Quantification of Seventeen Phenolic Acids in Non-Soy Tempeh Alternatives Based on Legumes, Pseudocereals, and Cereals
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Apparatuses
2.3. Plant Material
2.4. Tempeh Production (Solid-State Fermentation)
2.5. Defatting
2.6. Extractions
2.6.1. Free Phenolic Acids
2.6.2. Conjugated Phenolic Acids
2.6.3. Insoluble (Bound) Phenolic Acids
2.7. LC-MS/MS
2.8. Total Phenolic Content (TPC)
2.9. Data Processing
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACS | American Chemical Society (grade of chemical purity) |
BHA | Butylated Hydroxyanisole |
DW | Dry Weight |
EDTA-K2 | Ethylenediaminetetraacetic Acid Disodium Salt Dihydrate |
FW | Fresh Weight |
GAEs | Gallic Acid Equivalents |
GMO | Genetically-Modified Organism |
HPLC | High-Performance Liquid Chromatography |
IS | Internal Standard |
LC-MS/MS | Liquid Chromatography Coupled with Tandem Mass Spectrometry |
LOD | Limit of Detection |
MRM | Multiple Reaction Monitoring |
PA | Phenolic Acid |
PP | Polypropylene |
PTFE | Polytetrafluoroethylene |
SD | Standard Deviation |
SSF | Solid-State Fermentation |
TIC | Total Ion Chromatogram |
TPA | Total Phenolic Acid |
TPC | Total Phenolic Content (by Folin–Ciocalteau reagent) |
USD | United States Dollar |
UV/VIS | Ultraviolet/Visible (spectrophotometry) |
rpm | Revolutions per Minute |
v/v | Volume per Volume |
w/v | Weight per Volume |
Appendix A
Sample | Type | Gallic Acid | 3,4-B Acid | Chlorogenic Acid | (+)-catechin | 4-B Acid | 2,5-B Acid | Caffeic Acid | Vanillic Acid | (−)-epicatechin | Syringic Acid | 3-B Acid | 4-C Acid | Sinapic Acid | Ferulic Acid | Salicylic Acid |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beans (white, dehulled, cooked) | free | 4.32 | 0.05 | 2.19 | 3.23 | 1.30 | ||||||||||
conjugated | 0.17 | 0.81 | 2.39 | |||||||||||||
insoluble | 0.03 | 0.37 | 5.40 | 0.05 | 1.91 | 8.33 | 3.68 | 16.34 | 0.29 | |||||||
total | 0.03 | 0.37 | 9.89 | 0.10 | 1.91 | 11.33 | 3.68 | 21.97 | 1.59 | |||||||
Buckwheat (dehulled, cooked) | conjugated | 2.66 | 2.43 | 0.16 | 7.50 | 1.89 | 0.09 | 4.59 | 0.25 | 3.89 | ||||||
free | 3.36 | 2.71 | 3.73 | 0.04 | 1.74 | 3.74 | 2.69 | 1.01 | 2.06 | |||||||
insoluble | 20.12 | 7.99 | 8.45 | 16.88 | 0.57 | 4.87 | 1.65 | 2.65 | 0.44 | 0.07 | 6.27 | 5.21 | 3.71 | 9.24 | ||
total | 26.14 | 13.13 | 0.16 | 15.95 | 22.50 | 0.70 | 6.61 | 1.65 | 7.24 | 0.44 | 0.07 | 10.26 | 7.90 | 4.72 | 15.19 | |
Millet (dehulled, cooked) | free | 0.34 | 0.01 | 0.41 | ||||||||||||
conjugated | 0.19 | 1.15 | 0.01 | 0.75 | 1.32 | 9.81 | 0.05 | |||||||||
insoluble | 0.04 | 0.51 | 1.46 | 0.03 | 1.66 | 3.25 | 0.69 | 4.43 | 0.47 | 152.49 | 0.15 | |||||
total | 0.04 | 0.70 | 2.94 | 0.05 | 2.41 | 3.25 | 0.69 | 5.74 | 0.47 | 162.71 | 0.20 | |||||
Pea (yellow, split, dehulled, cooked) | free | 4.42 | 9.85 | 0.85 | 73.54 | 6.20 | 1.03 | 31.78 | ||||||||
conjugated | 0.20 | 0.79 | 0.03 | 0.22 | 1.14 | 2.20 | 9.49 | 0.03 | ||||||||
insoluble | 0.05 | 1.14 | 2.50 | 0.04 | 0.48 | 2.01 | 5.32 | 10.97 | 0.21 | |||||||
total | 0.05 | 5.77 | 13.14 | 0.07 | 1.55 | 73.54 | 9.34 | 8.55 | 52.24 | 0.24 | ||||||
Quinoa (white, cooked) | free | 1.12 | 0.28 | 2.39 | 0.26 | 0.65 | ||||||||||
conjugated | 19.25 | 9.99 | 0.35 | 7.90 | 18.68 | 3.53 | 0.65 | 14.92 | 0.22 | |||||||
insoluble | 0.02 | 0.49 | 13.21 | 1.98 | 2.95 | 11.73 | 0.78 | 65.24 | 0.26 | |||||||
total | 0.02 | 19.74 | 24.32 | 2.62 | 10.85 | 21.06 | 15.52 | 1.43 | 80.82 | 0.48 | ||||||
Sorghum (dehulled, cooked) | free | 2.52 | 0.49 | 0.33 | 0.02 | 5.38 | 1.77 | 4.42 | 0.00 | |||||||
conjugated | 1.83 | 0.05 | 0.16 | 1.20 | 0.02 | 0.43 | 0.09 | |||||||||
insoluble | 0.30 | 43.70 | 11.41 | 2.76 | 0.03 | 28.06 | 1.40 | 0.89 | 1.22 | 19.57 | 2.18 | 0.17 | ||||
total | 0.30 | 48.05 | 0.05 | 12.06 | 4.29 | 0.07 | 33.86 | 1.40 | 0.89 | 1.22 | 21.34 | 2.18 | 4.42 | 0.26 | ||
Sorghum (dehulled, uncooked) | free | 21.29 | 0.64 | 5.64 | 1.26 | 0.04 | 3.37 | 1.08 | 1.09 | |||||||
conjugated | 6.38 | 1.36 | 1.22 | 0.02 | 26.56 | 5.96 | 13.52 | 0.10 | ||||||||
insoluble | 0.17 | 35.30 | 5.97 | 1.95 | 0.02 | 17.69 | 1.23 | 0.46 | 0.51 | 18.31 | 1.12 | 0.16 | ||||
total | 0.17 | 62.97 | 0.64 | 12.96 | 4.43 | 0.07 | 47.63 | 1.23 | 0.46 | 0.51 | 25.35 | 1.12 | 14.60 | 0.26 | ||
Bean tempeh | free | 1.88 | 0.12 | 2.13 | 2.95 | 0.45 | ||||||||||
conjugated | 0.65 | 0.36 | 0.23 | 1.03 | 2.74 | 3.33 | 12.09 | 0.68 | ||||||||
insoluble | 0.10 | 0.75 | 0.90 | 0.35 | 1.07 | 0.08 | 3.72 | 2.75 | 13.66 | 0.32 | ||||||
total | 0.10 | 1.41 | 3.14 | 0.70 | 2.10 | 0.08 | 8.59 | 6.08 | 28.71 | 1.45 | ||||||
Buckwheat tempeh | free | 0.99 | 0.08 | 1.25 | 0.10 | 3.01 | 1.52 | 1.69 | 9.54 | 0.11 | ||||||
conjugated | 4.04 | 1.40 | 2.01 | 2.62 | 0.89 | 7.62 | 0.34 | 5.80 | 4.22 | 2.12 | 0.51 | |||||
insoluble | 15.83 | 7.73 | 0.34 | 22.07 | 11.53 | 12.16 | 0.15 | 9.91 | 7.11 | 5.90 | 4.86 | |||||
total | 19.87 | 10.11 | 2.44 | 25.93 | 12.52 | 22.78 | 0.50 | 17.23 | 13.02 | 17.56 | 5.48 | |||||
Buckwheat:Sorghum 1:1 (w/w) tempeh | free | 2.15 | 0.52 | 1.41 | 0.00 | 8.90 | 2.83 | 2.49 | 12.58 | 0.06 | ||||||
conjugated | 2.13 | 2.29 | 1.77 | 3.13 | 0.42 | 12.76 | 0.49 | 6.04 | 3.82 | 5.26 | 0.53 | |||||
insoluble | 15.96 | 16.15 | 0.54 | 13.45 | 4.46 | 16.61 | 0.20 | 13.77 | 3.86 | 113.08 | 3.39 | |||||
total | 18.09 | 20.58 | 2.83 | 17.99 | 4.88 | 38.27 | 0.69 | 22.63 | 10.17 | 130.91 | 3.98 | |||||
Buckwheat:Sorghum 1:2 (w/w) tempeh | free | 19.25 | 9.99 | 0.35 | 7.90 | 18.68 | 3.53 | 0.65 | 14.92 | 0.22 | ||||||
conjugated | 1.20 | 2.16 | 1.80 | 2.05 | 11.70 | 0.15 | 4.54 | 2.11 | 6.23 | 0.16 | ||||||
insoluble | 11.93 | 21.77 | 0.15 | 12.10 | 4.52 | 23.17 | 0.83 | 16.52 | 4.28 | 3.49 | ||||||
total | 13.13 | 43.18 | 1.96 | 24.14 | 4.87 | 42.77 | 18.68 | 0.15 | 0.83 | 24.58 | 7.04 | 21.16 | 3.87 | |||
Millet tempeh | free | 1.05 | 0.05 | 8.27 | 0.08 | |||||||||||
conjugated | 1.45 | 0.77 | 0.18 | 8.40 | 2.62 | 27.83 | 0.08 | |||||||||
insoluble | 0.08 | 0.45 | 2.34 | 0.09 | 1.38 | 3.94 | 0.36 | 4.44 | 0.66 | 137.61 | 0.15 | |||||
total | 0.08 | 1.90 | 4.16 | 0.31 | 9.78 | 3.94 | 0.36 | 7.06 | 0.66 | 173.71 | 0.31 | |||||
Pea (yellow) tempeh | free | 4.20 | 4.33 | 0.21 | 5.22 | 23.93 | 3.14 | 0.82 | 17.52 | 0.08 | ||||||
conjugated | 0.41 | 1.03 | 0.09 | 0.19 | 0.80 | 1.84 | 6.75 | 0.13 | ||||||||
insoluble | 0.05 | 1.05 | 4.33 | 0.59 | 0.32 | 0.91 | 3.22 | 6.23 | 0.37 | |||||||
total | 0.05 | 5.66 | 9.69 | 0.89 | 5.73 | 23.93 | 4.85 | 5.88 | 30.50 | 0.58 | ||||||
Quinoa tempeh | free | 1.22 | 3.94 | 2.60 | 0.83 | 0.78 | 0.77 | |||||||||
conjugated | 4.42 | 9.85 | 0.85 | 73.54 | 6.20 | 1.03 | 31.78 | |||||||||
insoluble | 0.05 | 0.64 | 6.89 | 0.97 | 1.40 | 14.59 | 3.05 | 0.38 | 59.04 | 0.18 | ||||||
total | 0.05 | 6.29 | 20.69 | 3.56 | 2.25 | 88.13 | 10.08 | 1.42 | 91.61 | 0.95 | ||||||
Quinoa:Sorghum 1:1 (w/w) tempeh | free | 12.77 | 0.06 | 7.43 | 0.58 | 0.54 | 0.45 | 0.37 | 0.13 | |||||||
conjugated | 13.79 | 2.10 | 0.24 | 8.69 | 0.02 | |||||||||||
insoluble | 0.12 | 21.86 | 7.49 | 1.38 | 17.33 | 11.55 | 13.73 | 1.51 | 0.22 | |||||||
total | 0.12 | 34.63 | 0.06 | 14.92 | 1.95 | 17.87 | 25.34 | 16.29 | 1.75 | 9.05 | 0.36 | |||||
Quinoa:Sorghum 1:2 (w/w) tempeh | free | 5.24 | 0.05 | 1.62 | 0.35 | 0.21 | 0.20 | 0.14 | ||||||||
conjugated | 4.89 | 1.91 | 5.60 | 7.95 | 2.63 | 0.53 | 7.12 | 0.02 | ||||||||
insoluble | 0.12 | 25.88 | 0.00 | 0.10 | 5.74 | 1.07 | 20.57 | 10.61 | 0.73 | 17.66 | 1.62 | 0.00 | 0.22 | |||
total | 0.12 | 36.01 | 0.05 | 0.10 | 9.27 | 1.43 | 26.17 | 18.56 | 0.73 | 20.49 | 2.15 | 7.32 | 0.38 | |||
Quinoa:Sorghum 2:1 (w/w) tempeh | free | 5.24 | 2.75 | 0.79 | 0.35 | 0.38 | 0.18 | |||||||||
conjugated | 4.20 | 4.33 | 0.21 | 5.22 | 23.93 | 3.14 | 0.82 | 17.52 | 0.08 | |||||||
insoluble | 0.05 | 14.21 | 5.87 | 1.13 | 11.42 | 12.09 | 10.27 | 1.15 | 167.47 | 0.20 | ||||||
total | 0.05 | 23.65 | 12.95 | 2.13 | 16.64 | 36.02 | 13.76 | 1.98 | 185.36 | 0.46 | ||||||
Sorghum tempeh | free | 1.83 | 0.05 | 0.16 | 1.20 | 0.02 | 0.43 | 0.09 | ||||||||
conjugated | 0.26 | 0.02 | 0.44 | 0.91 | 2.73 | 0.12 | ||||||||||
insoluble | 0.37 | 29.62 | 5.72 | 3.56 | 0.08 | 23.93 | 1.46 | 0.48 | 0.83 | 19.49 | 2.05 | 0.20 | ||||
total | 0.37 | 31.44 | 0.05 | 5.88 | 5.02 | 0.12 | 24.80 | 1.46 | 0.48 | 0.83 | 20.39 | 2.05 | 2.73 | 0.41 | ||
Sorghum:Bean 1:1 (w/w) tempeh | free | 0.68 | 0.65 | 0.06 | 0.63 | 0.68 | 1.82 | 0.34 | ||||||||
conjugated | 1.40 | 0.67 | 0.12 | 6.29 | 3.11 | 1.70 | 11.73 | 0.50 | ||||||||
insoluble | 0.14 | 15.49 | 1.44 | 0.28 | 12.70 | 0.92 | 0.49 | 0.03 | 11.73 | 3.17 | 109.01 | 0.31 | ||||
total | 0.14 | 17.57 | 2.76 | 0.46 | 19.62 | 0.92 | 0.49 | 0.03 | 15.52 | 4.87 | 122.56 | 1.14 | ||||
Sorghum:Bean 3:1 (w/w) tempeh | free | 0.88 | 0.09 | 0.22 | 0.58 | 0.03 | 0.52 | 0.24 | 0.62 | 0.33 | ||||||
conjugated | 1.89 | 0.58 | 0.04 | 8.36 | 2.74 | 1.37 | 7.81 | 0.55 | ||||||||
insoluble | 0.17 | 23.62 | 0.17 | 1.88 | 0.15 | 18.34 | 1.27 | 0.65 | 0.08 | 16.48 | 2.70 | 0.19 | ||||
total | 0.17 | 26.39 | 0.09 | 0.40 | 3.04 | 0.21 | 27.22 | 1.27 | 0.65 | 0.08 | 19.47 | 4.06 | 8.43 | 1.07 | ||
Sorghum:Millet 3:1 (w/w) tempeh | free | 3.84 | 0.33 | 4.81 | 0.09 | 1.75 | 0.49 | 0.10 | ||||||||
conjugated | 2.31 | 0.21 | 6.84 | 1.97 | 3.45 | 0.22 | ||||||||||
insoluble | 0.16 | 21.30 | 0.07 | 1.59 | 0.16 | 14.40 | 0.93 | 0.73 | 16.46 | 1.15 | 0.15 | |||||
total | 0.16 | 27.46 | 0.33 | 0.07 | 6.62 | 0.25 | 22.99 | 0.93 | 0.73 | 18.43 | 1.15 | 3.94 | 0.47 | |||
Sorghum:Millet 96:120 (w/w) tempeh | free | 0.09 | 1.80 | 0.11 | 3.65 | 0.06 | 1.01 | 0.21 | 9.21 | 0.06 | ||||||
conjugated | 2.58 | 0.80 | 0.20 | 17.09 | 4.23 | 27.95 | 0.05 | |||||||||
insoluble | 0.14 | 15.61 | 1.93 | 0.23 | 10.89 | 2.30 | 0.61 | 12.03 | 1.10 | 0.15 | ||||||
total | 0.23 | 19.99 | 0.11 | 6.39 | 0.49 | 29.00 | 2.30 | 0.61 | 16.47 | 1.10 | 37.15 | 0.26 | ||||
Sorghum:Yellow pea 1:1 (w/w) tempeh | free | 13.79 | 2.10 | 0.24 | 8.69 | 0.02 | ||||||||||
conjugated | 1.40 | 0.23 | 1.19 | 0.07 | 3.27 | 1.30 | 1.47 | 7.63 | 0.08 | |||||||
insoluble | 0.07 | 13.71 | 3.89 | 0.38 | 8.97 | 13.38 | 2.95 | 77.31 | 0.34 | |||||||
total | 0.07 | 15.11 | 0.23 | 5.07 | 0.46 | 12.23 | 13.79 | 16.79 | 4.66 | 93.63 | 0.44 | |||||
Sorghum:Yellow pea 1:2 (w/w) tempeh | free | 4.89 | 1.91 | 5.60 | 7.95 | 2.63 | 0.53 | 7.12 | 0.02 | |||||||
conjugated | 0.99 | 0.08 | 1.25 | 0.10 | 3.01 | 1.52 | 1.69 | 9.54 | 0.11 | |||||||
insoluble | 0.06 | 8.59 | 3.35 | 0.60 | 6.48 | 5.92 | 3.44 | 57.23 | 0.34 | |||||||
total | 0.06 | 14.47 | 0.08 | 6.51 | 0.70 | 15.09 | 7.95 | 10.07 | 5.66 | 73.89 | 0.48 | |||||
Sorghum:Yellow pea 2:1 (w/w) tempeh | free | 5.31 | 2.04 | 0.00 | 6.45 | 7.59 | 2.89 | 0.44 | 7.95 | 0.05 | ||||||
conjugated | 2.15 | 0.52 | 1.41 | 0.00 | 8.90 | 2.83 | 2.49 | 12.58 | 0.06 | |||||||
insoluble | 0.10 | 18.27 | 3.59 | 0.45 | 14.83 | 14.03 | 3.26 | 159.19 | 0.25 | |||||||
total | 0.10 | 25.73 | 0.52 | 7.04 | 0.45 | 30.18 | 7.59 | 19.75 | 6.19 | 179.71 | 0.36 |
Appendix B
Compound Name | Precursor Ion m/z | Product Ion m/z | Fragmentor Voltage | Collision Energy V |
---|---|---|---|---|
(−)-epicatechin C | 289.1 | 109 | 111 | 28 |
(−)-epicatechin Q | 289.1 | 245.1 | 111 | 12 |
(+)-catechin C | 289.1 | 123 | 107 | 32 |
(+)-catechin Q | 289.1 | 109 | 107 | 24 |
2,5-dihydroxybenzoic acid C | 153 | 109 | 73 | 12 |
2,5-dihydroxybenzoic acid Q | 153 | 108 | 73 | 20 |
2-hydroxycinnamic acid C | 163 | 117 | 76 | 24 |
2-hydroxycinnamic acid Q | 163 | 119 | 76 | 8 |
3,4-dihydroxybenzoic acid C | 153 | 108 | 73 | 24 |
3,4-dihydroxybenzoic acid Q | 153 | 109 | 73 | 12 |
3,5-dihydroxybenzoic acid C | 153 | 67 | 70 | 16 |
3,5-dihydroxybenzoic acid Q | 153 | 109 | 70 | 8 |
3-hydroxybenzoic acid Q | 137 | 93 | 64 | 8 |
3-hydroxycinnamic acid C | 163 | 91 | 67 | 24 |
3-hydroxycinnamic acid Q | 163 | 119 | 67 | 12 |
4-hydroxybenzoic acid C | 137 | 65.1 | 73 | 36 |
4-hydroxybenzoic acid Q | 137 | 93 | 73 | 12 |
4-hydroxycinnamic acid C | 163 | 119 | 76 | 8 |
4-hydroxycinnamic acid Q | 163 | 119 | 67 | 12 |
Caffeic acid C | 179 | 134 | 86 | 28 |
Caffeic acid Q | 179 | 135 | 86 | 12 |
Chlorogenic acid C | 353.1 | 85 | 89 | 48 |
Chlorogenic acid Q | 353.1 | 191.1 | 89 | 12 |
Ferulic acid Q | 193.1 | 134 | 73 | 16 |
Gallic acid C | 169 | 79 | 86 | 24 |
Gallic acid Q | 169 | 125 | 86 | 12 |
IS (3,5-dichloro-4-hydroxybenzoic acid) C | 204.9 | 35 | 141 | 24 |
IS (3,5-dichloro-4-hydroxybenzoic acid) Q | 204.9 | 161 | 141 | 12 |
Salicylic acid C | 137 | 65.1 | 86 | 32 |
Salicylic acid Q | 137 | 93 | 86 | 16 |
Shikimic acid C | 173 | 111 | 113 | 4 |
Shikimic acid Q | 173 | 93 | 113 | 12 |
Sinapic acid C | 223.1 | 193 | 89 | 20 |
Sinapic acid Q | 223.1 | 149 | 89 | 20 |
Syringic acid C | 197 | 167 | 70 | 16 |
Syringic acid Q | 197 | 123 | 70 | 24 |
Vanillic acid C | 167 | 108 | 70 | 16 |
Vanillic acid Q | 167 | 152 | 70 | 12 |
References
- Abu-Salem, F.M.; Mohamed, R.K.; Gibriel, A.Y.; Rasmy, N. Levels of some antinutritional factors in tempeh produced from some legumes and jojobas seeds. Int. Sch. Sci. Res. Innov. 2014, 8, 296–301. [Google Scholar]
- Santhirasegaram, V.; George, D.S.; Anthony, K.K.; Singh, H.K.B.; Saruan, N.M.; Razali, Z.; Somasundram, C. Effects of soybean processing and packaging on the quality of commonly consumed local delicacy tempe. J. Food Qual. 2016, 39, 675–684. [Google Scholar] [CrossRef]
- Asni, N.S.M.; Surya, R.; Misnan, N.M.; Lim, S.J.; Ismail, N.; Sarbini, S.R.; Kamal, N. Metabolomics insights of conventional and organic tempe during in vitro digestion and their antioxidant properties and cytotoxicity in HCT-116 cells. Food Res. Int. 2024, 195, 114951. [Google Scholar] [CrossRef]
- Cempaka, L.; Eliza, N.; Ardiansyah, A.; Handoko, D.D.; Astuti, R.M. Proximate composition, total phenolic content, and sensory analysis of rice bran tempeh. Makara J. Sci. 2018, 22, 89–94. [Google Scholar] [CrossRef]
- Stodolak, B.; Starzyńska-Janiszewska, A.; Mika, M.; Wikiera, A. Rhizopus oligosporus and Lactobacillus plantarum co-fermentation as a tool for increasing the antioxidant potential of grass pea and flaxseed oil-cake tempe. Molecules 2020, 25, 4759. [Google Scholar] [CrossRef] [PubMed]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Duliński, R.; Bączkowicz, M.; Mickowska, B.; Wikiera, A.; Byczyński, Ł. Effect of solid-state fermentation tempe type on antioxidant and nutritional parameters of buckwheat groats as compared with hydrothermal processing. J. Food Process. Preserv. 2016, 40, 298–305. [Google Scholar] [CrossRef]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Socha, R.; Mickowska, B.; Wywrocka-Gurgul, A. Spelt wheat tempe as a value-added whole-grain food product. LWT 2019, 113, 108250. [Google Scholar] [CrossRef]
- Aoki, H.; Nakatsuka-Mori, T.; Ueno, Y.; Nabeshima, Y.; Oyama, H. Analysis of functional ingredients of tempe-like fermented Moringa oleifera seeds (Moringa tempe) prepared with Rhizopus species. J. Biosci. Bioeng. 2023, 135, 306–312. [Google Scholar] [CrossRef]
- Sánchez-Magaña, L.M.; Reyes-Moreno, C.; Milán-Carrillo, J.; Mora-Rochín, S.; León-López, L.; Gutiérrez-Dorado, R.; Cuevas-Rodríguez, E.O. Influence of solid-state bioconversion by Rhizopus oligosporus on antioxidant activity and phenolic compounds of maize (Zea mays L.). Agrociencia 2019, 53, 45–57. [Google Scholar]
- Gayathry, G.; Jothilakshmi, K.; Sindumathi, G.; Parvathi, S. Development of tempeh a value added product from soyabeans and other underutilised cereals/millets using Rhizophus Oryzae PGJ-1. J. Food Legumes 2013, 26, 147–150. [Google Scholar]
- Purwandari, F.A.; Fogliano, V.; Capuano, E. Tempeh fermentation improves the nutritional and functional characteristics of Jack beans (Canavalia ensiformis (L.) DC). Food Funct. 2024, 15, 3680–3691. [Google Scholar] [CrossRef]
- Chalid, S.Y.; Muawanah, A.; Nurbayti, S.; Utami, W.M. Characteristics and antioxidant activity of kidney bean (Phaseolus vulgaris L.) tempeh as functional food. AIP Conf. Proc. 2021, 2331, 040003. [Google Scholar]
- Hur, J.; Thanh, T.; Nguyen, H.; Park, N.; Kim, J.; Kim, D. Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express 2018, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Ahnan-Winarno, A.D.; Cordeiro, L.; Winarno, F.G.; Gibbons, J.; Xiao, H. Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1717–1767. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, R.; Azi, F.; Jiao, L.; Wang, H.; He, T.; Liu, X.; Wang, R.; Lu, B. Solid-state fermentation with Rhizopus oligosporus RT-3 enhanced the nutritional properties of soybeans. Front. Nutr. 2022, 9, 972860. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Bastidas, M.; Reyes-Fernández, E.; López-Cervantes, J.; Milán-Carrillo, J.; Loarca-Piña, G.; Reyes-Moreno, C. Physicochemical, nutritional and antioxidant properties of tempeh flour from common bean (Phaseolus vulgaris L.). Food Sci. Technol. Int. 2010, 16, 427–434. [Google Scholar] [CrossRef]
- Afnan; Saleem, A.; Akhtar, M.F.; Sharif, A.; Akhtar, B.; Siddique, R.; Ashraf, G.M.; Alghamdi, B.S.; Alharthy, S.A. Anticancer, Cardio-Protective and Anti-Inflammatory Potential of Natural-Sources-Derived Phenolic Acids. Molecules 2022, 27, 7286. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef]
- Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef]
- Paranavitana, L.; Oh, W.Y.; Yeo, J.; Shahidi, F. Determination of soluble and insoluble-bound phenolic compounds in dehulled, whole, and hulls of green and black lentils using electrospray ionization (ESI)-MS/MS and their inhibition in DNA strand scission. Food Chem. 2021, 361, 130083. [Google Scholar] [CrossRef]
- Okafor, J.N.C.; Meyer, M.; Le Roes-Hill, M.; Jideani, V.A. Flavonoid and Phenolic Acid Profiles of Dehulled and Whole Vigna subterranea (L.) Verdc Seeds Commonly Consumed in South Africa. Molecules 2022, 27, 5265. [Google Scholar] [CrossRef] [PubMed]
- Dini, I.; Grumetto, L. Recent advances in natural polyphenol research. Molecules 2022, 27, 8777. [Google Scholar] [CrossRef]
- Xu, M.; Rao, J.; Chen, B. Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Crit. Rev. Food Sci. Nutr. 2020, 60, 740–759. [Google Scholar] [CrossRef] [PubMed]
- Starzyńska-Janiszewska, A.; Bączkowicz, M.; Sabat, R.; Stodolak, B.; Witkowicz, R. Quinoa tempe as a value-added food: Sensory, nutritional, and bioactive parameters of products from white, red, and black seeds. Cereal Chem. 2017, 94, 491–496. [Google Scholar] [CrossRef]
- Bueno, C.; Thys, R.; Tischer, B. Potential Effects of the Different Matrices to Enhance the Polyphenolic Content and Antioxidant Activity in Gluten-Free Bread. Foods 2023, 12, 4415. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Chan, B.L.S.; Mitchell, A.E. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS). Food Chem. 2017, 215, 301–310. [Google Scholar] [CrossRef]
- Nicoletti, I.; Martini, D.; De Rossi, A.; Taddei, F.; D’Egidio, M.G.; Corradini, D. Identification and quantification of soluble free, soluble conjugated, and insoluble bound phenolic acids in durum wheat (Triticum turgidum L. var. durum) and derived products by RP-HPLC on a semimicro separation scale. J. Agric. Food Chem. 2013, 61, 11800–11807. [Google Scholar] [CrossRef]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9732–9739. [Google Scholar] [CrossRef]
- Lachman, J.; Fernandez, E.; Viehmannova, I.; Šulc, M.; Eepkova, P. Total phenolic content of yacon (Smallanthus sonchifolius) rhizomes, leaves, and roots affected by genotype. N. Z. J. Crop Hortic. Sci. 2007, 35, 117–123. [Google Scholar] [CrossRef]
- Teoh, S.Q.; Chin, N.L.; Chong, C.W.; Ripen, A.M.; Firdaus, M.S.H.B.M.; Lim, J.J.L. A review on health benefits and processing of tempeh with outlines on its functional microbes. Future Foods 2024, 9, 100330. [Google Scholar] [CrossRef]
- Liu, C.; Wei, J.; Shi, M.; Huang, X.; Wang, Z.; Liu, Q.; Lang, T.; Zhu, Z. Metabolomic analysis reveals the positive effects of Rhizopus oryzae fermentation on the nutritional and functional constituents of adlay millet seeds. Sci. Rep. 2024, 14, 17435. [Google Scholar] [CrossRef]
- Yang, Y.; Kameda, T.; Aoki, H.; Nirmagustina, D.E.; Iwamoto, A.; Kato, N.; Yanaka, N.; Okazaki, Y.; Kumrungsee, T. The effects of tempe fermented with Rhizopus microsporus, Rhizopus oryzae, or Rhizopus stolonifer on the colonic luminal environment in rats. J. Funct. Foods 2018, 49, 162–167. [Google Scholar]
- Othman, S.I.; Mekawey, A.A.I.; El-Metwally, M.M.; Gabr, S.A.; Alwaele, M.A.; Al Fassam, H.; Abo-Eleneen, R.; Allam, A.A.; Saber, W.I.A. Rhizopus oryzae AM16; a new hyperactive Lasparaginase producer: Semi solidstate production and anticancer activity of the partially purified protein. Biomed. Rep. 2022, 16, 1–9. [Google Scholar]
- Erkan, S.B.; Gürler, H.N.; Bilgin, D.G.; Germec, M.; Turhan, I. Production and characterization of tempehs from different sources of legume by Rhizopus oligosporus. LWT 2020, 119, 108880. [Google Scholar]
- Sukma, A.; Anwar, H.; Ikhsanudin, A. Effect of Rhizopus oryzae fermentation on proximate composition, anti-nutrient contents, and functional properties of banana peel flour. Int. Food Res. J. 2022, 29, 1205–1214. [Google Scholar] [CrossRef]
- Eseberri, I.; Trepiana, J.; Léniz, A.; Gómez-García, I.; Carr-Ugarte, H.; González, M.; Portillo, M.P. Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022, 14, 1925. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A. LC-ESI-QTOF/MS characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef]
- Nicolás-García, M.; Jiménez-Martínez, C.; Perucini-Avendaño, M.; Camacho-Díaz, B.H.; Jiménez-Aparicio, A.R.; Dávila-Ortiz, G. Phenolic compounds in legumes: Composition, processing and gut health. In Legumes Research; IntechOpen: London, UK, 2021; Volume 2. [Google Scholar]
- Zhang, L.; Li, Y.; Liang, Y.; Liang, K.; Zhang, F.; Xu, T.; Wang, M.; Song, H.; Liu, X.; Lu, B. Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chem. 2019, 276, 538–546. [Google Scholar] [CrossRef]
- Kaced, A.; Belkacemi, L.; Chemat, S.; Taibi, N.; Bensouici, C.; Boussebaa, W.; Menaa, S.; Abou Mustapha, M. Assessment of L-DOPA, bioactive molecules and antioxidant activities of the local Algerian legume Tadelaght (Vigna mungo L. Hepper) extract. Food Biosci. 2024, 61, 104902. [Google Scholar] [CrossRef]
- Zeb, A.; Zeb, A. Biosynthesis of phenolic antioxidants. In Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis; Springer: Cham, Switzerland, 2021; pp. 299–331. [Google Scholar]
- Xu, B.; Chang, S.K. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. J. Agric. Food Chem. 2008, 56, 7165–7175. [Google Scholar]
- Liu, W.-T.; Huang, C.-L.; Liu, R.; Yang, T.-C.; Lee, C.-L.; Tsao, R.; Yang, W.-J. Changes in isoflavone profile, antioxidant activity, and phenolic contents in Taiwanese and Canadian soybeans during tempeh processing. LWT 2023, 186, 115207. [Google Scholar] [CrossRef]
- Zhu, Y.-L.; Zhang, H.-S.; Zhao, X.-S.; Xue, H.-H.; Xue, J.; Sun, Y.-H. Composition, distribution, and antioxidant activity of phenolic compounds in 18 soybean cultivars. J. AOAC Int. 2018, 101, 520–528. [Google Scholar] [PubMed]
- Silva, B.; Souza, M.M.; Badiale-Furlong, E. Antioxidant and antifungal activity of phenolic compounds and their relation to aflatoxin B1 occurrence in soybeans (Glycine max L.). J. Sci. Food Agric. 2020, 100, 1256–1264. [Google Scholar] [CrossRef]
- Mansur, A.R.; Lee, S.G.; Lee, B.-H.; Han, S.G.; Choi, S.-W.; Song, W.-J.; Nam, T.G. Phenolic compounds in common buckwheat sprouts: Composition, isolation, analysis and bioactivities. Food Sci. Biotechnol. 2022, 31, 935–956. [Google Scholar] [PubMed]
- Wronkowska, M.; Wiczkowski, W.; Topolska, J.; Szawara-Nowak, D.; Piskuła, M.K.; Zieliński, H. Identification and bioaccessibility of maillard reaction products and phenolic compounds in buckwheat biscuits formulated from flour fermented by Rhizopus oligosporus 2710. Molecules 2023, 28, 2746. [Google Scholar] [CrossRef]
- Zhu, L.; Zhan, C.; Yu, X.; Hu, X.; Gao, S.; Zang, Y.; Yao, D.; Wang, C.; Xu, J. Extractions, Contents, Antioxidant Activities and Compositions of Free and Bound Phenols from Kidney Bean Seeds Represented by ‘Yikeshu’ Cultivar in Cold Region. Foods 2024, 13, 1704. [Google Scholar] [CrossRef]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Wikiera, A. Antioxidant potential and α-galactosides content of unhulled seeds of dark common beans subjected to tempe-type fermentation with Rhizopus microsporus var. chinensis and Lactobacillus plantarum. Food Sci. Technol. Res. 2015, 21, 765–770. [Google Scholar]
- Stanisavljević, N.S.; Ilić, M.D.; Jovanović, Ž.S.; Čupić, T.; Dabić Zagorac, D.; Natić, M.; Tešić, Ž.L.; Radovic, S.S. Identification of seed coat phenolic compounds from differently colored pea varieties and characterization of their antioxidant activity. Arch. Biol. Sci. 2015, 67, 829–840. [Google Scholar]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Duliński, R.; Fernández-Fernández, C.; Martín-García, B.; Gómez-Caravaca, A.M. Evaluation of saponin and phenolic profile of quinoa seeds after fungal fermentation. J. Cereal Sci. 2023, 111, 103656. [Google Scholar] [CrossRef]
- Safitri, Y.A.; Aminin, A.L.; Mulyani, N.S. The effect of cooking treatment on antioxidant activity in soybean tempeh. J. Kim. Sains Apl. 2022, 25, 405–411. [Google Scholar]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef] [PubMed]
- Yudiono, K.; Ayu, W.; Susilowati, S. Antioxidant activity, total phenolic, and aflatoxin contamination in tempeh made from assorted soybeans (Glycine max L. Merill). Food Res. 2021, 5, 393–398. [Google Scholar]
- Haron, H.; Raob, N. Changes in macronutrient, total phenolic and anti-nutrient contents during preparation of tempeh. J. Nutr. Food Sci. 2014, 4, 1000265. [Google Scholar]
Raw Materials [µg/g] | Tempeh [µg/g] | |||||||
---|---|---|---|---|---|---|---|---|
Free | Conjugated | Insoluble | Total | Free | Conjugated | Insoluble | Total | |
Mean | 28.02 a | 28.62 a | 87.65 b | 144.29 c | 21.22 f | 33.77 a | 105.62 d | 160.61 e |
STD | 41.83 | 24.60 | 44.13 | 42.33 | 20.17 | 28.08 | 63.44 | 74.80 |
Min | 0.76 | 3.36 | 22.71 | 50.88 | 3.52 | 4.47 | 17.08 | 52.35 |
Max | 127.67 | 75.49 | 165.17 | 179.20 | 75.49 | 127.67 | 223.87 | 293.01 |
Tempeh or Raw Material | Phenolic Acids [µg/g] | TPC | |||
---|---|---|---|---|---|
Free | Conjugated | Insoluble | Total | [mg GAE/g] | |
Beans (white, dehulled, cooked) | 11.10 | 3.36 | 36.42 | 50.88 | 17.07 |
Buckwheat (dehulled, cooked) | 23.47 | 21.07 | 88.11 | 132.64 | 0.73 |
Millet (dehulled, cooked) | 0.76 | 13.27 | 165.17 | 179.20 | 13.45 |
Pea (yellow, split, dehulled, cooked) | 127.67 | 14.11 | 22.71 | 164.48 | 2.20 |
Quinoa (white, cooked) | 4.70 | 75.49 | 96.67 | 176.86 | 11.83 |
Sorghum (dehulled, cooked) | 3.78 | 14.94 | 111.68 | 130.40 | 10.57 |
Sorghum (dehulled, uncooked) | 34.41 | 55.12 | 82.88 | 172.42 | 1.44 |
Bean tempeh | 7.53 | 21.10 | 23.72 | 52.35 | 1.83 |
Buckwheat tempeh | 18.28 | 31.58 | 97.58 | 147.44 | 2.19 |
Buckwheat:Sorghum 1:1 (w/w) tempeh | 30.93 | 38.64 | 201.46 | 271.03 | 16.46 |
Buckwheat:Sorghum 1:2 (w/w) tempeh | 75.49 | 32.10 | 98.75 | 206.35 | 11.02 |
Millet tempeh | 9.45 | 41.32 | 151.50 | 202.27 | 6.38 |
Pea (yellow) tempeh | 59.46 | 11.24 | 17.08 | 87.78 | 15.89 |
Quinoa tempeh | 10.14 | 127.67 | 87.20 | 225.02 | 8.44 |
Quinoa:Sorghum 1:1 (w/w) tempeh | 22.32 | 24.84 | 75.18 | 122.34 | 2.05 |
Quinoa:Sorghum 1:2 (w/w) tempeh | 7.81 | 30.65 | 84.33 | 122.78 | 4.68 |
Quinoa:Sorghum 2:1 (w/w) tempeh | 9.68 | 59.46 | 223.87 | 293.01 | 2.46 |
Sorghum tempeh | 3.78 | 4.47 | 87.79 | 96.03 | 8.81 |
Sorghum:Bean 1:1 (w/w) tempeh | 4.84 | 25.53 | 155.78 | 186.15 | 5.57 |
Sorghum:Bean 3:1 (w/w) tempeh | 3.52 | 23.35 | 65.74 | 92.60 | 4.43 |
Sorghum:Millet 3:1 (w/w) tempeh | 11.41 | 15.01 | 57.10 | 83.52 | 5.17 |
Sorghum:Millet 96:120 (w/w) tempeh | 16.20 | 52.90 | 45.00 | 114.10 | 10.00 |
Sorghum:Yellow pea 1:1 (w/w) tempeh | 24.84 | 16.64 | 120.99 | 162.48 | 13.10 |
Sorghum:Yellow pea 1:2 (w/w) tempeh | 30.65 | 18.28 | 86.02 | 134.95 | 10.14 |
Sorghum:Yellow pea 2:1 (w/w) tempeh | 32.73 | 30.93 | 213.97 | 277.63 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šulc, M.; Rysová, J. Quantification of Seventeen Phenolic Acids in Non-Soy Tempeh Alternatives Based on Legumes, Pseudocereals, and Cereals. Foods 2025, 14, 2273. https://doi.org/10.3390/foods14132273
Šulc M, Rysová J. Quantification of Seventeen Phenolic Acids in Non-Soy Tempeh Alternatives Based on Legumes, Pseudocereals, and Cereals. Foods. 2025; 14(13):2273. https://doi.org/10.3390/foods14132273
Chicago/Turabian StyleŠulc, Miloslav, and Jana Rysová. 2025. "Quantification of Seventeen Phenolic Acids in Non-Soy Tempeh Alternatives Based on Legumes, Pseudocereals, and Cereals" Foods 14, no. 13: 2273. https://doi.org/10.3390/foods14132273
APA StyleŠulc, M., & Rysová, J. (2025). Quantification of Seventeen Phenolic Acids in Non-Soy Tempeh Alternatives Based on Legumes, Pseudocereals, and Cereals. Foods, 14(13), 2273. https://doi.org/10.3390/foods14132273