopolymer Films Containing Silver–Chitosan Nanocomposites. Food Bioprocess Technol. 2021, 14, 492–504. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.-W. Properties and Characterization of Bionanocomposite Films Prepared with Various Biopolymers and ZnO Nanoparticles. Carbohydr. Polym. 2014, 106, 190–199. [Google Scholar] [CrossRef]
- Rojas, M.A.; Amalraj, J.; Santos, L.S. Biopolymer-Based Composite Hydrogels Embedding Small Silver Nanoparticles for Advanced Antimicrobial Applications: Experimental and Theoretical Insights. Polymers 2023, 15, 3370. [Google Scholar] [CrossRef]
- Sethi, S.; Saruchi; Medha; Thakur, S.; Kaith, B.S.; Sharma, N.; Ansar, S.; Pandey, S.; Kuma, V. Biopolymer Starch-Gelatin Embedded with Silver Nanoparticle–Based Hydrogel Composites for Antibacterial Application. Biomass Conv. Bioref. 2022, 12, 5363–5384. [Google Scholar] [CrossRef]
- Tibolla, H.; Czaikoski, A.; Pelissari, F.M.; Menegalli, F.C.; Cunha, R.L. Starch-Based Nanocomposites with Cellulose Nanofibers Obtained from Chemical and Mechanical Treatments. Int. J. Biol. Macromol. 2020, 161, 132–146. [Google Scholar] [CrossRef]
- Wang, L.-F.; Shankar, S.; Rhim, J.-W. Properties of Alginate-Based Films Reinforced with Cellulose Fibers and Cellulose Nanowhiskers Isolated from Mulberry Pulp. Food Hydrocoll. 2017, 63, 201–208. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; He, S.; Liu, J.; Shao, W. Development of an Edible Food Packaging Gelatin/Zein Based Nanofiber Film for the Shelf-Life Extension of Strawberries. Food Chem. 2023, 426, 136652. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Khan, S.; Mehdizadeh, M.; Bahmid, N.A.; Adli, D.N.; Walker, T.R.; Perestrelo, R.; Câmara, J.S. Phytochemicals and Bioactive Constituents in Food Packaging—A Systematic Review. Heliyon 2023, 9, e21196. [Google Scholar] [CrossRef]
- Khezerlou, A.; Jafari, S.M. 13—Nanoencapsulated Bioactive Components for Active Food Packaging. In Handbook of Food Nanotechnology; Jafari, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 493–532. ISBN 978-0-12-815866-1. [Google Scholar]
- Zhang, C.; Li, Y.; Wang, P.; Zhang, H. Electrospinning of Nanofibers: Potentials and Perspectives for Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 479–502. [Google Scholar] [CrossRef]
- Baghi, F.; Gharsallaoui, A.; Dumas, E.; Ghnimi, S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, Y.; Cao, X.; Liu, Q.; Wang, H.; Kong, B. Preparation and Functional Properties of Poly(Vinyl Alcohol)/Ethyl Cellulose/Tea Polyphenol Electrospun Nanofibrous Films for Active Packaging Material. Food Control. 2021, 130, 108331. [Google Scholar] [CrossRef]
- Gholizadeh, S.; Almasi, H.; Amjadi, S.; Moradi, M.; Ghadiri Alamdari, N.; Salmasi, S.; Divsalar, E. Development and Characterization of Active Packaging System Based on Zein Nanofibers Mat Incorporated with Geraniol-Loaded Nanoliposomes. Food Sci. Nutr. 2024, 12, 5373–5387. [Google Scholar] [CrossRef] [PubMed]
- Min, T.; Zhou, L.; Sun, X.; Du, H.; Zhu, Z.; Wen, Y. Electrospun Functional Polymeric Nanofibers for Active Food Packaging: A Review. Food Chem. 2022, 391, 133239. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, J.Y.; Lee, Y.S. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022, 27, 7513. [Google Scholar] [CrossRef]
- Alav, A.; Kutlu, N.; Kına, E.; Meral, R. A Novel Green Tea Extract-Loaded Nanofiber Coating for Kiwi Fruit: Improved Microbial Stability and Nutritional Quality. Food Biosci. 2024, 62, 105043. [Google Scholar] [CrossRef]
- Guler, G.; Baştürk, Z.; Yazıcıoğlu, N.; Sumnu, G.; Sahin, S. Optimization and Characterization of Centrifugally Spun Gelatin-Based Fibers Incorporated with Bay Laurel (Laurus Nobilis L.) Leaf Essential Oil. Food Bioprocess Technol. 2024, 18, 1939–1956. [Google Scholar] [CrossRef]
- Ulici, A.M.; Găină-Gardiuta, A.; Vodnar, D.; Barbu-Tudoran, L.; Podea, P.V. Nanoencapsulation of Citrus Essential Oils in Systematic Modified Chitosan-Based Nanofibers. J. Appl. Polym. Sci. 2024, 141, e56176. [Google Scholar] [CrossRef]
- Ullah, A.; Yang, H.; Takemae, K.; Wang, F.; Lee, S.; Kim, I.S. Sustainable Bioactive Food Packaging Based on Electrospun Zein-Polycaprolactone Nanofibers Integrated with Aster Yomena Extract Loaded Halloysite Nanotubes. Int. J. Biol. Macromol. 2024, 267, 131375. [Google Scholar] [CrossRef]
- Ansarifar, E.; Hedayati, S.; Zeinali, T.; Fathabad, A.E.; Zarban, A.; Marszałek, K.; Mousavi Khaneghah, A. Encapsulation of Jujube Extract in Electrospun Nanofiber: Release Profile, Functional Effectiveness, and Application for Active Packaging. Food Bioprocess Technol. 2022, 15, 2009–2019. [Google Scholar] [CrossRef]
- Das, S.K.; Vishakha, K.; Das, S.; Chakraborty, D.; Ganguli, A. Carboxymethyl Cellulose and Cardamom Oil in a Nanoemulsion Edible Coating Inhibit the Growth of Foodborne Pathogens and Extend the Shelf Life of Tomatoes. Biocatal. Agric. Biotechnol. 2022, 42, 102369. [Google Scholar] [CrossRef]
- Li, J.; Shi, X.; Yang, K.; Guo, L.; Yang, J.; Lan, Z.; Guo, Y.; Xiao, L.; Wang, X. Fabrication and Characterization of Carvacrol Encapsulated Gelatin/Chitosan Composite Nanofiber Membrane as Active Packaging Material. Int. J. Biol. Macromol. 2024, 282, 137114. [Google Scholar] [CrossRef]
- Zhang, Y.; Boffa, V.; Roslev, P.; Magnacca, G.; Wang, D. Polyethylene Glycol Enhanced Encapsulation of Thymol in Metal-Organic Framework Nanocarriers for Antimicrobial Food Packaging. Food Chem. 2025, 488, 144911. [Google Scholar] [CrossRef]
- Shi, C.; Zhou, A.; Fang, D.; Lu, T.; Wang, J.; Song, Y.; Lyu, L.; Wu, W.; Huang, C.; Li, W. Oregano Essential Oil/β-Cyclodextrin Inclusion Compound Polylactic Acid/Polycaprolactone Electrospun Nanofibers for Active Food Packaging. Chem. Eng. J. 2022, 445, 136746. [Google Scholar] [CrossRef]
- Zhao, R.; Guan, W.; Zhou, X.; Lao, M.; Cai, L. The Physiochemical and Preservation Properties of Anthocyanidin/Chitosan Nanocomposite-Based Edible Films Containing Cinnamon-Perilla Essential Oil Pickering Nanoemulsions. LWT 2022, 153, 112506. [Google Scholar] [CrossRef]
- Göksen, G.; Fabra, M.J.; Ekiz, H.I.; López-Rubio, A. Phytochemical-Loaded Electrospun Nanofibers as Novel Active Edible Films: Characterization and Antibacterial Efficiency in Cheese Slices. Food Control. 2020, 112, 107133. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Nooshkam, M.; Qazanfarzadeh, Z.; Oladzadabbasabadi, N.; Strachowski, P.; Rabiee, N.; Shirvanimoghaddam, K.; Abdollahi, M.; Naebe, M. Unlocking the Potential of 2D Nanomaterials for Sustainable Intelligent Packaging. Chem. Eng. J. 2024, 490, 151711. [Google Scholar] [CrossRef]
- Jayakumar, A.; Radoor, S.; Kim, J.T.; Rhim, J.W.; Nandi, D.; Parameswaranpillai, J.; Siengchin, S. Recent Innovations in Bionanocomposites-Based Food Packaging Films—A Comprehensive Review. Food Packag. Shelf Life 2022, 33, 100877. [Google Scholar] [CrossRef]
- Dey, B.; Prabhakar, M.R.; Jayaraman, S.; Gujjala, L.K.S.; Venugopal, A.P.; Balasubramanian, P. Biopolymer-Based Solutions for Enhanced Safety and Quality Assurance: A Review. Food Res. Int. 2024, 191, 114723. [Google Scholar] [CrossRef] [PubMed]
- Wahab, Y.A.; Al-Ani, L.A.; Khalil, I.; Schmidt, S.; Tran, N.N.; Escribà-Gelonch, M.; Woo, M.W.; Davey, K.; Gras, S.; Hessel, V.; et al. Nanomaterials: A Critical Review of Impact on Food Quality Control and Packaging. Food Control. 2024, 163, 110466. [Google Scholar] [CrossRef]
- Edo, G.I.; Mafe, A.N.; Ali, A.B.M.; Akpoghelie, P.O.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; Zainulabdeen, K.; Owheruo, J.O.; Essaghah, A.E.A.; et al. Advancing Sustainable Food Packaging: The Role of Green Nanomaterials in Enhancing Barrier Properties. Food Eng. Rev. 2025, 17, 1–35. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Khezerlou, A.; Rezvani-Ghalhari, M.; McClements, D.J.; Varma, R.S. Advanced Carbon-Based Nanomaterials: Application in the Development of Multifunctional next-Generation Food Packaging Materials. Adv. Colloid Interface Sci. 2025, 339, 103422. [Google Scholar] [CrossRef]
- Franco, D.; Calabrese, G.; Guglielmino, S.P.P.; Conoci, S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Ding, L.; Liu, G. Nanoparticle Formulations for Therapeutic Delivery, Pathogen Imaging and Theranostic Applications in Bacterial Infections. Theranostics 2023, 13, 1545–1570. [Google Scholar] [CrossRef]
- Tu, Y.; Li, P.; Sun, J.; Jiang, J.; Dai, F.; Wu, Y.; Chen, L.; Shi, G.; Tan, Y.; Fang, H. Remarkable Antibacterial Activity of Reduced Graphene Oxide Functionalized by Copper Ions. Adv. Funct. Mater. 2021, 31, 2008018. [Google Scholar] [CrossRef]
- Ahmad, K.; Li, Y.; Tu, C.; Guo, Y.; Yang, X.; Xia, C.; Hou, H. Nanotechnology in Food Packaging with Implications for Sustainable Outlook and Safety Concerns. Food Biosci. 2024, 58, 103625. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Chen, D.; Lu, W.; Xiao, C. Emulsion-Coaxial Electrospinning: The Role of Zein as a Shell Layer in Multicore-Shell Structured Nanofibers for Bioactive Delivery. Int. J. Biol. Macromol. 2025, 306, 141432. [Google Scholar] [CrossRef]
- Patel, D.K.; Jung, E.; Priya, S.; Won, S.-Y.; Han, S.S. Recent Advances in Biopolymer-Based Hydrogels and Their Potential Biomedical Applications. Carbohydr. Polym. 2024, 323, 121408. [Google Scholar] [CrossRef]
- Khanzada, B.; Mirza, B.; Ullah, A. Chitosan Based Bio-Nanocomposites Packaging Films with Unique Mechanical and Barrier Properties. Food Packag. Shelf Life 2023, 35, 101016. [Google Scholar] [CrossRef]
- Kumar, S.; Mishra, D.K.; Yoon, S.; Chauhan, A.K.; Koh, J. Synthesis of 2,5-Furandicarboxylic Acid-Enriched-Chitosan for Anti-Inflammatory and Metal Ion Uptake. Int. J. Biol. Macromol. 2021, 179, 500–506. [Google Scholar] [CrossRef]
- Hemeg, H. Nanomaterials for Alternative Antibacterial Therapy. Int. J. Nanomed. 2017, 12, 8211–8225. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Zafar, A.; Alsaidan, O.A.; Alruwaili, N.K.; Gilani, S.J.; Rizwanullah, M. Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives. Polymers 2021, 13, 4036. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Razavi, R.; Omer, A.K.; Farhangfar, A.; McClements, D.J. Interactions between Nanoparticle-Based Food Additives and Other Food Ingredients: A Review of Current Knowledge. Trends Food Sci. Technol. 2022, 120, 75–87. [Google Scholar] [CrossRef]
- Cao, Y.; Li, J.; Liu, F.; Li, X.; Jiang, Q.; Cheng, S.; Gu, Y. Consideration of Interaction between Nanoparticles and Food Components for the Safety Assessment of Nanoparticles Following Oral Exposure: A Review. Environ. Toxicol. Pharmacol. 2016, 46, 206–210. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Choi, J.; Ko, S. Applications of Nanomaterials in Food Packaging. J. Nanosci. Nanotechnol. 2015, 15, 6357–6372. [Google Scholar] [CrossRef]
- Pattan, G.; Kaul, G. Health Hazards Associated with Nanomaterials. Toxicol. Ind. Health 2014, 30, 499–519. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered Nanoparticles Interacting with Cells: Size Matters. J. Nanobiotechnol. 2014, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, H.; Dekkers, S.; Noordam, M.Y.; Hagens, W.I.; Bulder, A.S.; de Heer, C.; ten Voorde, S.E.C.G.; Wijnhoven, S.W.P.; Marvin, H.J.P.; Sips, A.J.A.M. Review of Health Safety Aspects of Nanotechnologies in Food Production. Regul. Toxicol. Pharmacol. 2009, 53, 52–62. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Ko, S. Nano-Food Packaging: An Overview of Market, Migration Research, and Safety Regulations. J. Food Sci. 2015, 80, R910–R923. [Google Scholar] [CrossRef]
- Feng, K.; Zhai, M.-Y.; Wei, Y.-S.; Zong, M.-H.; Wu, H.; Han, S.-Y. Fabrication of Nano/Micro-Structured Electrospun Detection Card for the Detection of Pesticide Residues. Foods 2021, 10, 889. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.A.; Siddiqui, A.J.; Elkhalifa, A.E.O.; Khan, M.I.; Patel, M.; Alreshidi, M.; Moin, A.; Singh, R.; Snoussi, M.; Adnan, M. Innovations in Nanoscience for the Sustainable Development of Food and Agriculture with Implications on Health and Environment. Sci. Total Environ. 2021, 768, 144990. [Google Scholar] [CrossRef]
- Kiran, V.; Harini, K.; Thirumalai, A.; Girigoswami, K.; Girigoswami, A. Nanotechnology’s Role in Ensuring Food Safety and Security. Biocatal. Agric. Biotechnol. 2024, 58, 103220. [Google Scholar] [CrossRef]
- Wang, S.; Alenius, H.; El-Nezami, H.; Karisola, P. A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies. Nanomaterials 2022, 12, 1247. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Tzegkas, S.G.; Danezis, G.P. Nanomaterials in Food Packaging: State of the Art and Analysis. J. Food Sci. Technol. 2018, 55, 2862–2870. [Google Scholar] [CrossRef]
- Rezagholizade-shirvan, A.; Soltani, M.; Shokri, S.; Radfar, R.; Arab, M.; Shamloo, E. Bioactive Compound Encapsulation: Characteristics, Applications in Food Systems, and Implications for Human Health. Food Chem. X 2024, 24, 101953. [Google Scholar] [CrossRef]
- Shaikh, S.; Yaqoob, M.; Aggarwal, P. An Overview of Biodegradable Packaging in Food Industry. Curr. Res. Food Sci. 2021, 4, 503–520. [Google Scholar] [CrossRef]
- Siegrist, M.; Keller, C. Labeling of Nanotechnology Consumer Products Can Influence Risk and Benefit Perceptions. Risk Anal. 2011, 31, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chen, L.; McClements, D.J.; Yang, T.; Zhang, Z.; Ren, F.; Miao, M.; Tian, Y.; Jin, Z. Starch-Based Biodegradable Packaging Materials: A Review of Their Preparation, Characterization and Diverse Applications in the Food Industry. Trends Food Sci. Technol. 2021, 114, 70–82. [Google Scholar] [CrossRef]
- Weligama Thuppahige, V.T.; Karim, M.A. A Comprehensive Review on the Properties and Functionalities of Biodegradable and Semibiodegradable Food Packaging Materials. Comp. Rev. Food Sci. Food Safe 2022, 21, 689–718. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Guo, H. Progress in the Degradability of Biodegradable Film Materials for Packaging. Membranes 2022, 12, 500. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, V.; Yadav, A.N.; Sain, D.; Rahi, R.K.; Bera, S.P.; Neelam, D. ASPECTS OF MUSHROOMS AND THEIR EXTRACTS AS NATURAL ANTIMICROBIAL AGENTS: Microbiology. J. Microb. Biotech. Food Sci. 2023, 17, e9191. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Sundarsingh, A.; Bahmid, N.A.; Nirmal, N.; Denayer, J.F.M.; Karimi, K. A Critical Review on Biodegradable Food Packaging for Meat: Materials, Sustainability, Regulations, and Perspectives in the EU. Comp. Rev. Food Sci. Food Safe 2023, 22, 4147–4185. [Google Scholar] [CrossRef]
- Arman Alim, A.A.; Mohammad Shirajuddin, S.S.; Anuar, F.H. A Review of Nonbiodegradable and Biodegradable Composites for Food Packaging Application. J. Chem. 2022, 2022, 7670819. [Google Scholar] [CrossRef]
- As’ad Mahpuz, A.S.; Muhamad Sanusi, N.A.S.; Jusoh, A.N.C.; Amin, N.J.M.; Musa, N.F.; Sarabo, Z.; Othman, N.Z. Manifesting Sustainable Food Packaging from Biodegradable Materials: A Review. Environ. Qual. Mgmt 2022, 32, 379–396. [Google Scholar] [CrossRef]
- Cazón, P.; Vázquez, M. Bacterial Cellulose as a Biodegradable Food Packaging Material: A Review. Food Hydrocoll. 2021, 113, 106530. [Google Scholar] [CrossRef]
- Moeini, A.; Pedram, P.; Fattahi, E.; Cerruti, P.; Santagata, G. Edible Polymers and Secondary Bioactive Compounds for Food Packaging Applications: Antimicrobial, Mechanical, and Gas Barrier Properties. Polymers 2022, 14, 2395. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Demokritou, P.; Dokoozlian, N.; Hendren, C.O.; Karn, B.; Mauter, M.S.; Sadik, O.A.; Safarpour, M.; Unrine, J.M.; Viers, J.; et al. Nanotechnology for Sustainable Food Production: Promising Opportunities and Scientific Challenges. Environ. Sci. Nano 2017, 4, 767–781. [Google Scholar] [CrossRef]
- Das, H.S.; Basak, A.; Maity, S. Materials Science and Nanotechnology: In Advances in Chemical and Materials Engineering; González-Lezcano, R.A., Ed.; IGI Global: Hershey, PA, USA, 2024; pp. 175–206. ISBN 979-8-3693-3398-3. [Google Scholar]
- Festus-Ikhuoria, I.C.; Obiuto, N.C.; Adebayo, R.A.; Olajiga, O.K. Nanotechnology in Consumer Products: A Review of Applications and Safety Considerations. World J. Adv. Res. Rev. 2023, 21, 2050–2059. [Google Scholar] [CrossRef]
- Khatoon, U.T.; Velidandi, A. An Overview on the Role of Government Initiatives in Nanotechnology Innovation for Sustainable Economic Development and Research Progress. Sustainability 2025, 17, 1250. [Google Scholar] [CrossRef]
- Gottardo, S.; Mech, A.; Drbohlavová, J.; Małyska, A.; Bøwadt, S.; Riego Sintes, J.; Rauscher, H. Towards Safe and Sustainable Innovation in Nanotechnology: State-of-Play for Smart Nanomaterials. NanoImpact 2021, 21, 100297. [Google Scholar] [CrossRef]
- Sohail, M.I.; Waris, A.A.; Ayub, M.A.; Usman, M.; Zia Ur Rehman, M.; Sabir, M.; Faiz, T. Environmental Application of Nanomaterials: A Promise to Sustainable Future. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 87, pp. 1–54. ISBN 978-0-12-821320-9. [Google Scholar]
Packaging Type | Key Features | Mechanism of Action | Applications | Nanomaterials Used |
---|---|---|---|---|
Active packaging | Interacts with food or the environment | Releases/absorbs substances (e.g., oxygen, moisture) | Antimicrobial films, oxygen scavengers | Nano-Ag, CuO, ZnO, nano-clay |
Intelligent packaging | Monitors the condition of food/environment | Colorimetric sensors, gas indicators, TTIs | Freshness indicators, spoilage detection | Quantum dots, ZnO, CNTs, CDs |
Interactive packaging | Digitally enhanced, provides data access | QR codes, RFID, NFC technologies | Supply chain traceability, authentication | CNTs, graphene, nanocomposite inks |
Bio-based packaging | Derived from renewable sources, biodegradable | Integrates nanomaterials in biopolymer matrices | Edible films, compostable nanocomposites | CNCs, nano-starch, layered silicates |
Mechanism | Sensing Principle | Nanomaterials Used | Target Analyte | Application |
---|---|---|---|---|
Colorimetric | pH/gas-triggered dye change | ZnO (with anthocyanins as colorimetric agent), | Volatile amines | Spoilage detection in meat |
Fluorescence-based | Emission under UV light | Quantum dots, CDs, ZnO | Microbial metabolites | Dairy spoilage sensors |
Electrical conductivity | Resistance/capacitance shift | CNTs, graphene, metal oxides | Pathogens, gases | Sensor chips in seafood packs |
Gas sensing | Chemisorption | SnO2, MWCNTs, Ag-doped ZnO | NH3, H2S, CO2 | MAP packaging freshness tracking |
Time–temperature | Thermal response of indicators | PDA/Ag NPs | Cumulative heat | Cold chain integrity |
Nanomaterial Used | Method of Synthesis | Properties | Applications | Ref. |
---|---|---|---|---|
Ag | Chemical | Antimicrobial and extends shelf life | Milk storage | [116] |
Ag | Green | High H2S sensitivity | Chicken breasts, and fish fillets | [117] |
Au | Chemical | Visual color indicator | Fish fillets | [118] |
Au/Ag | Chemical | Antimicrobial, antioxidant, and better mechanical properties | Cheddar cheese | [119] |
TiO2/Ag | Green | Antimicrobial and UV blocking | Cherry tomatoes | [120] |
TiO2 | Chemical and electrospinning | Photocatalytic degradation and extends shelf life | Bananas | [121] |
Fe2TiO5 | Sol–gel | Antimicrobial, no cytotoxicity, and shelf life | Strawberries | [122] |
Cu | Solvothermal | Antimicrobial and antioxidant | Shrimp | [123] |
ZnO | Chemical | Antimicrobial, antioxidant, and extends shelf life | Pork meat | [124] |
ZnO | Hydrothermal | Improved mechanical strength and antimicrobial | Black grapes | [125] |
ZnO-Fe2O3 | Chemical | Antimicrobial and shelf life | Tomatoes | [126] |
Se0 | Chemical and green | Improved mechanical properties, antimicrobial, and antioxidant | Beef | [127] |
Bioactive Compound | Polymer Used | Method of Synthesis | Functional Property | Ref. |
---|---|---|---|---|
A. yomena extract | Zein-polycaprolactone | Electrospinning | Antioxidant and antibacterial against E. coli and B. subtilis | [174] |
Tea polyphenol | PVA/ethyl cellulose | Electrospinning | Antioxidant and antimicrobial activity against E. coli and S. aureus | [167] |
Jujube extract | PVA | Electrospinning | Antioxidant and antibacterial | [175] |
Cardamom essential oil | CMC | Nano-emulsion | Antibacterial and antibiofilm action against E. coli and L. monocytogenes | [176] |
Carvacrol | Gelatin/chitosan | Electrospinning | Antioxidant and antibacterial activity against E. coli and S. aureus, sustained release of carvacrol | [177] |
Thymol | CS/PVA | Encapsulation and film incorporation | Antibacterial activity against E. coli and sustained release of thymol | [178] |
Oregano essential oil | PLA–PCL | Electrospinning | Antibacterial and antifungal activity | [179] |
Cinnamon–perilla essential oil | Anthocyanidin/chitosan | Pickering nano-emulsion | Antioxidant activity, improved mechanical and barrier properties | [180] |
Bay and rosemary essential oils | Zein | Electrospinning | Antibacterial activity against S. aureus and L. monocytogenes | [181] |
Domains | Challenges | Future Directions | Ref. |
---|---|---|---|
Safety and toxicological | Metallic NPs (ZnO, TiO2) exhibit excellent antimicrobial properties; however, their migration into food can cause cytotoxic or genotoxic effects. | Safe concentration limits and long-term health impacts. | [208] |
Regulatory and standardization | The lack of standardized regulations and testing for nanomaterials in food packaging is a significant challenge, recognized by both governments and academic institutions. | Comprehensive risk assessment frameworks, toxicological data, clear labeling, and updated legislation. | [209] |
Controlled release and stability | Ensuring the stability and controlled release of nanoencapsulated ingredients (vitamins, antioxidants, and bioactive compounds) without compromising food quality. | Selecting suitable materials for controlled release, food quality, stability during processing, storage, and digestion. | [210] |
Environmental and sustainability | Biodegradable packaging from natural polymers is eco-friendly but limited by its weak properties, including poor mechanical properties, and water sensitivity, and may also hinder recycling and biodegradation. | Eco-safe, environmentally compatible nanomaterials. | [211] |
High cost and scalability | Carbon-based nanomaterials offer promise for smart packaging; however, high costs and technical challenges limit their large-scale application. | Cost-effective synthesis, material optimization, and scalable manufacturing processes. | [187] |
Consumer acceptance and awareness | Concerns over safety and labeling transparency influence consumer acceptance of nanotechnology in food. | Education, transparent labeling, and robust safety evidence are necessary to build trust. | [212] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthu, A.; Nguyen, D.H.H.; Neji, C.; Törős, G.; Ferroudj, A.; Atieh, R.; Prokisch, J.; El-Ramady, H.; Béni, Á. Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives. Foods 2025, 14, 2657. https://doi.org/10.3390/foods14152657
Muthu A, Nguyen DHH, Neji C, Törős G, Ferroudj A, Atieh R, Prokisch J, El-Ramady H, Béni Á. Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives. Foods. 2025; 14(15):2657. https://doi.org/10.3390/foods14152657
Chicago/Turabian StyleMuthu, Arjun, Duyen H. H. Nguyen, Chaima Neji, Gréta Törős, Aya Ferroudj, Reina Atieh, József Prokisch, Hassan El-Ramady, and Áron Béni. 2025. "Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives" Foods 14, no. 15: 2657. https://doi.org/10.3390/foods14152657
APA StyleMuthu, A., Nguyen, D. H. H., Neji, C., Törős, G., Ferroudj, A., Atieh, R., Prokisch, J., El-Ramady, H., & Béni, Á. (2025). Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives. Foods, 14(15), 2657. https://doi.org/10.3390/foods14152657