Thermoreversible Hydrocolloid Blends for Structurally Stable Reheated Carrot Purée in Dysphagia Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Temperature Sweep Analysis of Methylcellulose and Hydroxypropyl Methylcellulose
2.3. Preparation of Carrot Purée and the Addition of Hydrocolloids (MC and HPMC)
2.4. Evaluation of Carrot Purée Functionality with Single and Combined Hydrocolloids
2.5. Evaluation of Carrot Purée Texture Against IDDSI Level 4 Standards
2.6. Statistical Analysis
3. Results and Discussion
3.1. Thermal Gelation and Reversibility of Cellulose Ether Hydrocolloids
3.2. Effect of Methylcellulose and Hydroxypropyl Methylcellulose on the Stability of Carrot Purée
3.3. Optimisation of Carrot Purée Stability Using Hydrocolloid Combinations
3.4. Mechanistic Implications
3.5. Validation of Hydrocolloid System in Carrot Purée Using Food Mould
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
CMC | Carboxymethylcellulose |
G′ | Storage Modulus |
G″ | Loss Modulus |
HPMC | Hydroxypropyl Methylcellulose |
IDDSI | International Dysphagia Diet Standardisation Initiative |
LBG | Locust Bean Gum |
LVR | Linear Viscoelastic Region |
MC | Methylcellulose |
SD | Standard Deviation |
References
- Cichero, J.A.; Steele, C.; Duivestein, J.; Clavé, P.; Chen, J.; Kayashita, J.; Dantas, R.; Lecko, C.; Speyer, R.; Lam, P. The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: Foundations of a global initiative. Curr. Phys. Med. Rehabil. Rep. 2013, 1, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Rajati, F.; Ahmadi, N.; Naghibzadeh, Z.A.; Kazeminia, M. The global prevalence of oropharyngeal dysphagia in different populations: A systematic review and meta-analysis. J. Transl. Med. 2022, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.Y.; Zhang, P.P.; Wang, X.W. Presbyphagia: Dysphagia in the elderly. World J. Clin. Cases 2023, 11, 2363–2373. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Y.L.; Li, R.; Zhang, H.J.; Ren, F.Y.; Liu, J.; Wang, J. Comprehensive review of dysphagia and technological advances in dysphagia food. Food Res. Int. 2025, 199, 115354. [Google Scholar] [CrossRef]
- Kertscher, B.; Speyer, R.; Fong, E.; Georgiou, A.M.; Smith, M. Prevalence of oropharyngeal dysphagia in the Netherlands: A telephone survey. Dysphagia 2015, 30, 114–120. [Google Scholar] [CrossRef]
- Rivelsrud, M.C.; Hartelius, L.; Bergström, L.; Løvstad, M.; Speyer, R. Prevalence of oropharyngeal dysphagia in adults in different healthcare settings: A systematic review and meta-analyses. Dysphagia 2023, 38, 76–121. [Google Scholar] [CrossRef]
- Kavcic, M.T.; Ogrin, M.; Vidmar, G. Suitability of food in a rehabilitation hospital for patients with neurologic dysphagia. Int. J. Rehabil. Res. 2020, 43, 276–279. [Google Scholar] [CrossRef]
- Icht, M.; Bergerzon-Bitton, O.; Kachal, J.; Goldsmith, R.; Herzberg, O.; Endevelt, R. Texture-modified foods and thickened fluids used in dysphagia: Israeli standardised terminology and definitions. J. Hum. Nutr. Diet. 2018, 31, 742–746. [Google Scholar] [CrossRef]
- Raheem, D.; Carrascosa, C.; Ramos, F.; Saraiva, A.; Raposo, A. Texture-modified food for dysphagic patients: A comprehensive review. Int. J. Environ. Res. Public Health 2021, 18, 5125. [Google Scholar] [CrossRef]
- Hadde, E.K.; Chen, J.S. Texture and texture assessment of thickened fluids and texture-modified food for dysphagia management. J. Texture Stud. 2021, 52, 4–15. [Google Scholar] [CrossRef]
- Miles, A.; Liang, V.; Sekula, J.; Broadmore, S.; Owen, P.; Braakhuis, A.J. Texture-modified diets in aged care facilities: Nutrition, swallow safety and mealtime experience. Australas. J. Ageing 2020, 39, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Farrer, O.; Olsen, C.; Mousley, K.; Teo, E. Does presentation of smooth pureed meals improve patients consumption in an acute care setting: A pilot study. Nutr. Diet. 2016, 73, 405–409. [Google Scholar] [CrossRef]
- Smith, R.; Bryant, L.; Hemsley, B. The true cost of dysphagia on quality of life: The views of adults with swallowing disability. Int. J. Lang. Commun. Disord. 2023, 58, 451–466. [Google Scholar] [CrossRef]
- Shune, S.E.; Linville, D. Understanding the dining experience of individuals with dysphagia living in care facilities: A grounded theory analysis. Int. J. Nurs. Stud. 2019, 92, 144–153. [Google Scholar] [CrossRef]
- Lam, C.J.Y.; Phua, Q.Q.; Guo, E.Y.; Sia, I.K.M. Impact of a moulded pureed diet on taste, appearance, recognisability, and overall liking among patients in an acute hospital. Front. Nutr. 2023, 10, 1248779. [Google Scholar] [CrossRef]
- Funami, T.; Ishihara, S.; Nakauma, M.; Kohyama, K.; Nishinari, K. Texture design for products using food hydrocolloids. Food Hydrocoll. 2012, 26, 412–420. [Google Scholar] [CrossRef]
- Hu, H.; Guo, J.; Huang, Z.; Huang, Q.; Lu, X. Effect of different hydrocolloids on the physicochemical, printing, and digestion properties of 3D printed purple sweet potato. Food Hydrocoll. 2023, 144, 109058. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. Effect of reheating method on the post-processing characterisation of 3D printed meat products for dysphagia patients. LWT 2021, 150, 111915. [Google Scholar] [CrossRef]
- Xing, X.; Chitrakar, B.; Hati, S.; Xie, S.; Li, H.; Li, C.; Liu, Z.; Mo, H. Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation. Food Hydrocoll. 2022, 123, 107173. [Google Scholar] [CrossRef]
- Thompson, B.R.; Horozov, T.S.; Stoyanov, S.D.; Paunov, V.N. An ultra melt-resistant hydrogel from food grade carbohydrates. Rsc Adv. 2017, 7, 45535–45544. [Google Scholar] [CrossRef]
- IDDSI. IDDSI Framework: Testing Methods 2.0. Available online: https://www.iddsi.org/standards/testing-methods (accessed on 30 May 2025).
- Peh, J.X.; Lim, W.; Tha Goh, K.K.; Dharmawan, J. Correlation between instrumental and sensory properties of texture-modified carrot puree. J. Texture Stud. 2022, 53, 72–80. [Google Scholar] [CrossRef] [PubMed]
- IDDSI. Audit Tools. Available online: https://www.iddsi.org/resources/audit-tools (accessed on 20 June 2025).
- Nasatto, P.L.; Pignon, F.; Silveira, J.L.M.; Duarte, M.E.R.; Noseda, M.D.; Rinaudo, M. Methylcellulose, a Cellulose Derivative with Original Physical Properties and Extended Applications. Polymers 2015, 7, 777–803. [Google Scholar] [CrossRef]
- Coughlin, M.L.; Liberman, L.; Ertem, S.P.; Edmund, J.; Bates, F.S.; Lodge, T.P. Methyl cellulose solutions and gels: Fibril formation and gelation properties. Prog. Polym. Sci. 2021, 112, 101324. [Google Scholar] [CrossRef]
- Su, C.H.; Wu, Y.C.; Vardhanabhuti, B.; Lin, M.S. 4D printing of dysphagia foods using pea protein and purple sweet potato flour. Food Biosci. 2025, 64, 105887. [Google Scholar] [CrossRef]
- Funami, T. Next target for food hydrocolloid studies: Texture design of foods using hydrocolloid technology. Food Hydrocoll. 2011, 25, 1904–1914. [Google Scholar] [CrossRef]
- Maisont, S.; Sangsirimongkolying, R.; Kulprasutidilok, A.; Chokboribal, J.; Samutsri, W. Development of Nutritionally Balanced Ready-to-Eat Meals in Retort Pouches for Elderly Individuals with Dysphagia and Chewing Difficulties. Nutr. Food Sci. 2025, 13. [Google Scholar]
- Alam, M.; Majid, I.; Kaur, S.; Dar, B.N.; Nanda, V. An Updated Review on Exploring Hydrocolloids Application in Food Matrix: Current Insights Into Fruit, Bakery, Meat, and Dairy Based Products. J. Texture Stud. 2025, 56, e70020. [Google Scholar] [CrossRef]
- Dominguez-Ayala, J.E.; Méndez-Montealvo, G.; Cabrera-Ramírez, A.H.; Osorio-Diaz, P.; Morales-Sanchez, E.; Velazquez, G. Rheological, functional properties, and stability of peach puree added with normal and high amylose retrograded starches. CyTA—J. Food 2024, 22, 2333900. [Google Scholar] [CrossRef]
- Xu, X.; Ye, S.; Zuo, X.; Fang, S. Impact of Guar Gum and Locust Bean Gum Addition on the Pasting, Rheological Properties, and Freeze-Thaw Stability of Rice Starch Gel. Foods 2022, 11, 2508. [Google Scholar] [CrossRef]
- Muadklay, J.; Charoenrein, S. Effects of hydrocolloids and freezing rates on freeze–thaw stability of tapioca starch gels. Food Hydrocoll. 2008, 22, 1268–1272. [Google Scholar] [CrossRef]
- Jo, W.; Yoo, B. Effects of Cellulose Gums on Rheological Interactions in Binary Mixtures of Xanthan Gum and Locust Bean Gum. Prev. Nutr. Food Sci. 2018, 23, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Gamonpilas, C.; Kongjaroen, A.; Methacanon, P. The importance of shear and extensional rheology and tribology as the design tools for developing food thickeners for dysphagia management. Food Hydrocoll. 2023, 140, 108603. [Google Scholar] [CrossRef]
- Bisht, A.; Goh, K.K.T.; Sims, I.M.; Edwards, P.J.B.; Matia-Merino, L. Does harvesting age matter? Changes in structure and rheology of a shear-thickening polysaccharide from Cyathea medullaris as a function of age. Carbohydr. Polym. 2024, 329, 121757. [Google Scholar] [CrossRef]
- Jaishankar, A.; Wee, M.; Matia-Merino, L.; Goh, K.K.T.; McKinley, G.H. Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. Carbohydr. Polym. 2015, 123, 136–145. [Google Scholar] [CrossRef]
Sample | Carrot Purée (%) | Potable Water (%) | A4M (%) | Agar (%) | Locust Bean Gum (%) | Xanthan Gum (%) | Carboxy-Methylcellulose (%) |
---|---|---|---|---|---|---|---|
Control | 75 | 25 | - | - | - | - | - |
A1 | 75 | 23.5 | - | 1.5 | - | - | - |
A2 | 75 | 23.5 | 0.75 | 0.75 | - | - | - |
A3 | 75 | 23.5 | 0.5 | 1 | - | - | - |
A4 | 75 | 23.5 | 1 | 0.5 | - | - | - |
B1 | 75 | 24.5 | - | - | 0.5 | - | - |
B2 | 75 | 23 | 1.5 | - | 0.5 | - | - |
B3 | 75 | 22.5 | 1.5 | - | 1 | - | - |
B4 | 75 | 22.5 | 2 | - | 0.5 | - | - |
C1 | 75 | 24.5 | - | - | - | 0.5 | - |
C2 | 75 | 23 | 1.5 | - | - | 0.5 | - |
C3 | 75 | 22.5 | 1.5 | - | - | 1 | - |
C4 | 75 | 22.5 | 2 | - | - | 0.5 | - |
D1 | 75 | 24 | - | - | - | - | 1 |
D2 | 75 | 22.5 | 1.5 | - | - | - | 1 |
Samples | Sol–Gel (°C) | Gel–Sol (°C) | G’ at 90 °C (Pa) |
---|---|---|---|
MA (A4C) | 62 | 33 | ~122 |
MB (A4M) | 57 | 32 | ~349 |
MC (MX) | 45 | (irreversible) | ~208 |
MD (MX100) | 49 | (irreversible) | ~367 |
HA (E4M) | 63 | 51 | ~3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maran, N.; Dharmawan, J.; Goh, K.K.T. Thermoreversible Hydrocolloid Blends for Structurally Stable Reheated Carrot Purée in Dysphagia Management. Foods 2025, 14, 2248. https://doi.org/10.3390/foods14132248
Maran N, Dharmawan J, Goh KKT. Thermoreversible Hydrocolloid Blends for Structurally Stable Reheated Carrot Purée in Dysphagia Management. Foods. 2025; 14(13):2248. https://doi.org/10.3390/foods14132248
Chicago/Turabian StyleMaran, Narmatha, Jorry Dharmawan, and Kelvin K. T. Goh. 2025. "Thermoreversible Hydrocolloid Blends for Structurally Stable Reheated Carrot Purée in Dysphagia Management" Foods 14, no. 13: 2248. https://doi.org/10.3390/foods14132248
APA StyleMaran, N., Dharmawan, J., & Goh, K. K. T. (2025). Thermoreversible Hydrocolloid Blends for Structurally Stable Reheated Carrot Purée in Dysphagia Management. Foods, 14(13), 2248. https://doi.org/10.3390/foods14132248