From By-Products to Promising Bifunctional Food Ingredients: Physicochemical Characterization and Antioxidant and Emulsifying Improvement Evaluation Based on the Synergy of Phenolic Acids, Flavonoids and Tannins with Bovine Liver Hydrolysates
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Hydrolysates
2.3. Preparation of Complexes
2.4. Characterization of Binding Capacity
2.4.1. Polyphenol Binding Equivalents
2.4.2. Determination of Free Amino Groups
2.5. Determination of Molecular Weight Distribution
2.6. Characterization of Structures
2.6.1. Secondary Structure Qualitative Analysis
2.6.2. Tertiary Structure Characterization
2.6.3. Ultraviolet (UV) Absorption Spectroscopy
2.6.4. Determination of Surface Hydrophobicity
2.7. Thermal Stability Characterization
2.8. Scanning Electron Microscopy Micro-Characterization
2.9. Antioxidant Capacity Characterization
2.9.1. Determination of Free Radical Scavenging Capacity
2.9.2. Iron Reducing Power
2.10. Determination of Emulsifying Capacity
2.10.1. Preparation of Emulsions
2.10.2. Emulsifying Activity
2.10.3. Rheological Behavior
2.10.4. Optical Microscopy
2.11. Statistical Analysis
3. Results and Discussion
3.1. Complex Binding Capacity
3.1.1. Polyphenol Binding Capacity
3.1.2. Free Amino Groups
3.2. Molecular Weight Distribution
3.3. Fourier Transform Infrared Spectroscopy
3.4. Fluorescence Spectroscopy
3.5. UV Spectrum
3.6. Surface Hydrophobicity
3.7. Differential Scanning Calorimetry Analysis
3.8. Antioxidant Capacity
3.9. Emulsifying Properties
3.10. Rheological Properties
3.11. Optical Microscope
3.12. Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, Y.; Shi, H.B.; Chen, X.; Xu, P.P.; Jiang, D.; Xu, W.M.; Wang, D.Y. Modifying the structure, emulsifying and rheological properties of water-soluble protein from chicken liver by low-frequency ultrasound treatment. Int. J. Biol. Macromol. 2019, 139, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Ongkudon, C.M.; Wei, C.Y.; Chan, A.S.; Danquah, M.K. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod. Process. 2016, 98, 244–256. [Google Scholar] [CrossRef]
- Liu, Q.; Kong, B.H.; Xiong, Y.L.L.; Xia, X.F. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 2010, 118, 403–410. [Google Scholar] [CrossRef]
- Felix, M.; Cermeño, M.; FitzGerald, R.J. Structure and in vitro bioactive properties of O/W emulsions generated with fava bean protein hydrolysates. Food Res. Int. 2021, 150, 110780. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Liu, Y.; Hu, Z.M.; Liu, L.; Yan, Q.H.; Geng, D.D.; Wei, M.; Wan, Y.; Fan, G.Q.; Yang, H.K.; et al. Effect of radiation processing on phenolic antioxidants in cereal and legume seeds: A review. Food Chem. 2022, 396, 133661. [Google Scholar] [CrossRef]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as Antioxidants: Determination of Radical-Scavenging Efficiencies. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1990; Volume 186, pp. 343–355. [Google Scholar]
- Zhang, Y.; Wang, Z.; Liu, J.; Liu, H.; Li, Z.; Liu, J. Interactions of different polyphenols with wheat germ albumin and globulin: Alterations in the conformation and emulsification properties of proteins. Food Chem. 2024, 457, 140129. [Google Scholar] [CrossRef]
- Zhou, F.; Lu, B.Y.; Chen, X.C.; Jia, Z.B.; Tao, F.; Peng, J.Y. Interaction of major tea polyphenols with bovine milk proteins and its effect on in vitro bioaccessibility of tea polyphenols. Food Chem. 2025, 475, 143341. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Zhou, K.; Ning, Y.; Zhao, G.H. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin. Food Chem. 2016, 213, 260–267. [Google Scholar] [CrossRef]
- Huang, Y.; Li, A.J.; Qiu, C.Y.; Teng, Y.L.; Wang, Y. Self-assembled colloidal complexes of polyphenol–gelatin and their stabilizing effects on emulsions. Food Funct. 2017, 8, 3145–3154. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Guo, J.; Yin, S.W.; Wang, J.M.; Yang, X.Q. Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles. J. Agric. Food Chem. 2015, 63, 7405–7414. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Yang, X.; Deng, D.; Zhang, L.; Ma, X.; He, L.; Zhu, X.; Zhang, X. Effects of ultrasonic waves of different powers on the physicochemical properties, functional characteristics, and ultrastructure of bovine liver peptides. Ultrason. Sonochem. 2024, 110, 107031. [Google Scholar] [CrossRef]
- Liu, X.J.; Song, Q.B.; Li, X.; Chen, Y.X.; Liu, C.; Zhu, X.; Liu, J.; Granato, D.; Wang, Y.J.; Huang, J.B. Effects of different dietary polyphenols on conformational changes and functional properties of protein-polyphenol covalent complexes. Food Chem. 2021, 361, 130071. [Google Scholar] [CrossRef]
- Fan, Y.T.; Liu, Y.X.; Gao, L.Y.; Zhang, Y.Z.; Yi, J. Oxidative stability and <in vitro> digestion of menhaden oil emulsions with whey protein: Effects of EGCG conjugation and interfacial cross-linking. Food Chem. 2018, 265, 200–207. [Google Scholar] [CrossRef]
- Liu, F.G.; Sun, C.X.; Yang, W.; Yuan, F.; Gao, Y.X. Structural characterization and functional evaluation of lactoferrin–polyphenol conjugates formed by free-radical graft copolymerization. RSC Adv. 2015, 5, 15641–15651. [Google Scholar] [CrossRef]
- Habinshuti, I.; Mu, T.H.; Zhang, M. Ultrasound microwave-assisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein. Ultrason. Sonochem. 2020, 69, 105262. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Chen, Y.; Lv, J.; Li, C.; Wang, F.J. Characterization of walnut protein isolate-polyphenol nanoconjugates for the developing a food-grade delivery system. J. Food Sci. Technol. 2023, 60, 2454–2467. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Ma, D.H.; Yin, C.P.; Li, Z.Y.; Hao, J.Q.; Li, Y.; Zhang, S. The biological activity, functionality, and emulsion stability of soybean meal hydrolysate-proanthocyanidin conjugates. Food Chem. 2024, 432, 137159. [Google Scholar] [CrossRef]
- Jiang, G.H.; Nam, S.H.; Yim, S.H.; Kim, Y.M.; Gwak, H.; Eun, J.B. Changes in total phenolic and flavonoid content and antioxidative activities during production of juice concentrate from Asian pears (Pyrus pyrifolia Nakai). Food Sci. Biotechnol. 2016, 25, 47–51. [Google Scholar] [CrossRef]
- Jamróz, E.; Kulawik, P.; Krzysciak, P.; Talaga-Cwiertnia, K.; Juszczak, L. Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. Int. J. Biol. Macromol. 2019, 122, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.X.; Huang, L.R.; Chen, W.W.; Wang, J.L.; Wang, S.H. Influence of ultrasound-assisted ionic liquid pretreatments on the functional properties of soy protein hydrolysates. Ultrason. Sonochem. 2021, 73, 105546. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.X.; Li, L. Modification mechanism of soybean protein isolate-soluble soy polysaccharide complex by EGCG through covalent and non-covalent interaction: Structural, interfacial, and functional properties. Food Chem. 2024, 448, 139033. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, A.G.; de la Rosa, L.A.; Vargas-Requena, C.L.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions. Molecules 2017, 22, 669. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xu, Z.; Zhang, S.; Wang, Y.; Li, Y.; Qi, B.K. Improving the biological activity and emulsification ability of soybean meal hydrolysate via non-covalent interactions with polyphenols. LWT Food Sci. Technol. 2023, 182, 114869. [Google Scholar] [CrossRef]
- He, D.; Xing, Y.F.; Wang, Y.; Zeng, W.; Gao, W.; Su, N.; Zhang, C.; Chen, H.H.; Xing, X.H. Improved functional properties of wheat gluten hydrolysate by covalent conjugation with chlorogenic acid. Int. J. Food Sci. Technol. 2023, 58, 454–462. [Google Scholar] [CrossRef]
- Yan, X.H.; Zhao, J.X.; Zeng, Z.L.; Ma, M.M.; Xia, J.H.; Tian, W.R.; Zhang, G.H.; Gong, X.F.; Gong, D.M.; Yu, P. Effects of preheat treatment and polyphenol grafting on the structural, emulsifying and rheological properties of protein isolate from Cinnamomum camphora seed kernel. Food Chem. 2022, 377, 132044. [Google Scholar] [CrossRef]
- Shi, W.; Xie, H.; Ouyang, K.; Wang, S.; Xiong, H.; Woo, M.W.; Zhao, Q. The effect of rice protein-polyphenols covalent and non-covalent interactions on the structure, functionality and in vitro digestion properties of rice protein. Food Chem. 2024, 450, 139241. [Google Scholar] [CrossRef]
- Yasmeen, S.; Riyazuddeen. Exploring thermodynamic parameters and the binding energetic of berberine chloride to bovine serum albumin (BSA): Spectroscopy, isothermal titration calorimetry and molecular docking techniques. Thermochim. Acta 2017, 655, 76–86. [Google Scholar] [CrossRef]
- Ali, M. Chemical, structural and functional properties of whey proteins covalently modified with phytochemical compounds. J. Food Meas. Charact. 2019, 13, 2970–2979. [Google Scholar] [CrossRef]
- He, W.; Li, Y.; Xue, C.; Hu, Z.; Chen, X.; Sheng, F. Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorganic Med. Chem. 2005, 13, 1837–1845. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.G.; Ma, C.C.; McClements, D.J.; Gao, Y.X. A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution. Food Hydrocoll. 2017, 63, 625–634. [Google Scholar] [CrossRef]
- Xu, J.H.; Hao, M.H.; Sun, Q.F.; Tang, L. Comparative studies of interaction of β-lactoglobulin with three polyphenols. Int. J. Biol. Macromol. 2019, 136, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, H.; Hou, T.Y.; Zhang, Z.J.; Li, H.Z. Effects of conjugated interactions between Perilla seed meal proteins and different polyphenols on the structural and functional properties of proteins. Food Chem. 2024, 433, 137345. [Google Scholar] [CrossRef]
- Tang, L.; Zuo, H.J.; Li, S. Comparison of the interaction between three anthocyanins and human serum albumins by spectroscopy. J. Lumin. 2014, 153, 54–63. [Google Scholar] [CrossRef]
- Liao, Y.; Kang, M.X.; Kou, T.Z.; Yan, S.Z.; Chen, T.Y.; Gao, Y.; Qi, B.K.; Li, Y. Effects of three polyphenols with different numbers of phenolic hydroxyls on the structural and interfacial properties and lipid-protein co-oxidation of oil body emulsions. Food Hydrocoll. 2024, 154, 110077. [Google Scholar] [CrossRef]
- Liu, F.G.; Wang, D.; Sun, C.X.; McClements, D.J.; Gao, Y.X. Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein-polyphenol conjugates. Food Chem. 2016, 205, 129–139. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.P.; Zhao, J.; Liu, Y.F. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests. Food Chem. 2018, 268, 334–341. [Google Scholar] [CrossRef]
- Wang, T.; Wang, N.; Yu, Y.J.; Yu, D.Y.; Xu, S.; Wang, L.Q. Study of soybean protein isolate-tannic acid non-covalent complexes by multi-spectroscopic analysis, molecular docking, and interfacial adsorption kinetics. Food Hydrocoll. 2023, 137, 108330. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Yin, C.P.; Hao, J.Q.; Ma, D.H.; Li, Z.Y.; Li, Y.; Qi, B.K. Improving the biological activity, functional properties, and emulsion stability of soybean meal hydrolysate via covalent conjugation with polyphenol. Food Chem. 2023, 422, 136255. [Google Scholar] [CrossRef]
- Omar, A.; Wali, A.; Arken, A.; Gao, Y.H.; Aisa, H.A.; Yili, A. Covalent binding of flavonoids with silk sericin hydrolysate: Anti-inflammatory, antioxidant, and physicochemical properties of flavonoid-sericin hydrolysate conjugates. J. Food Biochem. 2022, 46, e14125. [Google Scholar] [CrossRef] [PubMed]
- Khouryieh, H.; Puli, G.; Williams, K.; Aramouni, F. Effects of xanthan-locust bean gum mixtures on the physicochemical properties and oxidative stability of whey protein stabilised oil-in-water emulsions. Food Chem. 2015, 167, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Li, Y.L.; Huang, M.Y.; Xu, L.A.; Xu, X.L.; Zhou, G.H. Role of polyphenols conjugation to glycated myofibrillar protein in manipulating the emulsifying behaviors of flaxseed oil emulsion. LWT Food Sci. Technol. 2024, 201, 116284. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiong, Y.L.L.; Chen, J. Andoxidant and emulsifying properties of potato protein hydrolysate in soybean oil-in-water emulsions. Food Chem. 2010, 120, 101–108. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Y.; Wang, X.; Tang, H.L.; Wu, N.; Wu, F.; Yu, D.Y.; Elfalleh, W. Effects of (+)-catechin on a rice bran protein oil-in-water emulsion: Droplet size, zeta-potential, emulsifying properties, and rheological behavior. Food Hydrocoll. 2020, 98, 105306. [Google Scholar] [CrossRef]
- Gu, L.P.; Su, Y.J.; Zhang, M.Q.; Chang, C.H.; Li, J.H.; McClements, D.J.; Yang, Y.J. Protection of β-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates. Food Res. Int. 2017, 96, 84–93. [Google Scholar] [CrossRef]
- Pi, X.W.; Liu, J.F.; Sun, Y.X.; Ban, Q.F.; Cheng, J.J.; Guo, M.R. Protein modification, IgE binding capacity, and functional properties of soybean protein upon conjugation with polyphenols. Food Chem. 2023, 405, 134820. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Yang, X.; Shen, R.; Zhang, L.; Ma, X.; Qu, Y.; He, L.; Tong, L.; Han, G. From By-Products to Promising Bifunctional Food Ingredients: Physicochemical Characterization and Antioxidant and Emulsifying Improvement Evaluation Based on the Synergy of Phenolic Acids, Flavonoids and Tannins with Bovine Liver Hydrolysates. Foods 2025, 14, 2225. https://doi.org/10.3390/foods14132225
Duan Y, Yang X, Shen R, Zhang L, Ma X, Qu Y, He L, Tong L, Han G. From By-Products to Promising Bifunctional Food Ingredients: Physicochemical Characterization and Antioxidant and Emulsifying Improvement Evaluation Based on the Synergy of Phenolic Acids, Flavonoids and Tannins with Bovine Liver Hydrolysates. Foods. 2025; 14(13):2225. https://doi.org/10.3390/foods14132225
Chicago/Turabian StyleDuan, Yufeng, Xue Yang, Ruheng Shen, Li Zhang, Xiaotong Ma, Yuling Qu, Long He, Lin Tong, and Guangxing Han. 2025. "From By-Products to Promising Bifunctional Food Ingredients: Physicochemical Characterization and Antioxidant and Emulsifying Improvement Evaluation Based on the Synergy of Phenolic Acids, Flavonoids and Tannins with Bovine Liver Hydrolysates" Foods 14, no. 13: 2225. https://doi.org/10.3390/foods14132225
APA StyleDuan, Y., Yang, X., Shen, R., Zhang, L., Ma, X., Qu, Y., He, L., Tong, L., & Han, G. (2025). From By-Products to Promising Bifunctional Food Ingredients: Physicochemical Characterization and Antioxidant and Emulsifying Improvement Evaluation Based on the Synergy of Phenolic Acids, Flavonoids and Tannins with Bovine Liver Hydrolysates. Foods, 14(13), 2225. https://doi.org/10.3390/foods14132225