Lactobacillus rhamnosus LRa05 Alleviates Constipation via Triaxial Modulation of Gut Motility, Microbiota Dynamics, and SCFA Metabolism
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Strain Activation and Bacterial Suspension Preparation
2.3. Laboratory Animals and Intervention Procedures
2.4. Sample Collection
2.5. Body Mass, Feeding Behavior, Fecal Transit, and Intestinal Motility Assays
2.6. Quantitative Profiling of Gastrointestinal Regulatory Peptides
2.7. Histopathological Evaluation of Colonic Mucosa
2.8. Quantitative Analysis of Fecal Short-Chain Fatty Acids (SCFAs)
2.9. Gene Expression Analyzed via Quantitative Reverse Transcription PCR (qRT-PCR)
2.10. Gut Microbiota Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. LRa05-Mediated Alterations in Excretory Patterns and Intestinal Functionality
3.2. Impact of LRa05 on the Serum Concentrations of Gastrointestinal Regulatory Peptides
3.3. Mediation of Colonic Histopathological Integrity by LRa05
3.4. LRa05’s Role in Affecting the Content of SCFAs
3.5. LRa05’s Role in Affecting the Expression of Linked Genes
3.6. Functional Role of LRa05 in Modulating the Gut Microbiota
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICC | Interstitial cells of Cajal |
AQPs | Aquaporins |
MTL | Motilin |
GAS | Gastrin |
SP | Substance P |
SS | Somatostatin |
ET-1 | Endothelin-1 |
VIP | Vasoactive intestinal peptide |
5-HT | 5-hydroxytryptamine |
SCF | Stem cell factor |
References
- Bharucha, A.E.; Lacy, B.E. Mechanisms, evaluation, and management of chronic constipation. Gastroenterology 2020, 158, 1232–1249.e3. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, Z.; Liu, T.; Feng, H.; Liu, Y.; Chen, K. The role of nondigestible oligosaccharides in alleviating human chronic diseases by regulating the gut microbiota: A review. Foods 2024, 13, 2157. [Google Scholar] [CrossRef] [PubMed]
- Gershon, M.D.; Margolis, K.G. The gut, its microbiome, and the brain: Connections and communications. J. Clin. Investig. 2021, 131, e143768. [Google Scholar] [CrossRef]
- Zhao, X.; Qiu, Y.; Liang, L.; Fu, X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025, 17, 2456592. [Google Scholar] [CrossRef] [PubMed]
- Bubeck, M.; Becker, C.; Patankar, J.V. Guardians of the gut: Influence of the enteric nervous system on the intestinal epithelial barrier. Front. Med. 2023, 10, 1228938. [Google Scholar] [CrossRef] [PubMed]
- Foong, D.; Zhou, J.; Zarrouk, A.; Ho, V.; O’Connor, M.D. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility. Int. J. Mol. Sci. 2020, 21, 4540. [Google Scholar] [CrossRef]
- Gao, X.; Guo, K.; Liu, S.; Yang, W.; Sheng, J.; Tian, Y.; Peng, L.; Zhao, Y. A Potential use of vidarabine: Alleviation of functional constipation through modulation of the adenosine A2A receptor-MLC signaling pathway and the gut microbiota. Int. J. Mol. Sci. 2024, 25, 12810. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, Q.; Xue, Y.; Li, J.; Huang, Y.; Liu, W.; Wang, G.; Wang, L.; Zhai, Q.; Zhao, J.; et al. Bifidobacterium bifidum CCFM1163 alleviates cathartic colon by activating the BDNF-TrkB-PLC/IP3 pathway to reconstruct the intestinal nerve and barrier. Food Funct. 2025, 16, 2057–2072. [Google Scholar] [CrossRef]
- Brigstocke, S.; Yu, V.; Nee, J. Review of the Safety Profiles of Laxatives in Pregnant Women. J. Clin. Gastroenterol. 2022, 56, 197–203. [Google Scholar] [CrossRef]
- Huang, Y.P.; Shi, J.Y.; Luo, X.T.; Luo, S.C.; Cheung, P.C.K.; Corke, H.; Yang, Q.Q.; Zhang, B.B. How do probiotics alleviate constipation? A narrative review of mechanisms. Crit. Rev. Biotechnol. 2025, 45, 80–96. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, L.; Kong, S.; Bai, Y.; Zhao, B. Lacticaseibacillus rhamnosus LRa05 alleviates cyclophosphamide-induced immunosuppression and intestinal microbiota disorder in mice. J. Food Sci. 2024, 89, 10003–10017. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Shao, Y.; Zhang, Y.; Zhao, Y.; Han, M.; Gai, Z. In Vitro and in Vivo genome-based safety evaluation of Lacticaseibacillus rhamnosus LRa05. Food Chem. Toxicol. 2024, 186, 114600. [Google Scholar] [CrossRef]
- Vallejos, O.P.; Bueno, S.M.; Kalergis, A.M. Probiotics in inflammatory bowel disease: Microbial modulation and therapeutic prospects. Trends Mol. Med. 2025. [Google Scholar] [CrossRef]
- Gu, J.; Chen, Y.; Wang, J.; Gao, Y.; Gai, Z.; Zhao, Y.; Xu, F. Lacticaseibacillus rhamnosus LRa05 alleviated liver injury in mice with alcoholic fatty liver disease by improving intestinal permeability and balancing gut microbiota. Benef. Microbes 2024, 15, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhang, Y.; Li, W.; Zhao, Y.; Long, H.; Muhindo, E.M.; Liu, R.; Sui, W.; Li, Q.; Zhang, M. Lactobacillus rhamnosus LRa05 ameliorate hyperglycemia through a regulating glucagon-mediated signaling pathway and gut microbiota in type 2 diabetic Mice. J. Agric. Food Chem. 2021, 69, 8797–8806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.C.; Li, J.; Wan, Z.; Fang, S.G.; Zhao, Y.J.; Li, Q.; Zhang, M. Bifidobacterium animalis subsp. lactis BLa80 alleviates constipation in mice through modulating the stem cell factor (SCF)/c-Kit pathway and the gut microbiota. Food Funct. 2025, 16, 2347–2362. [Google Scholar] [CrossRef] [PubMed]
- Han, A.; Hudson-Paz, C.; Robinson, B.G.; Becker, L.; Jacobson, A.; Kaltschmidt, J.A.; Garrison, J.L.; Bhatt, A.S.; Monack, D.M. Temperature-dependent differences in mouse gut motility are mediated by stress. Lab. Anim. 2024, 53, 148–159. [Google Scholar] [CrossRef]
- Bahari, H.; Akhgarjand, C.; Mirmohammadali, S.N.; Malekahmadi, M. Probiotics and eating disorders: A systematic review of humans and animal model studies. J. Eat. Disord. 2024, 12, 193. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, Y.; Liu, Y.; Wang, Y.; Yu, S.; Huang, L. Bifidobacterium animalis subsp. lactis TG11 ameliorates loperamide-induced constipation in mice by modulating gut microbiota. Front. Microbiol. 2025, 16, 1525887. [Google Scholar] [CrossRef]
- Dong, L.; Xu, Z.; Huang, G.; Zhang, R.; Deng, M.; Huang, F.; Su, D. Lychee pulp-derived dietary fiber-bound phenolic complex upregulates the SCFAs-GPRs-ENS pathway and aquaporins in loperamide-induced constipated mice by reshaping gut microbiome. J. Agric. Food Chem. 2023, 1, 15087–15096. [Google Scholar] [CrossRef]
- Nobels, A.; van Marcke, C.; Jordan, B.F.; Hul, M.V.; Cani, P.D. The gut microbiome and cancer: From tumorigenesis to therapy. Nat. Metab. 2025, 7, 895–917. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chen, F.; Wang, Z.; Cao, J.; Li, C. Effect and mechanism of functional compound fruit drink on gut microbiota in constipation mice. Food Chem. 2023, 401, 134210. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yang, S.; Sun, S.; Si, Q.; Wang, L.; Zhang, Q.; Wu, G.; Zhao, J.; Zhang, H.; Chen, W. Lactobacillus rhamnosus strains relieve Loperamide-induced constipation via different pathways independent of short-chain fatty acids. Front. Cell Infect. Microbiol. 2020, 10, 423. [Google Scholar] [CrossRef]
- Vivot, K.; Meszaros, G.; Pangou, E.; Zhang, Z.R.; Qu, M.D.; Erbs, E.; Yeghiazaryan, G.; Quiñones, M.; Grandgirard, E.; Schneider, A.; et al. CaMK1D signalling in AgRP neurons promotes ghrelin-mediated food intake. Nat. Metab. 2023, 5, 1045–1058. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, W.; Luo, J.; Shi, S.; Niu, X.; He, J.; Wang, Y.; Zeng, Z.; Jiang, Q.; Fang, B.; et al. Synergistic Defecation effects of Bifidobacterium animalis subsp. lactis BL-99 and fructooligosaccharide by modulating gut microbiota. Front. Immunol. 2025, 15, 1520296. [Google Scholar] [CrossRef]
- Haq, S.; Wang, H.Q.; Grondin, J.; Banskota, S.; Marshall, J.K.; Khan, I.I.; Chauhan, U.; Cote, F.; Kwon, Y.H.; Philpott, D.; et al. Disruption of autophagy by increased 5-HT alters gut microbiota and enhances susceptibility to experimental colitis and Crohn’s disease. Sci. Adv. 2021, 7, eabi6442. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Huang, F.; Yun, F.; Liu, Y.; Wang, T.; Wang, S.; Jin, S.; Ma, X.; Wang, W.; He, J.; et al. Lacticaseibacillus rhamnosus LRJ-1 Alleviates Constipation through Promoting Gut Bacteroides-Derived γ-Aminobutyric Acid Production. Curr. Res. Food Sci. 2024, 9, 100924. [Google Scholar] [CrossRef]
- Hickey, J.W.; Becker, W.R.; Nevins, S.A.; Horning, A.; Perez, A.E.; Zhu, C.C.; Zhu, B.; Wei, B.; Chiu, R.; Chen, D.C.; et al. Organization of the human intestine at single-cell resolution. Nature 2023, 619, 572–584. [Google Scholar] [CrossRef]
- Piechka, A.; Sparanese, S.; Witherspoon, L.; Hach, F.; Flannigan, R. Molecular mechanisms of cellular dysfunction in testes from men with non-obstructive azoospermia. Nat. Rev. Urol. 2024, 21, 67–90. [Google Scholar] [CrossRef]
- Hu, M.; Fang, C.; Liu, Y.; Gao, M.; Zhang, D.; Shi, G.; Yin, Z.; Zheng, R.; Zhang, J. Comparative study of the laxative effects of konjac oligosaccharides and konjac glucomannan on loperamide-induced constipation in rats. Food Funct. 2021, 12, 7709–7717. [Google Scholar] [CrossRef]
- Zhao, Q.; Xing, F.; Tao, Y.; Liu, H.; Huang, K.; Peng, Y.; Feng, N.; Liu, C. Xiaozhang Tie improves intestinal motility in rats with cirrhotic ascites by regulating the stem cell factor/c-kit pathway in interstitial cells of Cajal. Front. Pharmacol. 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Huang, H.; Xu, H.; Xia, H.; Zhang, C.; Di, Y.; Bi, F. Endogenous coriobacteriaceae enriched by a high-fat diet promotes colorectal tumorigenesis through the CPT1A-ERK axis. npj Biofilms Microbiomes 2024, 10, 5. [Google Scholar] [CrossRef]
- Sun, M.; Wu, T.; Zhang, G.; Liu, R.; Sui, W.; Zhang, M.; Geng, J.; Yin, J.; Zhang, M. Lactobacillus rhamnosus LRa05 improves lipid accumulation in mice fed with a high fat diet via regulating the intestinal microbiota, reducing glucose content and promoting liver carbohydrate metabolism. Food Funct. 2020, 11, 9514–9525. [Google Scholar] [CrossRef]
- Bárcenas-Preciado, V.; Mata-Haro, V. Probiotics in miRNA-mediated regulation of intestinal immune homeostasis in pigs: A physiological narrative. Microorganisms 2024, 12, 1606. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Niu, J.; Pan, W.; Wang, Y.; Wang, L.; Wang, M.; Shi, Y.; Zhang, G.; Al Hamyari, B.; Wang, S.; et al. Stool-softening effect and action mechanism of free anthraquinones extracted from Rheum palmatum L. on water deficit-induced constipation in rats. J. Ethnopharmacol. 2024, 319, 117336. [Google Scholar] [CrossRef]
- Hays, K.E.; Pfaffinger, J.M.; Ryznar, R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microbes 2024, 16, 2393270. [Google Scholar] [CrossRef]
- Pimpão, C.; da Silva, I.V.; Soveral, G. The expanding role of aquaporin-1, aquaporin-3 and aquaporin-5 as transceptors: Involvement in cancer development and potential druggability. Int. J. Mol. Sci. 2025, 26, 1330. [Google Scholar] [CrossRef]
- Sanders, K.M.; Santana, L.F.; Baker, S.A. Interstitial cells of Cajal—Pacemakers of the gastrointestinal tract. J. Physiol. 2023, 10, 1113. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.P.; Qiu, H.; Wang, K.; Chao, W.B.; Zhu, H.B.; Chen, H.; Liu, Y.; Yu, B.P. The impact of acute stress disorder on gallbladder interstitial cells of Cajal. J. Cell Physiol. 2020, 235, 8424–8431. [Google Scholar] [CrossRef]
- Yuhan, L.; Khaleghi Ghadiri, M.; Gorji, A. Impact of NQO1 dysregulation in CNS disorders. J. Transl. Med. 2024, 22, 4. [Google Scholar] [CrossRef]
- Huang, S.; Xu, P.; Shen, D.D.; Simon, I.A.; Mao, C.; Tan, Y.; Zhang, H.; Harpsøe, K.; Li, H.; Zhang, Y.; et al. GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol. Cell 2022, 82, 2681–2695.e6. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, T.; Kittaka, M.; Doan, A.A.P.; Urata, R.; Prideaux, M.; Rojas, R.E. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nat. Commun. 2022, 13, 6648. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yu, Z.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 2020, 19, 23. [Google Scholar] [CrossRef]
- Shi, R.; Yu, F.; Hu, X.; Liu, Y.; Jin, Y.; Ren, H.; Lu, S.; Guo, J.; Chang, J.; Li, Y.; et al. Protective effect of Lactiplantibacillus plantarum subsp. plantarum SC-5 on dextran sulfate sodium—Induced colitis in mice. Foods 2023, 12, 897. [Google Scholar] [CrossRef]
- Miao, C.; Wang, L.; Wang, H.; Shen, Y.; Man, C.; Zhang, W.; Zhang, Y.; Zhao, Q.; Jiang, Y. Lacticaseibacillus plantarum postbiotics prepared by the combined technique of pasteurization and ultrasound: Effective measures to alleviate obesity based on the SCFAs-GPR41/GPR43 signaling pathway. Food Funct. 2024, 15, 11005–11019. [Google Scholar] [CrossRef]
- Olesen, E.T.B.; Fenton, R.A. Aquaporin 2 regulation: Implications for water balance and polycystic kidney diseases. Nat. Rev. Nephrol. 2021, 17, 765–781. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, R.P.; McDonald, J.A.K.; Marchesi, J.R.; Clarke, T.B. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat. Microbiol. 2020, 5, 304–313. [Google Scholar] [CrossRef]
- Yue, Z.; Zhao, F.; Guo, Y.; Zhang, Y.; Chen, Y.; He, L.; Li, L. Lactobacillus reuteri JCM 1112 ameliorates chronic acrylamide-induced glucose metabolism disorder via the bile acid-TGR5-GLP-1 axis and modulates intestinal oxidative stress in mice. Food Funct. 2024, 15, 6450–6458. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, H.; Cheng, T.; Wang, L.; Wang, G.; Zhang, H.; Chen, W. Bifidobacterium longum S3 alleviates loperamide-induced constipation by modulating intestinal acetic acid and stearic acid levels in mice. Food Funct. 2024, 15, 6118–6133. [Google Scholar] [CrossRef]
- Han, B.; Shi, L.; Bao, M.Y.; Yu, F.L.; Zhang, Y.; Lu, X.Y.; Wang, Y.; Li, D.X.; Lin, J.C.; Jia, W.; et al. Dietary ellagic acid therapy for CNS autoimmunity: Targeting on Alloprevotella rava and propionate metabolism. Microbiome 2024, 12, 114. [Google Scholar] [CrossRef]
- Yang, W.; Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol. Immunol. 2021, 18, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Katsirma, Z.; Dimidi, E.; Rodriguez-mateos, A.; Whelan, K. Fruits and their impact on the gut microbiota, gut motility and constipation. Food Funct. 2021, 12, 8850–8866. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, J.; Cui, Z.; Ma, K.; Wu, D.; Luo, J.; Li, F.; Xiong, W.; Rao, S.; Xiang, Q.; et al. Lachnospiraceae-derived butyrate mediates protection of high fermentable fiber against placental inflammation in gestational diabetes mellitus. Sci. Adv. 2023, 9, eadi7337. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, L.; Wang, X.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Roles of Intestinal Parabacteroides in human health and diseases. FEMS Microbiol. Lett. 2022, 369, fnac072. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut Health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef]
- Paone, P.; Cani, P.D. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut 2020, 69, 2232–2243. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Li, W.; Zhang, B.; Yin, J.; Liuqi, S.; Wang, J.; Peng, B.; Wang, S. Fucoidan ameliorated dextran sulfate sodium-induced ulcerative colitis by modulating gut microbiota and bile acid metabolism. J. Agric. Food Chem. 2022, 70, 14864–14876. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Wen, Z.; Liu, W.; Meng, L.; Huang, H. Oscillospira—A candidate for the next-generation probiotics. Gut Microbes 2021, 13, 1987783. [Google Scholar] [CrossRef]
- Qu, S.Y.; Yu, Z.J.; Zhou, Y.X.; Wang, S.Y.; Jia, M.Q.; Chen, T.; Zhang, X.J. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol. Res. 2024, 287, 127858. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, H.; Jin, Z.; Wang, C.C.; Xia, M.Y.; Chen, B.; Lv, B.; Peres Diaz, L.; Li, X.; Feng, R.; et al. Hydrogen sulfide produced by the gut microbiota impairs host metabolism via reducing GLP-1 levels in male mice. Nat. Metab. 2024, 6, 1601–1615. [Google Scholar] [CrossRef]
- Okamoto, Y.; Miyabe, Y.; Seki, M.; Ushio, Y.; Sato, K.; Kasama, E.; Akiyama, K.; Karasawa, K.; Uchida, K.; Kikuchi, K.; et al. First case of a renal cyst infection caused by Desulfovibrio: A case report and literature review. BMC Nephrol. 2022, 23, 194. [Google Scholar] [CrossRef] [PubMed]
- Thingholm, L.B.; Rühlemann, M.C.; Koch, M.; Fuqua, B.; Laucke, G.; Boehm, R.; Bang, C.; Franzosa, E.A.; Hübenthal, M.; Rahnavard, A.; et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 2019, 26, 252–264.e10. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, X.; Liu, Y.; Zhu, Y.; Li, J.; Du, G.; Chen, J.; Ledesma-Amaro, R.; Liu, L. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat. Chem. Biol. 2020, 16, 1261–1268. [Google Scholar] [CrossRef]
- Li, X.; Pang, Y.; Jiang, L.; Liu, L.; Zhou, J.; Jin, C.; Wang, Q.; Sun, H.; Li, Q.; Chen, Z.; et al. Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria. Nat. Commun. 2025, 16, 607. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer |
---|---|
AQP4 | Forward: CTTTCTGGAAGGCAGTCTCAG Reverse: CCACACCGAGCAAAACAAAGAT |
AQP8 | Forward: AGATGCCGTGTGTTCTGGTA Reverse: AGTGTCCACCGCTGATGTTC |
C-Kit | Forward: GAGTGTAAGGCCTCCAACGA Reverse: GGGCCTGGATTTGCTCTTTGT |
SCF | Forward: TCAGGGACTACGCTGCGAAAG Reverse: AAGAGCTGGCAGACCGACTCA |
β-actin | Forward: GTGACGTTGACATCCGTAAAGA Reverse: GCCGGACTCATCGTACTCC |
Index | Group | ||||
---|---|---|---|---|---|
NC | MC | PC | LRa05.L | LRa05.H | |
Serum concentrations of gastrointestinal regulatory peptides | |||||
MTL | 395.05 ± 8.57 a | 264.75 ± 13.50 b | 376.81 ± 10.92 a | 275.43 ± 16.47 b | 300.24 ± 14.22 b |
GAS | 66.36 ± 2.24 a | 36.79 ± 2.35 c | 64.43 ± 2.11 a | 43.72 ± 2.14 bc | 48.24 ± 1.55 b |
SP | 304.12 ± 7.99 a | 176.36 ± 8.54 c | 280.57 ± 12.45 a | 183.89 ± 10.75 bc | 223.52 ± 5.64 b |
SS | 113.06 ± 3.34 c | 174.10 ± 5.68 a | 103.09 ± 3.95 c | 160.71 ± 6.69 ab | 142.66 ± 7.07 b |
ET-1 | 60.91 ± 1.92 d | 135.83 ± 5.47 a | 68.52 ± 1.10 d | 110.82 ± 3.78 b | 86.33 ± 2.51 c |
VIP | 120.01 ± 5.93 c | 216.68 ± 10.02 a | 108.45 ± 8.53 c | 182.68 ± 12.12 b | 133.70 ± 7.87 c |
5-HT | 5.68 ± 0.20 d | 2.24 ± 0.06 a | 5.06 ± 0.16 d | 2.90 ± 0.08 b | 3.66 ± 0.11 c |
SCFA contents | |||||
Acetic acid | 27.11 ± 1.99 bc | 9.46 ± 0.91 d | 21.64 ± 1.33 c | 26.68 ± 0.51 b | 38.15 ± 1.13 a |
Propionic acid | 9.25 ± 0.65 ab | 5.43 ± 0.23 d | 7.77 ± 0.65 c | 9.59 ± 0.72 ab | 10.75 ± 0.49 a |
Butyric acid | 8.55 ± 0.50 bc | 4.17 ± 0.27 d | 7.03 ± 0.50 c | 9.61 ± 1.22 b | 12.34 ± 0.58 a |
Isobutyric acid | 4.20 ± 0.10 a | 3.78 ± 0.04 b | 4.01 ± 0.07 ab | 4.21 ± 0.08 a | 4.23 ± 0.10 a |
Valeric acid | 1.83 ± 0.10 a | 1.32 ± 0.05 b | 1.60 ± 0.09 ab | 1.98 ± 0.14 a | 1.95 ± 0.17 a |
Isovaleric acid | 2.53 ± 0.11 a | 2.10 ± 0.05 b | 2.32 ± 0.08 ab | 2.58 ± 0.12 a | 2.52 ± 0.12 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, Q.; Liu, S.; Wang, N.; Song, Y.; Wu, T.; Zhang, M. Lactobacillus rhamnosus LRa05 Alleviates Constipation via Triaxial Modulation of Gut Motility, Microbiota Dynamics, and SCFA Metabolism. Foods 2025, 14, 2293. https://doi.org/10.3390/foods14132293
Zhang J, Li Q, Liu S, Wang N, Song Y, Wu T, Zhang M. Lactobacillus rhamnosus LRa05 Alleviates Constipation via Triaxial Modulation of Gut Motility, Microbiota Dynamics, and SCFA Metabolism. Foods. 2025; 14(13):2293. https://doi.org/10.3390/foods14132293
Chicago/Turabian StyleZhang, Jingxin, Qian Li, Shanshan Liu, Ning Wang, Yu Song, Tao Wu, and Min Zhang. 2025. "Lactobacillus rhamnosus LRa05 Alleviates Constipation via Triaxial Modulation of Gut Motility, Microbiota Dynamics, and SCFA Metabolism" Foods 14, no. 13: 2293. https://doi.org/10.3390/foods14132293
APA StyleZhang, J., Li, Q., Liu, S., Wang, N., Song, Y., Wu, T., & Zhang, M. (2025). Lactobacillus rhamnosus LRa05 Alleviates Constipation via Triaxial Modulation of Gut Motility, Microbiota Dynamics, and SCFA Metabolism. Foods, 14(13), 2293. https://doi.org/10.3390/foods14132293